基于ANSYS和Pro/E的WY22挖掘机工作装置的分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液压挖掘机工作装置是完成液压挖掘机各项功能的主要构件,其结构的合理性直接影响到液压挖掘机的工作性能和可靠性。本文以WY22挖掘机工作装置为研究对象,对其进行了有限元分析和动态分析。本文的主要工作有:
     首先,本文分析了挖掘机的市场需求和技术现状,提出了提高挖掘机产品质量的重要性和意义。通过挖掘机工作装置设计的分析技术介绍,针对挖掘机工作装置设计存在问题,引出了挖掘机工程分析的有关理论,阐述了有限元分析和运动仿真的方法和步骤。
     其次,本文对其动臂和斗杆进行了结构分析,采用ANSYS软件建立WY22挖掘机动臂和斗杆结构模型。根据动臂和斗杆的两种计算工况,建立动臂和斗杆力学模型。
     然后,根据实际情况确定了所用单元的类型和材料属性,建立了WY22挖掘机动臂和斗杆有限元模型;确定动臂和斗杆的边界条件以及铰孔处载荷的处理方式,并且施加边界约束和载荷;利用有限元分析软件ANSYS对WY22挖掘机动臂和斗杆结构强度和刚度进行了数值计算,得到各工况动臂和斗杆的应力、位移分布情况,对动臂和斗杆进行模态分析,得出其主要振型。同时对改进后的动臂和斗杆进行了分析计算,并对结果进行了比较。
     最后,利用三维设计软件Pro/E建立了WY22挖掘机工作装置的结构模型,并对工作装置进行了运动及动力分析,得到了铲斗运动速度、加速度和一些部件的受力曲线。
     有限元分析以及运动仿真的结果验证了WY22挖掘机动臂和斗杆结构强度满足设计要求,动臂和斗杆固有频率与挖掘机工作频率也不会引起共振现象,带筋板的动臂和斗杆更能满足设计要求。运动及动力分析证明WY22挖掘机工作装置运动设计合理。论文研究成果为下一步的WY22挖掘机工作装置的结构优化创造了条件。
     通过对WY22液压挖掘机的工作装置进行有限元分析和动态分析,以确定结构设计的合理性,进而使该装置结构设计达到国内先进水平。
The working equipment of a hydraulic excavator, which is an important part to complete the function of hydraulic excavators, affects directly the working performance and the reliability of the hydraulic excavator. This thesis is taking the working equipment of WY22 excavator as an example, the finite element analysis and dynamic analysis are applied for it. The following are the main contents of this paper.
     First of all, this thesis analyzes the market demand for excavators and gives the importance and meanings on improving excavator manufacturing quality in the first. Through the introduction of the analysis of excavator working equipment's design, the problems companying with the working equipment design is presented and the theory of excavator engineering analysis is discussed. And then the methods and steps using finite element analysis and movement simulation are well elaborated.
     Secondly, the structure analysis of boom and arm are conducted. Their 3D structure models of WY22 excavator are built by software ANSYS. According to two kinds of working condition, the mechanics model of the boom and the arm are established.
     Thirdly, after defining the element type and material attribute based on practical situation, finite element models of WY22 excavator are established. The boundary condition and the processing mode of loads on the hole can be determined, and displacement and load are applied to finite element model. Analyzing the structural strength and stiffness of the boom and the arm by ANSYS, the stresses and the displacements of the working condition are acquired. The main vibrating model is obtained after analyzing the model of the boom and the arm. The boom and arm with rib are analyzed at the same, the results are compared.
     Finaly, establishing a structure model of the WY22 excavator's working equipment by 3-D design software Pro/E, conducts a analysis of the dynamic, the velocity and acceleration of bucket and the loads of some parts are obtained.
     The structural strength is to meet the design requirements to be tested and verified by the results of finite element analysis and simulation, the natural frequency of boom、arm and excavator will not be resonance. The boom and arm with rib are better suited the design requirement. The design is reasonable proofed by the dynamic analysis. The research results are to create the conditions for structural optimization of the WY22 excavator's working equipment in the next research.
