液压挖掘机工作装置设计关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液压挖掘机利用工作装置完成土石方挖掘作业,工作装置的性能是整机设计水平的重要标志。本文针对液压挖掘机工作装置设计中存在的共性问题,结合企业科研攻关课题,对液压挖掘机工作装置整体有限元分析、铰点轴承设计、工作装置运动学和动力学综合优化等关键技术进行了系统研究。
     本文综述了液压挖掘机的发展概况及工作装置国内外研究现状,对液压挖掘机典型工况进行了分析,总结了挖掘机工作装置性能要求和设计原则。提出了工作装置整体有限元分析的方法,利用梁单元和实体单元相结合的方法建立了铰点的有限元模型,对车架、动臂、斗杆、铲斗、油缸和连接销轴构成的系统进行整体建模、加载和分析。以某挖掘机工作装置为例,进行了五种典型工况非线性有限元分析和模态分析,通过对现场测试试验,对仿真分析结果进行了验证。分析了挖掘机工作装置铰点的失效机理,提出了铰点销轴和轴套最小间隙的计算公式和最大间隙的限制条件。在对液压挖掘机工作装置运动学和力学分析的基础上,开发了工作装置挖掘性能可视化软件,提出的挖掘力云图可直观描述挖掘机在某一区域的挖掘性能。以特定区域挖掘性能为优化目标,工作装置的运动性能和力学性能为约束条件建立了优化设计数学模型,采用遗传算法对某挖掘机工作装置进行了优化设计,修正了原设计的缺陷,提高了挖掘性能,优化方案已被企业采用。
     本文对液压挖掘机工作装置设计关键技术的研究,发展了液压挖掘机的设计理论,对提高液压挖掘机的设计水平有重要的意义。
Hydraulic excavator is the major construction machine in the earth moving, excavation and engineering field, and it is widely used in the mechanized construction of energy, transportation, water conservancy, urban construction and modernized military engineering field. Working mechanism is the main part for earth excavation, so the performance and reliability of working mechanism become the important symbol of machine.
     The work of the mechanism is completed by compound action of three fuel tanks and the interaction of earth moving, of which the movement and force analysis is quite complex. As domestic manufacture of hydraulic excavator is lagged behind and lack of design theory as a guide, traditional way is still used for the design of working mechanism. In practical application, arm crack, unreasonable excavation region, machine intervene and early failures of hinge often occur, which result in tremendous loss and directly influence the development of domestic excavator filed. Compared with other engineering machine, domestic hydraulic excavator is lack of competitiveness and has the lowest share in domestic market.
     Combining scientific research project from enterprise, aiming at the key common problems of working mechanism design, the paper makes systematic study on key technology of the finite analysis for working mechanism, the design for hinge bearing and the integrated optimization for mechanism kinematics and dynamics. The design theory is enhanced and the paper provides theory reference and practical method for working mechanism design and is of great significance for domestic excavator development.
     The main research work and innovate achievements are as follows:
     (1) Working mechanism is the main component of hydraulic excavator and its performance directly determines the performance of the whole hydraulic excavator, which brings high demands for working mechanism design. First a comprehensive analysis is performed for hydraulic working conditions. On the basis of work characters, the design of working mechanism is studied to meet the requirements for geometry, dynamic characteristics, structure strength, economic and other aspects of hydraulic excavator. And design principle is discussed. All of the research work has important guiding significance.
     (2) By comparing the current development of hydraulic excavator working mechanism from both domestic and foreign, the paper presents an integrated and refined 3D finite element analysis for working mechanism. Take excavator as an example, the 3D model of working mechanism is established. Based on assessment of preliminary finite element, the way of establishing finite element model is determined. Selected five typical working statuses, the paper makes stiffness, strength and modal analysis for assembled working mechanism, and takes test for actual product. The results show that stress distribution of work mechanism can clearly explain failure cause and the result can be applied for the guide of working mechanism design. In the paper, the excavator design method is improved and a new approach is provided for similar product design and analysis.
