反铲液压挖掘机挖掘性能实验及理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为典型的机电液一体化产品,挖掘性能是挖掘机的核心性能指标,对挖掘性能的研究是实现机械、液压和控制系统性能匹配的前提,更是实现液压挖掘机节能、高效和智能化的基础。国内外众多学者针对挖掘性能的研究取得了很多成果,也存在一些不足。这些不足主要体现在以下方面:①现有方法并不能解决实际挖掘过程中挖掘阻力的准确求解问题;②强度分析结果与实际失效形式不符,缺乏对工作装置动静态强度分析的有效方法;③现有理论挖掘力模型无法得到挖掘机在极限挖掘工况下所能发挥的最大挖掘力,也不能针对复合挖掘工况的挖掘能力进行有效评估;④现有图谱分析法不能对挖掘性能作出准确的评价。为解决这些问题,本文主要针对实际挖掘过程中挖掘阻力模型、应力和挖掘阻力测试平台、动静强度分析和验证方法、理论挖掘力建模和挖掘性能分析方法等方面进行了理论与实验研究。本文的具体工作和研究成果主要包括以下内容:
     1)基于平面力系原理,提出一种将挖掘阻力系向切削刃合成为切向阻力、法向阻力和阻力矩的方法,使挖掘阻力的准确求解成为可能。建立液压挖掘机运动学和动力学模型,结合挖掘阻力系合成结果,提出实际作业过程中挖掘阻力准确求解的测试计算方法,突破了利用经验公式和模拟方法预测挖掘阻力大小的现状,使斗形装置实际作业中挖掘阻力特性分析成为可能,为挖掘性能相关研究奠定理论基础。
     2)建立液压挖掘机工作装置姿态、应变和油压的同步采集测试平台,并完成多次挖掘过程中多种数据的采集、转换和拟合。利用测试数据和挖掘阻力模型,计算各种挖掘工况对应的挖掘阻力,根据应力应变关系计算所有测点在挖掘过程中的当量应力,为挖掘阻力特性研究和应力结果对比提供实验依据。
     3)对比实际挖掘过程的动应力峰值与相同挖掘姿态下的静应力仿真值,分析静强度计算结果与真实动应力之间的关系,研究液压挖掘机工作装置广义动载系数的范围,提供一种利用静强度分析手段解决动载荷问题的方法。
     4)利用实验测试数据,基于达朗贝尔形式的挖掘阻力模型,计算出动臂和斗杆各个铰点在实际挖掘过程中的载荷谱。将其作为外载,利用瞬态分析方法仿真动臂和斗杆整体动应力分布规律。对比动应力的测试与仿真结果,不但验证了瞬态分析过程的正确性,找到一种动强度分析的可行方法,也验证了挖掘阻力模型的正确性。
     5)利用实际挖掘过程中挖掘阻力的测试计算结果,从总体特性、力值大小和方向特性3个方面分析挖掘阻力各个部分的变化规律,基于统计学原理研究阻力系数、阻力矩系数、阻力角、差值角的主值区间和概率密度。研究斗形装置在真实作业过程中的挖掘特性和挖掘阻力变化规律,为工作装置的设计、优化和理论挖掘力模型的建立提供实验依据。
     6)基于挖掘阻力的总体特性和力值大小特性提出极限挖掘力的概念和计算模型,解决了现有理论挖掘力模型无法计算出挖掘机本身在单独挖掘工况下所能发挥的极限挖掘力问题;基于复合挖掘过程中挖掘阻力的方向特性,提出并建立了复合挖掘力的概念和模型,为复合挖掘过程挖掘能力的评价提供一种方法,突破现有理论,奠定了液压挖掘机挖掘性能准确评价的理论基础。
     7)突破以挖掘姿态为研究对象的传统方法限制,提出基于工作域的图谱分析法。该方法从根本上避免了因一个挖掘点对应多种挖掘姿态而带来的问题。以挖掘阻力的测试计算结果为基准,对比基于工作域的图谱分析法与传统方法,结果表明:基于工作域的图谱分析法能够更为准确的反映所在挖掘点的挖掘能力,基于此得到的挖掘力图和挖掘限制图揭示了挖掘力及其限制因素的区域性分布规律,能够准确展现液压挖掘机的挖掘性能。利用基于工作域的图谱分析法研究了4种吨位相近的中型反铲液压挖掘机的挖掘性能,分析过程显示该方法不仅可以提供较为直观的理论挖掘力及其限制因素分布图,还可以提供挖掘力和限制因素比例的统计结果,为液压挖掘机挖掘性能的分析和评价提供了理论依据,为实际的工程应用提供了可靠的方法。
As a typical hydraulic mechatronics machine, digging performance is the coreproperty indicators of excavators. Research on digging performance is not only aprerequisite to match mechanical, hydraulic and control system, but also a basis forobtaining energy saving, high efficient and intelligent excavators. Scholars from homeand abroad have made much progress on research of digging performance. But there aresome drawbacks as following:①the current methods can’t solve the accurate diggingresistance in actual digging process.②The unconformity between the strength analysisand the actual failure mode means that more effective methods for working device staticand dynamic strength analysis are required.③The maximum digging force at the limitconditions can’t be acquired from the existing theoretical digging force model, and themodel is not capable to evaluate digging capabilities of compound digging conditions.④The existing pattern analysis method can’t make accurate assessment of diggingproperties. To solve these problems, this paper presents such theoretical andexperimental researches including digging resistance model in actual digging process,test platform of stress and digging resistance, strength analysis and verification methodsof static and dynamic strength, modeling of theoretical digging force and analysis ofdigging performance. Specific work and results of this study include the followings:
     1) Based on the principle of planar force system, the mechanical model in whichdigging resistance system was composed by the tangential resistance, normalresistance, and moment of resistance on the cutting edge was proposed, whichmakes it possible to attain exact digging resistance. Combined with kinematic anddynamic models of hydraulic excavators, the computational model was built forsolving digging resistance in actual digging process. It abandons the condition ofusing empirical equation and simulation methods to predict the digging resistance,and makes it possible to analyze digging resistance of working device in realworking process, which provides theoretical basis for relevant researches ondigging performance.