     It can define the reasonableness of structure design by using the finite element method and movement simulation to analyze the working equipment of WY22 excavator. The structure design way of this working equipment can attain the advanced level by this analysis in future.
引文
1.陈世教.液压挖掘机反铲工作装置整机理论复合挖掘力的计算模型及其应用研究[D],重庆重庆大学,2007.5.28.
    2.曹善华.单斗挖掘机[M],北京:机械工业出版社,1988.
    3.王新中.国内外矿用挖掘机发展状况[J],矿山机械,2004.9.
    4.程商.国外挖掘机目前水平及发展动向[J],农机市场,2004(5):32-33.
    5.陈玉峰.液压挖掘机工作装置运动与动力综合优化研究[D],重庆重庆大学,2005.5.
    6.刘本学.液压挖掘机反铲工作装置的有限元分析[D],西安长安大学,2003.6.
    7.丁仲毅.东方红WY22LC液压挖掘机工作装置有限元分析[D],镇江江苏理工大学,2004.2.
    8.冀满忠.基于MATLAB的液压挖掘机反铲装置挖掘性能图的程序化绘制[D],重庆重庆大学,2006.5.
    9.丁华,朱茂桃,赵刻水.液压挖掘机动臂的有限元分析[J],中国公路学报,2003(10):118-120.
    10.陈正利.我国挖掘机行业形成与发展、现状及前景[J],工程机械,2004.11:25-29.
    11.田奇,马鹏飞.液压挖掘机发展概况[J],筑路机械与施工机械化,2000.3:1-2.
    12.朱建新,邹湘伏,黄志雄.谈国产液压挖掘机未来的发展趋势[J],凿岩机械气动工具,2003(3):48-54.
    13.邹十践.从工程机械景气周期变化规律看行业形势[J],建筑机械化,2004.8.
    14.凌锡亮.专用汽车设计中悬挂系统的运动仿真[J],设计研究,2006.
    15.陈正利.中国挖掘机行业当前面临的机遇和挑战[J],工程机械与维修,2006.10.
    16.徐次达,华伯浩.固体力学有限元理论、方法及程序[M],北京:水利电力出版社,1983.
    17.霍立星.焊接结构工程强度[M],北京:机械工业出版社,1995.
    18.机械设计手册编写组.机械设计手册[M],北京:机械工业出版社,2000.
    19.朱伯芳.有限单元法原理与应用[M],水利电力出版社,1979.
    20.丁皓江.弹性和塑性力学中的有限单元法[M],北京:机械工业出版社,1989.
    21.龙驭球.有限元概论[M],北京:人民教育出版社,1978.
    22.龙驭球,龙志飞.新型有限元论[M],北京:清华大学出版社,2004.
    23.王冒成,邵敏.有限单元法基本原理和数值方法[M],北京:清华大学出版社(第2 版),2000.
    24.黄义.弹性力学基础及有限单元法[M],北京:冶金工业出版社.1983.
    25.T R钱德拉佩特拉产,D贝莱冈度.工程中的有限元方法[M],北京:机械工业出版社,2004.
    26.金海薇.液压挖掘机反铲工作装置的CAD/CAM研究[D],阜新辽宁工程技术大学,2004.2.
    27. R D Blevins. Formulas for Natural Frequency and Mode Shape[M], Van Nostrand Reinhold Co, NewYorkt, NY,1979.
    28.康海洋.液压挖掘机动臂结构动态分析[D],长沙长沙理工大学,2007.04.01.
    29.孙江宏,黄小龙,罗坤.Pro/ENGINEER2001版入门与提高[M],北京:清华大学出版社,2005.
    30.詹友刚.Pro/EGINEER中文野火版2.0范例教程[M],北京:清华大学出版社,2005
    31.孙江宏,黄小龙,罗坤.Pro/EGINEER2001版入门与提高[M],北京:清华大学出版社,2005.
    32.于浩.反铲液压挖掘机工作装置动态分析[D],济南山东科技大学,2005.06.08.