     (3) There are many hinge points in hydraulic working mechanism. There is relative rotation between hinge shaft and bushings, and the transfer load is high. The fit clearance between the hinge shaft and bushings directly affects the reliability. If the clearance is too small, it is difficult to form a stable lubricant film, and can easily cause friction, wear and fracture damage. If the clearance is too large, the fatigue life of the hinge shaft and bushings is affected. Therefore, a reasonable clearance between shaft and bushings is so important for the design of excavator working mechanism design. We obtain the following achievement for such key technical issues: 1) The fit clearance between hinge shaft and bushings of excavator working mechanism should guarantee to form the stable lubricant film required. The factors that should be fully considered when determine the smallest fit clearance are: the minimum security value of lubricant film thickness, the comparative deformation of the shaft, the surface roughness between the shaft and bushings, the linearity of the shaft, the circularity of the bushings inner circle, the shrinkage of bushings endpore after assembled and the reduction of the clearance due to the temperature raising. 2) The relationship between the change of the fit clearance and contact pressure of hinge shaft and bushings is close to a line. As the clearance increasing, the contact pressure become larger, and it can affect the contact fatigue life of shaft and bushings. Therefore, after the clearance between hinge shaft and bushings is primarily identified, Hertz formula is used for the calculation amendment of contact stress. 3) Adopt the 200kN excavator working mechanism as a study subject. Through the calculation and analysis of the clearance and the comparison between domestic and international clearance design, we find that the calculation theory and method of clearance in the paper is feasible, which is of great value and significance for determining the clearance of shaft and bushings and improving the design of excavator working mechanism.
     (4) According to the design requirements for excavator working design, based on the kinematic and dynamic analysis of working mechanism movement, the paper brings up the nephogram concept of breakout force for visual description of the excavation performance in certain field. And a kind of visualized and professional software for performance analysis of excavator working mechanism is developed. The software is object-oriented and can quickly and accurately analyze the reasonability of the working mechanism and its structure design, including movement characteristics, mechanical properties, and the distribution of breakout force etc. The software is visualized and its operation is simple. It can significantly shorten the design cycles, reduce the cost of product development and improve the design quality. In addition, the software can not only calculate for a large number of models but also collect data for optimization and provide simple reference.
     (5) Optimization of working mechanism is vital to the design of a hydraulic excavator, which is able to improve the whole machine’working efficiency and property. Optimization of working mechanism can’t find the optimal solution by the common optimal algorithm, which is a multiobject, multivariable and multiextremum constrained nonlinear problem. The genetic algorithm have the capability of global optimization, which can solve a lot of complicated optimization problems. It is able to solve the antiprotrusion and antisuccessive optimization problems ,which is widely applied in structure fields. This paper optimized the kinematics and dynamics of the working mechanism by genetic algorithm. Base on parameters of the working mechanism, the mathematical model of optimal parameters design is built, which use in genetic algorithm. Through optimizing parameters of working mechanism, digging property improve evidently, under the premise of the kinematics and dynamics to be able to meet the requirements. Optimization project is widely applied in enterprise
     The innovative work is summarized as:
     (1) The method of finite element analysis is present. The finite model of hinge is established by using beam element and entity element. So the systematic modeling and load analysis for frame, boom, arm, bucket, tank and connecting hinge shaft can be achieved. The nonlinear finite element analysis and model analysis for working mechanism are performed, and its result is validated by on-site strength test. The results show that this overall integrating analysis method of working mechanism can significantly reduce the calculation error causing by simplifying and excellently guide the hydraulic excavator working mechanism design.
     (2) Analyzing the excavator working mechanism hinge failure mechanism, integrating a great deal failures of the working mechanism hinge with enterprise’s key problem. According to hydrodynamic pressure lubrication theory, bring forward calculating formula of smallest gap and the biggest gap restrictions between the hinge axis and bushing. The applying in engineering practice of this method shows the calculation theory and the methods of hinge axis and bushings in this paper is feasible and have high application value and guiding significance to improve the design level of the working mechanism of the excavator.