     2) Synchronous test platforms were built to test the working device attitude, stress andhydraulic cylinder pressure of hydraulic excavator. Then the collection, conversionand fitting of data in several digging process were finished. The correspondingdigging resistance in different conditions was calculated utilizing the test data and the digging resistance model. The equivalent stress of all the test points wascalculated based on the stress-strain relationships. These results provide basis forthe research on digging resistance properties and comparison of stress results.
     3) The peak values of the dynamic stress in actual digging process and staticsimulation stress under same working device attitude was compared, therelationship between static strength and real dynamic stress was summarized, andthe range of general dynamic load factor was researched. These processes provide afeasible way to solve dynamic load problem in static strength analysis way.
     4) The dynamic load spectrum of each hinge points of boom and arm in actual diggingprocess was calculated by solving the digging resistance model which based ond'Alembert principle with the data obtained from test. Taking it as the external load,the overall distribution of dynamic stress at arm and boom was simulated withtransient analysis method. Dynamic stress gained from transient analysis anddynamic testing was compared. The comparison of stress from test and simulationnot only verifies the validity of transient analysis process, which is a feasiblemethod for dynamic analysis of structures, but also demonstrate the correctness ofdigging resistance model.
     5) The rules of overall characteristics, force value and direction features of the diggingresistance were researched by studying the experimental result. In addition, basedon statistics theory, the main range and probability density of resistance coefficient,resistance moment coefficient, resistance angle and difference angle were obtained.Research on digging properties and the changing law of digging resistance in realworking process will benefit a lot in designing and optimizing of working deviceand setting up the theoretical digging force model.
     6) The concept of limiting digging force and calculation model was proposed based onthe overall characteristics and change law of the digging resistance, which makes itpossible to evaluate the limiting digging ability of the excavator exactly. Based onthe direction features of the digging resistance during the process of compounddigging, the concept of compound digging force, as a new way of assessing diggingperformance in compound digging process, was proposed, and the break throughprovides an evaluation methodology for the digging ability in the process ofcompound digging.
     7) A new method called atlas analysis based on workspace was put forward as asubstitute for the traditional method in which the digging attitude was the focus. The method can avoid the problem that one digging point may correspond to manydigging gestures in traditional method. Based on the digging resistance from thetest result, the atlas analysis based on workspace and the traditional method wascompared. The results show that the atlas analysis based on workspace is moreaccurate in reflecting the digging ability at certain point, since the digging atlas canobviously disclose the regional distribution law of digging force. Utilizing atlasanalysis method based on workspace, digging performance analysis of fourmedium-sized hydraulic backhoe excavators of similar tonnage suggests that thismethod can not only give a more intuitive vision in theoretical digging force andconstraints factors distribution, but also provide statistical results of digging forceand constraints proportion. This method is valuable as theoretical basis forexcavators’ evaluation and analysis and provides a reliable way for engineeringapplication.