    33.孔德文,赵克利,徐宁生等编著.液压挖掘机[M],北京:化学工业出版社,2007.01.
    34.刘涛,杨凤鹏.精通ANSYS[M],北京:清华大学出版社,2002.09.
    35.周宁主编.ANSYS机械工程应用实例[M],北京:中国水利水电出版社,2006.03.
    36.博弈创作室编著.ANSYS9.0经典产品高级分析技术与实例详解[M],北京:中国水利水电出版社,2005.10.
    37.陈精一.ANSYS工程分析实例教程[M],北京:中国铁道出版社2007.
    38.易日.使用ANSYS6.1进行结构力学分析[M],北京:北京大学出版社,2002.
    39.邹广德等.装载机车架铰接系统铰销强度及铰点附近应力分布的试验研究[J],农业工程学报,1996(1).
    40.钱仲众等.铰点布置对液压挖掘机工作装置动特性的影响[J],工程机械,1997(4).
    41.董明晓等.挖掘机运动学分析新方法[J],建筑机械化,2001(5).
    42.陆春芸.液压挖掘机动力学研究[J],武汉冶金科技大学学报,1996,19(4).
    43.郭立新,王守春,郑春歧,张国忠.液压反铲挖掘机工作装置有限元动态分析[J],中国机械工程,2000(12).
    44.杨为,邱清盈,胡建军.液压挖掘机工作装置动应变的实验研究[J],工程机械,2004(11).
    45.李杨民,谢存禧,王冀湘.液压挖掘机工作装置动臂、斗杆机构的多体系统运动学分 析[J],建筑机械,1994(11).
    46. Dvorsky J A, Rich T P. Stress intensity calculation in ANSYS using a J-integral postprocessor[J],4th Int ANSYS Conf Exhib1989 Part 2,1989(6):31-42.
    47. Tafazoli S, Lawrence P D, Salcudean S E. Identification of inertial and friction parameters for excavator arms[M],Robotics and Automation, IEEE Transactions,1999.10,15(5):966-971
    48. Zweiri Y H, Seneviratne L D, Althoefer K, Identification methods for excavator army parameters[M],SICE 2004 Annual Conference,2004,1061-1066.
    49. Arai F, Tateishi J, Fukuda T. Dynamical analysis and suppression of human hunting in the excavator operation[M],Robot and Human Interactive Communication,2000:394-399.
    50. B Beskos.Boundary element method in mechanics[J],Elsevier science publishers BV,1987
    51. Chang Shuenn-Yih. An improved on-line dynamic testing method[M] Engineering Structures Volurile:24, Issue:5, May,2002,58-596.
    52. Im O K, Shin Y B, Lee B W. Optimum Design of Excavator Boom[M],Computer Method Applied Mechanics and engineering,1993,Vol.6,Issue 1,91-98.
    53. Benaroya H, Rehak M. Finite Element Methods in Probabilistic Structural Analysis[J],a selective review,Appl Mech Rev,1988,41(5).
    54.高秀华,李炎亮.机械三维动态设计仿真技术Pro/Engineer和Pro/MECHANICA[M],北京:化学工业出版社,2003.
    55.葛正浩,杨芙莲.Pro/ENGINEER Wildfire 3.0机构运动仿真与动力分析[M],北京:化学工业出版社,2008.
    56.林清安.Pro/ENGINEER2000零件设计高级篇(下)[M],北京:清华大学出版社,2001.
    57. Song Y J, Min S J, Kikuchi N. Finite Element Method and Optimal Structural Design CAE[M], Seoul:Sungandang,2000.
    58. Yang Y S, Lee J O, Kim B J. Structural reliability analysis using ANSYS[J], The Society of Naval Architects of Korea,1996 Vol.33 No.1,98-108.
    59. Wu Jia-jang. Finite Element Molding and Experimental Model Testing of a Three-dimensional Framework[J], International Journal of Mechanical Science,2004.
    60. Rajagopal K, Bathurst R J. Development of a Finite Element Analysis Postprocessing Program[J], Advances in Engineering Software,1993(6).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700