     (3) Bringing forward performance visualization prediction method of the hydraulic excavator working device. According to the working mechanism performance visualization prediction method, a practical software is developed and a new method—excavating force nephogram is proposed which can intuitively describe the excavating performance in a area.
     (4) The optimum design model is established, which chooses the excavating performance in particular areas as the optimizing goal and uses the movement and mechanical properties of building up the constraint conditions. Using the genetic algorithm to optimizing the working mechanism of the excavator, the results show that the defects of the original design are avoided and the excavating performance is improved. Optimization approach has been adopted by the enterprise.
引文
[1] 张启君,刘伟.国内挖掘机行业发展的探讨[J].筑路机械与施工现代化,2005(2):2~6
    [2] 陈正利.中国挖掘机行业十年发展历程及当前行业面临的机遇和挑战[J].工程机械文摘,2006(5):2~6
    [3] Pyung Hun Chang; Lee, S.-J. A straight-line motion tracking control of hydraulic excavator system[J]. Mechatronics, 2002,12(1): 119~138
    [4] Yokota, Shinichi; Sasao, Masanori; Ichiryu, Ken. Trajectory control of the boom and arm system of hydraulic excavators[J]. Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 1996, 62(593): 161~167
    [5] Hall, A.S.; McAree, P.R. Robust bucket position tracking for a large hydraulic excavator[J]. Mechanism and Machine Theory, 2005, 40(1): 1~16
    [6] Zui, Hiroshi; Imanishi, Etsujiro; Yoshimatsu, Hideaki; Niwata,etc. SWING AND LIFTING PERFORMANCE ANALYSIS OF HYDRAULIC EXCAVATOR.R&D[J], Research and Development (Kobe Steel, Ltd), 1987, 37(3): 87~90
    [7] Frimpong, S. Li, Y. Virtual prototype simulation of hydraulic shovel kinematics for spatial characterization in surface mining operations[J]. International Journal of Surface Mining, Reclamation and Environment, 2005, 19(4): 238-250
    [8] Torres-Rodriguez, H.I; Parra-Vega, V.; Ruiz-Sanchez, F.J. Dynamic haptic training system for the operation of an excavator[J]. 2004 1st International Conference on Electrical and Electronics Engineering, ICEEE, 2004, 350~355
    [9] Zweiri, Yahya H.; Seneviratne, Lakmal D.; Althoefer, Kaspar. A generalized newton method for identification of closed-chain excavator arm parameters[J]. Proceedings - IEEE International Conference on Robotics and Automation, 2003,1: 103~108
    [10] Kimura, Nobuo; Araya, Hirokazu; Kakuzen, Makoto,etc. Automatic Control System For Hydraulic Excavator[J]. R&D, Research and Development (Kobe Steel, Ltd), 1987, 37(2): p 74~78
    [11] Haga, M.; Hiroshi, W.; Fujishima, K. Digging control system for hydraulic[J]. Mechatronics. 2001, 11(6): 665~676
    [12] Durkovit, Radan; Bulatovic, Ranislav. Modeling and optimization of the working mechanism motion of the hydraulic excavator[J]. Modelling, Simulation & Control B: Mechanical & Thermal Engineering, Materials & Resources, Chemistry, 1990, 30(3): p 23~32