引文
[1]蒋运动.挖掘机发展与技术动向[J].建筑机械,2011,11:42-44.
    [2]陈正利.我国挖掘机行业的形成与发展、现状及前景[J].建筑机械技术与管理,2004,11:25-29.
    [3]吴学松.挖掘机行业控风险、稳增长策略研讨[J].建筑机械化,2013,12:29-32.
    [4]谢习华周亮张大庆.液压挖掘机技术研究的发展现状[J].工程机械,2007,38:54-57.
    [5]刘强.液压挖掘机器人高性能运动控制[R].杭州:浙江大学,2006.
    [6] Singh S. State of the art in automation of earthmoving[J]. Journal of Aerospace Engineering,1997,10(4):179-188.
    [7] Stenta A, Bares J, Singh S, Powe P. A robotic excavator for autonomous truck loading [J].Autonomous Robots,1999,7(2):175-186.
    [8] Peyret F, Jurasz J. The computer integrated road construction project [J]. Automation inConstruction,2000,9:62-72.
    [9] Seward D, Margrave F, Sommerville L, et al. LUCIE the robotic excavator-design for systemsafety [C]//Robotic and Automation,1996. Proceedings.,1996IEEE International Conferenceon. IEEE,1996,1:963-968.
    [10] David A B, Derek W S. The development, control and operation of an autonomous roboticexcavator [J]. Journal of Intelligent and Robotic Systems,1998,21:73-75.
    [11] Shaban E M, Taylor C J, Chotai A. State dependent parameter Proportional-Integral-Plus(SDP-PIP) control of a nonlinear robot digger arm[C]. UKACC International Conference onControl.2004,4.
    [12] Nguyen Q H, Ha Q P, Rye D C, et al. Force/position tracking for electrohydraulic systems of arobotic excavator[C]. Decision and Control,2000. Proceedings of the39th IEEE Conference on.IEEE,2000,5:5224-5229.
    [13] Ha Q P, Nguyen Q H, Rye D C, et al. Impedance control of a hydraulically actuated roboticexcavator [J]. Automation in Construction,2000,9:421-435.
    [14]孙守迁,杨毅,赵凡,等.采掘机器人设计技术的研究[J].机械与电子,1992,5:19-21.
    [15]张强.挖掘机器人规划控制的方法与技术的研究[D].杭州:浙江大学,2002.
    [16]潘双夏,季炳伟,童永峰.基于操纵平稳性的液压挖掘机轨迹规划方法[J].浙江大学学报(工学版),2006,40(8):1311-1314.
    [17]张大庆,何清华,郝鹏,等.液压挖掘机铲斗轨迹跟踪控制[J].吉林大学学报(工学版),2005,35(5):490-494.
    [18]张大庆,何清华,郝鹏,等.液压挖掘机铲斗轨迹跟踪的鲁棒控制[J].吉林大学学报(工学版),2006,36(6):934-938.
    [19]何清华,张大庆,黄志雄,等.液压挖掘机工作装置的自适应控制[J].同济大学学报(自然科学版),2007,35(9):1259-1263.
    [20]陈洪,杨毅,冯培恩,等.采掘机器人远程无线遥控系统的设计[J].机电工程,1998,2:37-39.
    [21]张海涛,何清华,陈欠根.遥控挖掘机器人轨迹跟踪的电液比例控制系统[J].液压与气动,2004,7:11-13.
    [22] Kim D, Kim J, Lee K, et al. Excavator tele-operation system using a human arm[J]. Automationin construction,2009,18(2):173-182.
    [23] Ghosal S, Misra D, Saha T K, et al. Failure Analysis of Stacker-cum-Reclaimer in Ore HandlingPlant[J]. Journal of failure analysis and prevention,2008,8(6):564-571.
    [24]陈明东.液压挖掘机动臂下降势能回收技术研究[D].长春:吉林大学,2013.
    [25]国香恩.液压挖掘机节能模糊控制系统研究[D].长春:吉林大学,2004.
