大型液压正铲挖掘机工作装置的优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型液压正铲挖掘机在露天煤矿采掘、水利建设等工程中越来越得到广泛的应用,而工作装置是液压正铲挖掘机的重要工作部件,其结构的合理性直接影响到挖掘机的工作性能,对其进行研究是非常必要的,也是整机开发的基础。
     从液压正铲挖掘机工作装置的组成及工作特点出发,分析工程中常见的4种液压正铲工作装置的结构方案,确定挖掘装载装置为设计方案,建立该工作装置的挖掘工作位置模型,采用经验公式法、回归方程法和原理设计法,确定有关初始参数值,其中包括动臂、斗杆、铲斗机构的相关几何和力能参数。
     绘制挖掘轨迹包络图,斗齿尖点的密度即斗齿尖理论上所能达到位置的概率情况,在主要挖掘区点的密度较大,而在边界点的密度小;通过水平推压工况分析,求得动臂在整个水平推压过程中动臂相对于转台转角的变化范围及水平推压力的变化范围,基本符合水平推压过程中外载荷的变化情况。
     基于典型的挖掘与提升过程运用遗传算法对工作装置的参数进行优化。优化后动臂、斗杆及铲斗机构传动角增大,油缸行程缩短,动臂油缸的提升力更加符合将满载的铲斗由任何可能的挖掘位置上提升到卸载点处所需力的变化情况,斗杆油缸的挖掘力及铲斗油缸的挖掘力较优化前更加符合物料的挖掘阻力变化情况。
     用VB和MATLAB作为开发工具,Access作为后台数据库,开发大型液压正铲挖掘机工作装置设计软件,缩短研究和开发周期,降低产品成本,提高了设计质量。该软件系统具有继承性、安全性、界面友好等特点,初步形成自主的设计体系,对大型液压正铲挖掘机工作装置设计具有普遍指导意义。
Large hydraulic face-shovel excavator have been widely applied in the open mining and water conservancy projects, and the work device is the important working component of hydraulic excavator, its structure directly impact on the working performance.The research is very important, also the basis for the development of the entire machine.
     From the composition and working principle of the hydraulic face-shovel excavator working device, analysis the four kinds of structural scheme for working device in the common project, determine digging and loading equipment. The didding location model of the working device is established, determine the related initial parameters with regressing equation and principle design, including the geometric and energetic parameters of the boom, stick and bucket structure.
     Drawing envelope diagram, used of geeting the tip of bucket tooth to reach the location, the density of points reacts the location of probability of bucket tooth can theoretically reach, The density of point is greater in the main digging district than at the border point; Through analysis of the straight line excavating condition, the changing scopes of boom's corner and the changing scopes of straight line excavating force are soluted in the whole straight line excavating process. The change of straight line excavating force accords to the changing process of the loading.
     Based on the typical process of digging and lifting, it uses of genetic algorithms to optimize the parameters of working device. After optimization, the transmission angle of structure increases, the trip of cylinders are shortened, the lifting forces of boom cylinders is more in line with the necessary force of raising the loading bucket from any excavating location to unloading points. After optimization, the changes in digging forces of the stick cylinder and the bucket cylinder are more than coincidengce with the change of the digging resistance of materials, improves mining performance.
     The designing software of large hydraulic face-shovel excavator is developed with MATLAB and VB.NET, Access as background database, shortens the cycle of research and development, reduces the cost of products and improves the quality of the design. The software system has features of inheritance, security, user-friendly. The autonomous designing system is initially formated, is universal significance with design for working device of large hydraulic excavator face-shovel.
引文
1.同济大学等.单斗液压挖掘机[M].北京:中国建筑工业出版社,1983,12:22-130
    2.王新中.国内外矿用挖掘机发展状况[J].矿山机械,2004(9):52-53
    3.李永旭.液压挖掘机工作装置与液压系统设计的研究[D].上海:同济大学博士论文,2006,5
    4.矿用挖掘机发展方向[J].中国矿业报,2002,16(7):255
    5. Pyung Hun Chang;Lee,S.-J.A straight-line motion tracking control of hydraulic excavator system[J].Mechatronics,2002,12(1):119-138