    [13] Kosugi A; Kohmoto T; Taji T.Hydraulic Excavator Boom And Arm Strength Evaluation Method[J]. R&D, Research and Development (Kobe Steel, Ltd), 1981, 31(2):71~76
    [14] Keskinen Erno K.; Keskiniva Markku,etc. Design and analysis of a multipurpose double-acting hammering unit for hydraulic[J]. American Society of Mechanical Engineers, Petroleum Division (Publication) PD, 1996, 81(9): 293~300
    [15] Imanishi Etsujiro; Nanjo Takao; Hiroka, Eiko, etc. Dynamic simulation of flexible multibody system with the hydraulic drive[J]. Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 2003, 69(9): 2336~2343
    [16] Serwach Andrzej; Frydlinski Stefan; Jabikowski, etc. Parametric Optimization Of The Hydraulic System Of The Excavator[J]. Staub - Reinhaltung der Luft, 1974
    [17] BRACH I. Hydraulic excavator Systematic study of jib/lift cylinder connections. Foerdern Heben. 1971, 21(5)
    [18] Reuss Hans-Juergen .New hydraulic technology for construction equipment[J]. Diesel Progress International Edition, 2004, 23(2): p 80~83
    [19] Frimpong, S; Hu, Y. Parametric simulation of shovel-oil sands interactions during excavation[J]. International Journal of Surface Mining, Reclamation and Environment,2004, 18(3): 205~219
    [20] Ward Peter; Wakeling Andrew; Weeks Richard, etc. Design Of An Excavator Arm Using Optimization Techniques[J]. SAE Technical Paper Series, 1987, 5
    [21] Mottl, J. Excavator optimization using the 'voting method'[J]. Computer Methods in Applied Mechanics and Engineering, 1992, 98(2): 227~250
    [22] O'Connor. High-power inverters optimize mammoth excavator[J]. Roy Source: Design News (Boston), 1994, 49(18): 107-108
    [23] Feng, Xia-Ting; An, Honggang. Hybrid intelligent method optimization of a soft rock replacement scheme for a large cavern excavated in alternate hard and soft rock strata[J]. International Journal of Rock Mechanics and Mining Sciences, 2004,41(4): 655-667
    [24] Lin, Y.M. Wang, L.; Feng, X.T. Closed intelligent system for optimal support design ofunderground excavations[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(3,4)
    [25] Hatakeyama, Akira; Yasuda, Noboru. Optimization Of Braced Excavation Using Sheet Piles By Reliability-Based Design[J]. Inst for Risk Research, 1987
    [26] Sugano, Naoki; Imanishi, Etsujiro; Yonezawa, Satoshi. A study on the optimization of efficiency and operating property of hydraulic systems[J]. Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 2002, 68(2): 524-530
    [27] Kitayama Satoshi; Yamazaki, Koetsu Global optimization by generalized random tunneling algorithm. Nippon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2004, 70(7): 970-977