    [26]张栋.基于功率匹配的挖掘机节能控制技术的研究[D].长春:吉林大学,2005.
    [27]郝鹏.液压挖掘机动力系统匹配及节能控制研究[D].长沙:中南大学,2008.
    [28]何清华,郝鹏,常毅华.基于功率协调控制的液压挖掘机节能系统研究[J].机械科学与技术,2007,26(2):188-191.
    [29]张颜廷.基于混合动力与能量回收的液压挖掘机节能研究[D].杭州:浙江大学,2006.
    [30]林添良.混合动力液压挖掘机势能回收系统的基础研究[D].杭州:浙江大学,2011.
    [31]张树忠.基于液压式能量回收的挖掘机动臂节能研究[D].成都:西南交通大学,2011.
    [32] Yoon J I, Kwan A K, Truong D Q. A study on an energy saving electro-hydraulicexcavator[C]//ICCAS-SICE,2009. IEEE,2009:3825-3830.
    [33]肖清.液压挖掘机混合动力系统的控制策略与参数匹配研究[D].杭州:浙江大学,2008.
    [34]王冬云.混合动力挖掘机动力总成及参数匹配方法研究[D].杭州:浙江大学,2009.
    [35]林潇.液压挖掘机并联式混合动力系统控制策略研究[D].杭州:浙江大学,2010.
    [36] Inoue Hiroaki, Yoshida Hiroshi. Development of hybrid hydraulic excavators[J]. InternationalJournal of Automation Technology,2012,6(4):516-520.
    [37] Kwon Tae-Suk, Lee Seon-Woo, Sul Seung-Ki, et al. Power control algorithm for hybridexcavator with supercapacitor[J]. IEEE Transaction on Industry Application,2010,46(4):1447-1455.
    [38] Choi Jaewoong, Kim Hakgu, Yu Seungjin, et al. Development of integrated controller for acompound hybrid excavator[J]. Journal of mechanical Science and Technology,2011,25(6):1557-1563.
    [39] Zimmerman J, Hippalgaonkar R, Ivantysynova M. Optimal Control for the Series-ParallelDisplacement Controlled Hydraulic Hybrid Excavator[C]. ASME2011Dynamic Systems andControl Conference and Bath/ASME Symposium on Fluid Power and Motion Control.American Society of Mechanical Engineers,2011:129-136.
    [40] Lin Tianliang, Wang Qingfeng. Hydraulic accumulator-motor-generator energy regenerationsystem for a hybrid hydraulic excavator[J]. Chinese Journal of Mechanical Engineering,2012,25(6):1121-1129.
    [41] Lin Tianliang, Wang Qingfeng,Hu Baozan, Gong Wen. Research on the energy regenerationsystems for hybrid hydraulic excavators[J]. Automation in Construction,2010,19(8):1016-1026.
    [42]肖清,王庆丰,张彦廷,等.液压挖掘机混合动力系统建模及控制策略研究[J].浙江大学学报(工学版).2007,41(3):480-483.
    [43] Qing Xiao, Qingfeng Wang, Yanting Zhang. Control strategies of power system in hybridhydraulic excavator[J]. Automation in Construction.2008,17(4):361-367.
    [44] Yanting Zhang, Qingfeng Wang, Qing Xiao, Qiang Fu. Constant work-point control for parallelhybrid system with capacitor accumulator in hydraulic excavator[J]. Chinese Journal ofMechanical Engineering.2006,19(4):505-508.
    [45]王冬云,潘双夏,林潇,等.并联式混合动力挖掘机动力源匹配方法研究[J].浙江大学学报(工学版).2009,43(10):1783-1788.
    [46]林潇,管成,潘双夏,王冬云.并联式混合动力挖掘机动力源特性研究[J].浙江大学学报(工学版).2010,44(2):353-357.
    [47] Xiao Lin, Shuangxia Pan, Dongyun Wang. Dynamic simulation and optimal control strategy fora hybrid hydraulic excavator[J]. Journal of Zhejiang University SCIENCE A.2008,9(5):624-632.
    [48] Cheng Y, Kui H, Yinwu L I, et al. Review for Development of Hydraulic ExcavatorAttachment[J]. Energy Science&Technology,2012,3(2):93-97.