    6. Yokota,Shinichi;Sasao,Masanori;Ichiryu,Ken.Trajectory control of the boom and arm system of hydraulic excavators[J].Nippon Kikai Gakkai Ronbunshu,C Hen/Transactions of the Japan Society of Mechanical Engineers,Part C,1996,62(593):161-167
    7. Hall,A. S.;McAree,P.R.Robust bucket position tracking for a large hydraulic excavator [J].Mechanism and Machine Theory,2005,40(1):1-16
    8. Durkovit,Radan;Bulatovic,Ranislav.Modeling and optimization of the working mechanism motion of the hydraulic excavator[J].Modelling,Simulation&Control B:Mechanical & Thermal Engineering, Materials&Resources, Chemistry,1990,30(3):23-32
    9. Serwach Andrzej; Frydlinski Stefan; Jabikowski, etc. Parametric Optimization of the Hydraulic System of the Excavator [J]. Staub-Reinhaltung der Luft,1974,(30):26-31
    10. BRACH I.Hydraulic excavator systematic study of jib/lift cylinder connections.Foerdern Heben.1971,21(5):56-60
    11. Ward Peter, Wakeling Andrew; Weeks Richard,etc.Design Of An Excavator Arm Using Optimization Techniques [J].SAE Technical Paper Series,1987,(5):64-67
    12. Mottl,J.Excavator optimization using the'voting method'[J].Computer Methods in Applied Mechanics and Engineering,1992,98(2):227-250
    13.张宏,赵光从慕尼黑bauma展看当今挖掘机技术发展[J],建筑机械化,2007,6:8-10
    14.张润利,刘伯颖.工程机械专利信息之小型挖掘机篇[J],工程机械,2006(4):21-26
    15.方良周.MX80液压挖掘机工作装置的仿真与铲斗机构的优化[D].沈阳:东北大学,1996
    16.赵培训.单半液压挖掘机工作机构运动分析参数优化和动态模拟系统的研究[D].西安:西安公路交通大学,1998
    17.姬鹏.液压挖掘机反铲装置的运动学仿真及动力学分析[D].长春:吉林大学,2004
    18.范进桢,孟宪慧等.挖掘机挖掘作业工程的动力学研究[J].矿山机械,2005,09:39-41
    19.何允纪,李滨城,何允纪.液压挖掘机反铲工作装置的优化设计[J].工程机械,1994,8:23-26
    20.薛渊,吕广明,陆念力.复合形法在液压挖掘机铲斗连杆机构优化设计中的应用[J].现代制造工程,2006(3):114-116
    21.史清录,林慕义,康健.挖掘机的最不稳定姿态研究.农业机械学报[J],2004(9):32-35
    22.张石强.正铲液压挖掘机挖掘性能通用分析方法研究[D].重庆:重庆大学硕士学位论文,2006,10
    23.冯培恩,陈文平,潘双夏.复杂机械CAD系统开发策略及应用实例[J].机械工程.1989(4):6-9
    24.潘双夏,冯培恩,郭建瑞,全永新.液压挖掘机智能CAD策略研究.机械工程[J],1991(10):19-22
    25.李霞.利用UG软件实现6-8m3挖掘机的三维仿真设计[J].太原技术导报,1989(4):16-20
    26.徐美刚,张东民.WY20系列挖掘机三维实体造型的实践[J].机械工程,1999(3):12-13
    27.曹善华.单斗挖掘机[M].北京:机械工业出版社,1988:1-102
    28.唐银启主编.工程机械液压与液力技术[M].北京:人民交通出版社,2003,5:85-86
    29.(日)村冈虎雄著,李宗国译.油缸[M].北京:机械工业出版社,1974,9:69-72
    30.赵应樾.常用液压缸与其修理[M].上海:上海交通大学出版社,1996,2:12-15
    31.陈世教,荣洪均,冀满忠等.液压挖掘机反铲工作装置整机理论复合挖掘力的计算及应用[J].工程机械,2007(4):39-43
    32.汪定伟等编著.智能优化方法[M].北京:高等教育出版社,2007,4:35-80
    33.王小平,曹立明.遗传算法——理论、应用与软件实现[M].西安:西安交通大学出版社,1998:60-95
    34.雷英杰,张善文,李续武,周创明编著.MATLAB遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2005:107-142
    35. Jenkins W M. Towards Structure Optimization via The Genetic Algorithm [J].Computer & Structure,1991,40(5):1321-1327
    36. Ka lyanmoy Deb. Design for a Weld Beam via Genetic Algorithms [J]. AIAA Journal, 1991,29(11):444-445
    37. Rudolph.Convergence Analysis of Canonical Genetic Algorithms [J].IEEE Trans on Neural Nettuorks,1994,5 (1):96-101
    38. Chipperfield A, Fleming P, ET al.Genetic algorithm toolbox user's guide. Department of Automatic Control and Systems Engineering, University of Sheffield,1994:88-101
    39.张权范.软件工程[M].北京:清华大学出版社,2004,5:25-28
    40.曲毅.软件学院实训综合管理系统的需求分析与设计[D].山东:山东大学硕士学位论文,2006,11
    41.梁雄高,刘长陆,俞建峰,陈乐.基于VB与MATLAB的水轮机运转特性曲线绘制的研究[J].机电与金属结构,2007(9):44-46
    42.飞思科技产品研发中心编著.MATLAB7基础与提高[M].北京:电子工业出版社,2006:60-67
    43.董长虹,余啸海.MATLAB接口技术与应用[M].北京:国防工业出版社,2004:54-59
    44.松桥工作室编著.深入浅出Visual Basic.NET2003程序设计[M].北京:中国铁道出版社,2004,7:40-60
    45.尚展垒.Visual Basic.NET程序设计技术[M].北京:清华大学出版社,2006:100-110
    46.布拉德利,米尔斯波,李旭等.Visual Basic.NET程序设计[M].北京:清华大学出版社,2008:32-43
    47.卢潇主编.软件工程[M].北京:清华大学出版社,2005,1:45-46,74-75
    48.王家华.软件工程[M].沈阳:东北大学出版社,2001,3:93
    49.李爱峰.6.5 m3液压挖掘机工作装置的优化设计和仿真[D].太原:太原理工大学硕士学位论文,1999,3.
    50.李爱峰.7.5m3液压挖掘机正铲工作装置的优化设计及仿真分析[J].机械管理开发,2005,12(6):42-45

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700