    [28] Vemba M.M.D.S. Loading and transport system at SMC-Optimization[J]. Journal of The South African Institute of Mining and Metallurgy, 2004, 104(3): 139-147
    [29] Singhal Raj K; Fytas Kostas Optimization Of Loading And Hauling Operations In Surface Mining[J]. A. A. Balkema, 1986, 119-129
    [30] Tonon, Fulvio ; Mammino, Armando; Bernardini, Alberto. Multiobjective optimization under uncertainty in tunneling: Application to the design of tunnel support/reinforcement with case histories[J]. Tunnelling and Underground Space Technology, 2002, 17(1): 33-54
    [31] Maciejewski,J; Jarzebowski A. Laboratory optimization of the soil digging process[J]. Journal of Terramechanics, 2002, 39(3): 161-179
    [32] Van Cotthem, A. Optimal excavation method in stiff clay at great depth in Belgium for a radioactive waste disposal scheme[J]. Geotechnical Engineering of Hard Soils-Soft Rocks, 1994
    [33] Zui, Hiroshi; Imanishi, Etsujiro; Yoshimatsu,etc. Swing And Lifting Performance Analysis Of Hydraulic Excavator[J]. R&D, Research and Development, Jul, 1987, 37(3): 87~90
    [34] Vidolov, Boris; Genchev, Svetoslav .Heuristic Approaches for the coordinated motion of a redundant heavy-duty hydraulic excavator[J]. Proc. IEEE Int. Symp. Intell. Control Mediterranean Conf. Control Autom, 2005(05): 692~695
    [35] Kimura, Nobuo; Araya, Hirokazu; Kakuzen, Makoto. Automatic Control System For Hydraulic Excavator[J]. R&D, Research and Development (Kobe Steel, Ltd), 198737(2): 74~78
    [36] Torano, J.; Rodriguez, R. Simulation of the vibrations produced during the rock excavation by different methods[J]. Computational Engineering, v 4, ComputationalMethods in Experimental Measurements XI, 2003, 343~349
    [37] Guo, R.; Dixon, D. Simulated hydraulic response of AECL's isothermal test and comparison with measured data[J]. Geotechnical Special Publication, n 147, Proceedings of the Fourth International Conference on Unsaturated Soils, 2006, 2500~2511
    [38] Zweiri, Yahya H.; Seneviratne, Lakmal D.; Althoefer, Kaspar. A generalized newton method for identification of closed-chain excavator arm parameters[J]. Proceedings-IEEE International Conference on Robotics and Automation, 2003(1): 103~108
    [39] 刘长征.SLWY-60 型水陆两用液压挖掘机浮箱的有限元分析及其改进设计[D].长春:吉林工业大学机械学院,1994
    [40] 张所光.大型挖掘机斗杆动态 FEM 分析[D].重庆:重庆大学机械学院,1992
    [41] 丁华,朱茂桃,赵剡水.液压挖掘机动臂的有限元分析[J].中国公路学报,2003(04):118~120
    [42] 孙军,桂长林,李志远.轴变形产生的轴颈倾斜对滑动轴承润滑影响的试验研究[J].机械工程学报,2006(7):159~163
    [43] 赵维鹏,张君,谭海港等.润滑脂在轴承中的润滑作用[J].润滑油,2003(12):18~22
    [44] 尚光德.挖掘机大修过程中滑动轴承德选择和装配[J].有色设备,2005(3),37~38
    [45] 王桂萍.挖掘机推压减速器轴承失效分析与对策[J].中国钼业,2000(10),40~41
    [46] 尉立肖,刘才山.圆柱铰间隙运动学分析及动力学仿真[J].北京大学学报(自然科学版)2005(05),679~687
    [47] 方良周.MX80 液压挖掘机工作装置的仿真与铲斗机构的优化[D].沈阳:东北大学机械学院,1996
    [48] 赵培训.单半液压挖掘机工作机构运动分析参数优化和动态模拟系统的研究[D].西安:西安公路交通大学机械学院,1998
    [49] 姬鹏.液压挖掘机反铲装置的运动学仿真及动力学分析[D].长春:吉林大学机械学院,2004