    [49] Koivo A J, Thoma M, Kocaoglan E, et al. Modeling and control of excavator dynamics duringdigging operation[J]. Journal of aerospace engineering,1996,9(1):10-18.
    [50] Towarek Z. Dynamics of a single-bucket excavator on a deformable soil foundation during thedigging of ground[J]. International Journal of Mechanical Sciences,2003,45(6):1053-1076.
    [51] Fox B, Jennings L S, Zomaya A Y. On the modelling of actuator dynamics and the computationof prescribed trajectories[J]. Computers&structures,2002,80(7):605-614.
    [52] Roshdy Foaad A. Abo-shanab. Dynamic modeling and stability analysis of mobile manipulatorswith application to heavy duty hydraulic machines[D]. Manitoba Canada: The University ofManitoba Winnipeg,2003.
    [53] Cui H X, Li H L, Feng K, et al. Kinematic simulation of hydraulic excavator’s workingattachment based on matlab/robot[J]. Advanced Materials Research,2013,694:1765-1770.
    [54] Patel B P, Prajapati J M. Kinematic working range evaluation for mini hydraulic backhoeexcavator attachment[J]. International Journal of Automation and Control,2012,6(2):207-214.
    [55] Seo J, Lee S, Kim J, et al. Task planner design for an automated excavation system[J].Automation in Construction,2011,20(7):954-966.
    [56] Kim Y B, Ha J, Kang H, et al. Dynamically optimal trajectories for earthmoving excavators[J].Automation in Construction,2013,35:568-578.
    [57]曹善华,徐志新.液压挖掘机工作装置运动轨迹的微机控制[J].同济大学学报(自然科学版),1988,16(1),1-9.
    [58]李兰生,边仁国,邹占江.液压挖掘机工作装置运动学分析及轨迹规划[J].矿山机械,1998,2:23-25.
    [59]高英杰,晋艳超,董建伟,等.液压挖掘机基于轨迹规划的控制优化[J].中国机械工程学报,2006,4(3):288-294.
    [60]张正兵,陈进,李晓娜.基于正铲液压挖掘机挖掘轨迹的机构运动学分析[J].机械,2008,35(5):9-12.
    [61] Swick W C, Perumpral J V. A model for predicting soil-tool interaction[J]. Journal ofTerramechanics,1988,25(1):43-56.
    [62] Hemami A. Modelling, analysis and preliminary studies for automatic scooping [J]. AdvancedRobotics,1993,8(5):511-529.
    [63] Hemami A, Goulet S, Aubertin M. Resistance of particulate media to excavation: Application tobucket loading[J]. International Journal of Surface Mining and Reclamation,1994,8(3):125-129.
    [64] Wilkinson A, DeGennaro A. Digging and pushing lunar regolith: Classical soil mechanics andthe forces needed for excavation and traction [J]. Journal of terramechanics,2007,44(2):133-152.
    [65] Godwin R J, O’Dogherty M J. Integrated soil tillage force prediction models [J]. Journal ofTerramechanics,2007,44(1):3-14.
    [66] Patel B P, Prajapati J M. Evaluation of resistive force using principle of soil mechanics for minihydraulic backhoe excavator[J]. International Journal of Machine Learning and Computing,2012,2(4):386-391.
    [67] Singh S. Learning to predict resistive forces during robotic excavation[C]. Robotics andAutomation,1995. Proceedings.,1995IEEE International Conference on. IEEE,1995,2:2102-2107.
    [68] Willman B M, Boles W W. Soil-tool interaction theories as they apply to lunar soil simulant[J].Journal of Aerospace Engineering,1995,8(2):88-99.
    [69] Abo-Elnor M, Hamilton R, Boyle J T.3D Dynamic analysis of soil–tool interaction using thefinite element method[J]. Journal of Terramechanics,2003,40(1):51-62.
    [70] Karmakar S, Kushwaha R L. Dynamic modeling of soil–tool interaction: an overview from afluid flow perspective[J]. Journal of terramechanics,2006,43(4):411-425.
    [71] Malaguti F. Cutting and Impedance Model of Soil-Excavator Interaction[C]. Proceedings of the22nd International Symposium on Automation and Robotics in Construction.2005:1-4.
    [72] Obermayr M, Dressler K, Vrettos C, et al. Prediction of draft forces in cohesionless soil withthe Discrete Element Method[J]. Journal of Terramechanics,2011,48(5):347-358.