    [50] 范进桢,孟宪慧等.挖掘机挖掘作业工程的动力学研究[J].矿山机械,2005,09:39~41
    [51] 李渊博,何清华,张大庆.液压挖掘机工作装置动力学分析与仿真研究[J].机床与液压,2006(10),170~171
    [52] 何允纪,李滨城,何允纪.液压挖掘机反铲工作装置的优化设计[J].工程机械,1994,8
    [53] 薛渊,吕广明,陆念力.复合形法在液压挖掘机铲斗连杆机构优化设计中的应用[J].现代制造工程,2006(3),114~116
    [54] 史清录,林慕义,康健.挖掘机的最不稳定姿态研究.农业机械学报[J],2004(9),32~35
    [55] 方良周,刘得方,刘欣等.改进得遗传算法在 MX80 液压挖掘机优化中的运用[J].机械科学与技术,1999(5),378~379,382
    [56] 陈玉峰,宋立权,韩文强.液压挖掘机工作装置运动与动力综合优化[J].建筑机械,2005(02),80~82
    [57] 朱建新,邹湘伏,黄志雄.谈国产液压挖掘机未来的发展趋势[J].凿岩机械气动工具,2003(3):48~54
    [58] 吴永平.挖掘机作业机群配置技术研究[J].工程机械,2002(2):15~17
    [59] 同济大学主编.单斗液压挖掘机[M].中国建筑工业出版社,1986
    [60] 天津工程机械研究所主编.单斗液压挖掘机[M].中国建筑工业出版社,1977
    [61] Fan, Xuejun; Pei, Min; Bhatti, Pardeep K. Effect of finite element modeling techniques on solder joint fatigue life prediction of flip-chip BGA packages[J]. Proceedings - Electronic Components and Technology Conference, v 2006, Proceedings - IEEE 56th Electronic Components and Technology Conference, 2006: 972~980
    [62] Milani, A.S.; Dabboussi, W.; El-Lahham, C.; Nemes, J.A.; Abeyaratne, R.C. On obtaining material parameters for general purpose finite element models[J]. Proceedings of the 17th IASTED International Conference on Modelling and Simulation, 2006:573~578
    [63] Venkatarayalu, Neelakantam V.; Lee, Robert; Gan, Yeow-Beng; Li, Le-Wei. A stable FDTD subgridding method based on finite element formulation with hanging variables[J]. IEEE Transactions on Antennas and Propagation, 2007,55(3): 907~915
    [64] Campello, E.M.B.; Pimenta, P.M.; Wriggers, P. A triangular finite shell element based on a fully nonlinear shell formulation[J]. Computational Mechanics, 2003, 31(6):505~518
    [65] Dennis, Brian H.; Eberhart, Robert C,etc. Finite-Element Simulation of Cooling of Realistic 3-D Human Head and Neck[J]. Journal of Biomechanical Engineering, 2003,125(6):832~840
    [66] Kant, T.; Menon, M.P. Finite element - difference computational model for stress analysis of layered composite cylindrical shells[J]. Finite Elements in Analysis and Design, 1993,14(1): 55~71
    [67] Xianmin, Zhang; Hongzhao, Liu; Yunwen, Shen. Finite dynamic element analysis forhigh-speed flexible linkage mechanisms[J]. Computers and Structures, 1996,60(5):787~796
    [68] 薛守义.有限单元法[M].中国建材工业出版社,2005
    [69] 宋天霞.非线性结构有限元计算[M].华中理工大学出版社,1996
    [70] 王勖成.有限单元法[M].北京:清华大学出版社,2003
    [71] 徐灏. 机械设计手册(四). 机械工业出版社,1988
    [72] 液 压 挖 掘 机 工 作 装 置 用 轴 和 轴 承 的 设 计http://china.machine365.com/baike/060223/23/95419_1.html.
    [73] 张直明等. 滑动轴承的流体动力润滑理论[M]. 高等教育出版社,1986
    [74] 张珊珊.挖掘机液压系统的分析与研究[D].上海:同济大学机械工程学院,2005
    [75] 张铁.液压挖掘机结构原理及使用[M].石油大学出版社,2002
    [76] 杨一岳,高衡.土方工程机械工作装置发展前景[J].国外工程机械,1992(5):29~32
    [77] 黄宗益,叶伟,李兴华.液压挖掘机液压系统概述[J].建筑机械化,2003(9):12~16
    [78] 陈德沛.关于液压挖掘机发展的一些状况[J].建设机械技术与管理,1992(1):33~35
    [79] 孙志广. 液压挖掘机工作装置优化设计及性能仿真[D].吉林大学,2005.