    [73] Mak J, Chen Y, Sadek M A. Determining parameters of a discrete element model for soil–toolinteraction[J]. Soil and Tillage Research,2012,118:117-122.
    [74] Coetzee C J, Basson A H, Vermeer P A. Discrete and continuum modelling of excavator bucketfilling[J]. Journal of terramechanics,2007,44(2):177-186.
    [75] Coetzee C J, Els D N J. The numerical modelling of excavator bucket filling using DEM[J].Journal of Terramechanics,2009,46(5):217-227.
    [76] Vahed S M, Delaimi H A, Althoefer K, et al. On-line energy-based method for soil estimationand classification in autonomous excavation[C]//Intelligent Robots and Systems,2007. IROS2007. IEEE/RSJ International Conference on. IEEE,2007:554-559.
    [77] Tan C, Zweiri Y H, Althoefer K, et al. On-line soil property estimation for autonomousexcavator vehicles[C]//Robotics and Automation,2003. Proceedings. ICRA'03. IEEEInternational Conference on. IEEE,2003,1:121-126.
    [78] Song Z, Hutangkabodee S, Zweiri Y H, et al. Identification of soil parameters for unmannedground vehicles track-terrain interaction dynamics[C]. SICE2004Annual Conference. IEEE,2004,3:2255-2260.
    [79] Althoefer K, Tan C P, Zweiri Y H, et al. Hybrid soil parameter measurement and estimationscheme for excavation automation [J]. Instrumentation and Measurement, IEEE Transactions on,2009,58(10):3633-3641.
    [80] Dai J S, Lam H K, Vahed S M. Soil type identification for autonomous excavation based ondissipation energy [J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal ofSystems and Control Engineering,2011,225(1):35-50.
    [81] Maciejewski J, Jarz bowski A. Laboratory optimization of the soil digging process [J]. Journalof terramechanics,2002,39(3):161-179.
    [82] Carbonell J M, O ate E, Suárez B. Modeling of ground excavation with the particlefinite-element method [J]. Journal of engineering mechanics,2009,136(4):455-463.
    [83] Yang J, Wang C W, Wang F H, et al. A Review on Application of Discrete Element Method inSoil Cutting Process[J]. Applied Mechanics and Materials,2014,444:1477-1482.
    [84] Maciejewski J, Jarz bowski A, Trampczyński W. Study on the efficiency of the diggingprocess using the model of excavator bucket[J]. Journal of terramechanics,2003,40(4):221-233.
    [85] Montaser A, Bakry I, Alshibani A, et al. Estimating productivity of earthmoving operationsusing spatial technologies11This paper is one of a selection of papers in this Special Issue onConstruction Engineering and Management[J]. Canadian Journal of Civil Engineering,2012,39(9):1072-1082.
    [86] Oscar Javier Gomez Rueda. Productivity analysis of earthmoving operation[D]. Edmonton,Alberta: University of Alberta,2011.
    [87] Huang Qiubo, Shui Lei, Sun Zhaoliang. The Overall Finite Element Analysis for HydraulicExcavator Working Device[J]. Advanced Materials Research,2012,538:560-563.
    [88] Miao X P, Zhang W, Wang H B. Finite Element Analysis on Working Mechanism of HydraulicExcavator[J]. Applied Mechanics and Materials,2012,220:905-908.
    [89] Habtay Gebremicheal G, Chen J, Farooq Zaman M, et al. Design and Finite Element Analysisof a Hydraulic Excavator Boom[J]. Advanced Materials Research,2012,538:568-571.
    [90] Jovan i P D, Ignjatovi D, Tanasijevi M, et al. Load-bearing steel structure diagnostics onbucket wheel excavator, for the purpose of failure prevention[J]. Engineering Failure Analysis,2011,18(4):1203-1211.
    [91] Savkovi M, Ga i M, Arsi M, et al. Analysis of the axle fracture of the bucket wheelexcavator[J]. Engineering Failure Analysis,2011,18(1):433-441.
    [92] Suli F, Zhigang T, Xuhua Z, et al. Optimization of the Top Guard for Excavator Based onNeural Genetic Algorithm[C]. Intelligent Computation Technology and Automation (ICICTA),2008International Conference on. IEEE,2008,1:1240-1243.