    [80] 刘应杰,洪昌银,蔡志轩.反铲液压挖掘机主参数优化研究[J].工程机械,2002(2):6~10
    [81] 何允纪,李滨城,崔红.液压挖掘机反铲工作装置的优化设计[J].工程机械,1994(6):6~10
    [82] 刘玉强,王学军.液压挖掘机反铲上作装置优化设计.机械产品与科技[J],1997(1):12~15
    [83] 李兰生,边仁国,邵占江.液压挖掘机工作装置运动学分析及轨迹规划[J].矿山机械,1998(2):23~25
    [84] 董玉平,应华等.液压挖掘机反铲工作装置的运动仿真[J].工程机械,2000(10):16~19
    [85] 杨小强,刘宝印等.挖掘机工作装置辅助设计 CAD 系统[J].矿山机械,2001(02):27~28
    [86] 孙怀安,方益奇,张旭东.计算机绘图在平面连杆机构综合中的应用[J].机械,2002(6):38~40
    [87] 刘子健,洪昌银.自动绘制挖掘机轨迹包络图计算包络面积的方法[J].工程机械,1990(10):5~8
    [88] 何斌,那荣华.单斗液压挖掘机挖掘阻力探讨[J].建筑机械,1990(10):24~27
    [89] 王进,童占荣.三维 CAD 技术在挖掘机设计中应用[J].工程机械,2004(9)25~28
    [90] 董明晓等.挖掘机运动学分析新方法.建筑机械化[J],2001(5),30~32
    [91] 童听等.液压挖掘机工作装置启动及制动的动态响应分析[J].矿山机械,1997(2):36~38
    [92] 张大可等.工程机械工作装置箱形结构有限元分析小型专用程序的研究[J].建设机械技术与管理,1997(10)
    [93] 林家祥等.WY20 液压挖掘机工作装置的改进与分析[J].广西机械,2000,3
    [94] 王国彪等.谈谈反铲液压挖掘机的挖掘力[J].矿山机械,2003,10
    [95] 孙家根,韩军瞿.挖掘机臂销磨损与断料分析[J].建筑机械,2000(12):56~57
    [96] 于国飞,宋文荣,许纯新.挖掘装置操作臂末端轨迹控制的试验研究[J].中国机械工程,2003(9):1448~1451
    [97] 陈世教,荣洪均,冀满忠等.液压挖掘机反铲工作装置整机理论复合挖掘力的计算及应用[J].工程机械,2007(4):39~43
    [98] 杨为,冯培恩,秦大同.液压挖掘机工作装置的动力特性修改研究[J].中国工程科学[J],2005(9):30~33
    [99] 车仁炜,吕广明,陆念力.液压挖掘机工作装置的动力学分析及仿真[J].机械传动,2005(2):25~28
    [100] 苏猛,张万山.液压挖掘机工作装置断裂分析[J].煤矿机械,2006(6),975~976
    [101] 王瑞金,曹敏.液压挖掘机工作装置三缸联动时的运动分析[J].工程设计,1999(2):45~50
    [102] 白桦,陆念力,吕广明.液压挖掘机工作装置运动轨迹的智能化模糊控制[J].建筑机械,2000(1):39~41
    [103] 欧增炳.WD-400 型挖掘机斗杆的修复[J].矿山机械,2001(12),66~67
    [104] 刘鹏虎,张勇,张强.液压挖掘机工作装置的动力学分析及控制[J].中国工程机械学报,2007(1):72~74,112
    [105] 赵家宏.液压挖掘机反铲工作装置的优化设计[J].建筑机械,1991,10
    [106] 孙淑梅等.液压挖掘机工作装置优化设计的数学模型[J].工程机械,1985,4
    [107] 陈新度等.遗传算法在离散结构变量结构优化设计中的应用[J].华中理工大学学报,1997, 8
    [108] 李强,周济.机械系统动态优化设计的混合基因算法[J].华中理工大学学报, 1997,1
    [109] Jenk ins W M.Towards Structure Optimization via The Genetic Algorithm[J]. Computer& Structure,1991,40 (5):1321~1327
    [110] Hajela P. Genetic Search an Approach to the Nonconvex Optimization Problem[J]. AIAA Journal,1991,26 (7)
    [111] Ka lyanmoy Deb.Design for a Weld Beam via Genetic Algorithms[J]. AIAA Journal,1991,29(11):444~45
    [112] Rudolph.Convergence Analysis of Canonical Genetic Algorithms [J].IEEE Trans on Neural Networks,1994,5(1):96~101

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700