    [93] Sui Tianzhong, Wang Lei, Tan Zhen, et al. Structural Parameters Optimization of ExcavatorWorking Device Based on Mining Process[J]. Advanced Materials Research,2012,421:759-763.
    [94] Patel B P, Prajapati J M. Structural optimization of mini hydraulic backhoe excavatorattachment using FEA approach[J]. Machine Design,2013,5(1):43-56.
    [95] Solazzi L. Design of aluminium boom and arm for an excavator[J]. Journal of Terramechanics,2010,47(4):201-207.
    [96]张卫国,权龙,程珩,等.真实载荷驱动下挖掘机工作装置疲劳寿命研究[J].农业机械学报,2011,42(5):35-38.
    [97]谭明敏.高频冲击下挖掘机动臂和斗杆动态特性及疲劳寿命研究[D].长沙:中南大学,2011.
    [98]百瑞.液压挖掘机工作装置的有限元分析及疲劳寿命预测[D].太原:太原理工大学,2011.
    [99]陈进,吴俊,李维波,等.大型液压正铲挖掘机工作装置有限元分析及应力测试[J].中国工程机械学报,2007,5(2):198-203.
    [100]周宏兵,王慧科,过新华,等.基于MATLAB和ANSYS的挖掘机工作装置结构静强度分析[J].广西大学学报:自然科学版,2009,34(6):774-779.
    [101]杜文靖,崔国华,刘小光,等.液压挖掘机工作装置整体集成有限元分析[J].农业机械学报,2007,38(10):19-23.
    [102] Cui Guo-hua, Zhang Yan-wei. Integrated finite element analysis and experimental validationof an eExcavator working equipment[C].2009International Conference on InformationEngineering and Computer Science, Wuhan, China,2009.
    [103] Tian Long, Zhang Wei, Wang Hai-bo. Study on finite element method of power workingdevice of hydraulic excavator[C].2011International Conference on Electronic&MechanicalEngineering and information Technology, Harbin, China,2011:4216-4219.
    [104] Srdan M. Bo njak, Zoran D. Petkovic, Ivana D. Atanasovska, et al. Bucket chain excavator:Failure analysis and redesign of the counterweight boom supporting truss columns[J].Engineering Failure Analysis,2013,32:322-333.
    [105]程珩,百瑞.挖掘机工作装置疲劳寿命分析[J].振动、测试与诊断,2011,31(4):512-516.
    [106]张卫国,权龙,程珩,等.基于真实载荷的挖掘机工作装置瞬态动力学分析[J].机械工程学报,2011,47(12):144-149.
    [107]孙淑梅.液压挖掘机反铲挖掘力的分析[J].工程机械,1979,6:13-21.
    [108]魏景丰.液压挖掘机铲斗挖掘力的分析[J].工程机械,1981,4:1-3.
    [109]同济大学主编.单斗液压挖掘机[M].北京:中国建筑工业出版社,1986.
    [110]陈国俊.液压挖掘机[M].武汉:华中科技大学出版社,2011.
    [111]朱红妹.液压挖掘机挖掘性能分析与挖掘力分析计算[J].化工装备技术,2007,28(4):72-76.
    [112]陈世教,徐黎萍,钟春健,等.叠置式正铲装置动静态挖掘力的计算[J].工程机械,2008,39(6):35-41.
    [113] Patel B P, Prajapati J M. Evaluation of bucket capacity, digging force calculations and staticforce analysis of mini hydraulic backhoe excavator[J]. Machine Design,2012,4(1):59-66.
    [114] Flores F G, Kecskeméthy A, P ttker A. Workspace analysis and maximal force calculation ofa face-shovel excavator using kinematical transformers[C]. Proceedings of the12th worldcongress in mechanism and machine science, Besancon, France.2007.
    [115] Park B. Development of a virtual reality excavator simulator: A mathematical model ofexcavator digging and a calculation methodology[D]. Blacksburg: Virginia PolytechnicInstitute and State University,2002.
    [116] Stephane Blouin, Ahmad Hemami, Mike Lipsett. Review of Resistive Force Models forEarthmoving Processes [J]. Journal of Aerospace Engineering,2001,14(3):102-111.
    [117]黄斌,何清华,贺继林,等.反铲液压挖掘机挖掘图谱程序化绘制与实验[J].农业机械学报,2009,40(9):26-31.
    [118]冯培恩.液压挖掘机反铲电算分析[J].工程机械,1979,7:1-11.
    [119]陈进,李秋波,张石强,侯沂.正铲液压挖掘机挖掘性能图谱叠加分析法[J].中国工程机械学报,2011,9(1),32-37.
    [120] Lee S, Hong D, Park H, et al. Optimal path generation for excavator with neural networksbased soil models[C]. International Conference on Multisensor Fusion and Integration forIntelligent Systems, Seoul, Korea: Institute of Electrical and Electronics Engineers Inc.,2008,632-637.
    [121] Johnson L L, King R H. Measurement of force to excavate extraterrestrial regolith with asmall bucket-wheel device[J]. Journal of Terramechanics,2010,47(2):87-95.
    [122] ISO6015,2006. Earth-moving machinery—Hydraulic excavators and backhoeloaders—Methodes of determining tool forces. International Organization for Standardization.
    [123] SAE J1179,2008. Hydraulic excavator and manipulator digging forces. SAE International.
    [124]张大庆.液压挖掘机工作装置运动控制研究[D].长沙:中南大学,2006.
    [125]徐福祥,刘安心,黎宏.液压挖掘机工作装置的轨迹实现研究[J].电气与自动化,2009,38(4):159-162.
    [126] Zhu Q Y, Xie W Y, Hou L, et al. The Integrated Testing System for Performance Parametersof the Hydraulic Excavator[J]. Advanced Materials Research,2012,468:2483-2486.
    [127] Hu X L, Xiang Q, Zhang H, et al. Research on Calculation and Measurement Method ofHydraulic Excavator Load Force-Time Process[J]. Applied Mechanics and Materials,2013,401:1091-1094.
    [128] Chen Jin, Zhang Shiqiang, Yang Ying, Li Wei-bo. Research on the Testing Method ofHydraulic Excavator’s Digging Performance[C]. Proceedings of the2007InternationalConference on Advances in Construction Machinery and Vehicle Engineering, Shanghai,China,2007:266-270.
    [129]杨为,邱清盈,胡建军.液压挖掘机工作装置动应变的实验研究[J].工程机械,2004,11:15-19.
    [130] Patel B P, Prajapati J M. Soil-Tool Interaction as a Review for Digging Operation of MiniHydraulic Excavator[J]. International Journal of Engineering Science and Technology,2011,3(2):894-901.
    [131] Patel B P, Prajapati J M. A Review on FEA and Optimization of Backhoe Attachment inHydraulic Excavator[J]. International Journal of Engineering and Technology,2011,3(5):505-511.
    [132] Ashebo D B, Chan T H T, Yu L. Evaluation of dynamic loads on a skew box girdercontinuous bridge Part II: Parametric study and dynamic load factor[J]. Engineering structures,2007,29(6):1064-1073.
    [133] Beben D. Dynamic amplification factors of corrugated steel plate culverts[J]. EngineeringStructures,2013,46:193-204.
    [134]黄霞.高速重载齿轮传动动载系数分析[D].重庆:重庆大学,2005.
    [135]穆远东,陆念力.水平臂式塔式起重机起升动载系数分析[J].建筑机械,2004,1:83-85.
    [136]陈进,李维波,张石强,钟春键.大型矿用正铲液压挖掘机挖掘阻力实验研究,中国机械工程.2008,19(5):518—521.
    [137]陈世教,荣洪钧,冀满忠,等.液压挖掘机反铲工作装置整机理论复合挖掘力的计算及应用.工程机械,2007,38(4):39-43.
    [138]史青录,连晋毅,林慕义.挖掘机最大理论挖掘力的确定[J].太原科技大学学报,2007,28(1):32-35.
    [139] Chang Lv, Zhang Ji-hong. Excavating force analysis and calculation of dipper handle[C].2011International Conference on Consumer Electronics, Communications and Networks.XianNing, China: IEEE Computer Society,2011:4068-4071.
    [140]林慕义,史青录.单斗液压挖掘机构造与设计[M].北京:冶金工业出版社,2011.
    [141]朱红妹,卫少克,刘钊.液压挖掘机挖掘工况与挖掘力分布特性分析[J].机电设备,2007,24(8):9-12.
    [142] Chen J, Qing F, Pang X. Mechanism optimal design of backhoe hydraulic excavator workingdevice based on digging paths[J]. Journal of Mechanical Science and Technology,2014,28(1):213-222.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700