液压挖掘机工作装置优化及作业性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液压挖掘机作为一种重要的土方工程机械,在房屋建设、市政工程、管道铺设、园林栽培、矿山采掘作业、国防工事以及农田水利建设等土方施工中有着广泛的应用。其工作装置的作业性能是整机设计水平的重要标志。本文针对液压挖掘机反铲工作装置设计中存在的共性问题,结合国家863课题及企业科研攻关课题,对液压挖掘机工作装置的作业性能进行了分析,并对工作装置运动学和动力学综合优化等关键技术进行了系统研究。在VB6.0环境下,编写了“反铲液压挖掘机通用作业性能分析及优化软件”,主要工作如下:
     综述了液压挖掘机的发展概况及其工作装置国内外研究现状,对挖掘机的市场及发展前景进行了分析,并对比进口挖掘机分析了国产挖掘机的不足。
     建立了挖掘机工作装置运动学和动力学模型,在VB6.0环境下针对挖掘机工作装置的运动学和动力学问题编写了计算模块,给出了计算结果;利用试验与理论相结合的方法建立了挖掘机工作装置三维实体模型,并在ADAMAS中进行了仿真,其结果与计算结果相吻合。
     建立了挖掘机工作装置的力学模型,分析了各限制因素对整机作业性能的影响情况。在对液压挖掘机工作装置运动学和力学分析的基础上,开发了工作装置作业性能可视化软件,实现了挖掘图谱的程序化绘制。挖掘图谱是评价挖掘机工作装置设计合理性的重要手段之一,它能够综合反映出斗齿尖挖掘力、液压泵的功率利用率以及三组液压缸的匹配情况。
     对挖掘机特殊作业姿态下的整机挖掘力与工作液压缸压力进行了同步测试,根据测试结果对分析软件进行了修正,并验证了整机挖掘力数学模型的准确性和软件分析的可靠性。
     以特定区域作业性能为优化目标,工作装置的运动性能和力学性能为约束条件建立了优化设计数学模型,采用遗传算法对SWE85型反铲液压挖掘机工作装置进行了优化,修正了原设计的缺陷,提高了整机作业性能。
     本文对液压挖掘机工作装置优化和作业性能分析关键技术的研究,发展了液压挖掘机的设计和优化理论,对提高液压挖掘机的设计水平有着重要的应用价值和指导意义。
As one of the most important earthworking construction machinery and equipment, hydraulic excavator is commonly used in house building, urban construction, pipeline laying, garden planting, mining exploration, national defense construction, agricultural irrigation and other infrastructure. The working performance of the backhoe working device is the most important symbol of the machine. Combining the national 863 project and the key scientific research program from enterprise, the aim of the thesis is researching on working performance analysis and integrative optimization of kinematics and dynamics. A general program is written under the Visual Basic 6.0 programming environment, which is used for working performance analysis and integrative optimization. The main research work as follows:
     The development of hydraulic excavator and research on working mechanism of excavator are surveyed. The market and perspective of hydraulic excavator are analyzed. The defects of homemade excavator is analyzed compared with inward ones.
     Full kinematic and dynamic models of the excavator working mechanism are derived, then a calculational module based on kinematics and dynamics is programmed to give results of kinematic and dynamic parameters. The three dimensions solid model for working mechanism is derived exactly by combining experiment with theoretical research. Based on the solid model, kinematic and dynamic simulations are also presented in ADAMAS. Both the simulation result and programmed calculation are consistent.
     Mechanical model of the excavator working mechanism is derived and limiting factors, which can affect working performance of excavator are analyzed. A visualized working performance analysis software is programmed to draw the working performance map. The working performance map is one of the most important methods that assess the design rationality of excavator attachment. The working performance data points figure, which can reflect the digging force on the teeth of bucket,power utilization of hydraulic pump and three hydraulic cylinders' matching and so on.
     Under special working attitudes, the tool forces and cylinders' pressure are tested synchronously. The analysis software is modified based on test results. The veracity of the tool forces model and reliability of the analysis software are validated at the same time.
     The optimum design model is established, which chooses the working performance in particular areas as the optimizing goal and uses the movement performance and mechanical properties to build up the constraint conditions. Given the genetic algorithm to optimize the working mechanism of the SWE 85 hydraulic excavator, the results show that the defects of the original design are avoided and the excavating performance is improved.
     Researching on working mechanism optimization and working performance analysis in this thesis developed design and optimization theory of hydraulic excavator, which is of great value and significance for improving excavator working mechanism.
引文
[1]Masakazu Haga,Watanabe Hiroshi,Kazuo Fujishima.Digging control system for hydraulic excavator[J].Mechatronics,2001(11).665-676
    [2]Fei-Yue Wang,Paul J.A.Level.On-line trajectory planning for autonomous robotic excavation based on force/torque sensor measurements[A].Proceeding of the 1994 IEEE international conference on multisensor fusion and intelligent systems[C].Las Vegas,USA,1994.371-378
    [3]王新中.国内外矿用挖掘机发展状况[J].矿山机械,2004(9)
    [4]Sanjiv Singh and Howard Cannon.Multi-Resolution Planning for Earthmoving [A].Proceedings International Conference on Robotics and Automation[C].Leuven,Belgium.1998
    [5]Patrick Scan Rowe.Adaptive Motion Planning for Autonomous Mass Excavation [D].Carnegie Mellon University,1999
    [6]Nguyen Hong Quang.Robust low level control of robotic excavation[D].The university of Sydney.2000
    [7]Nguyen,Q.,Ha,Q.,Rye,D.,and Durrant-Whyte.Force/position tracking for electrohydraulic systems of a robotic excavator[A].Proceeding of the 39th IEEE Conference on Decision and Control[C].Sydney,Australia.2000:5224-5229
    [8]Q.P.Ha,Q.H.Nguyen,D.C.Rye,and H.F.Durrant-Whyte.Fuzzy Sliding-Mode Controllers with Applications.IEEE Transactions on industrial electronics.2001,48(1):38-46
    [9]David A Bradley,Derek W Seward.Developing real-time autonomous excavation- the LUCIE story[A].Proceeding of the 34th conference on decision & control[C].New Orleans,France,1995.3028-3033
    [10]Bradley D,Seward D.The development,control and operation of an autonomous robotic excavator[J],Journal of Intelligent and Robotic Systems,1998,21:73-97
    [11]谢习华,周亮,张大庆.液压挖掘机技术研究的发展现状[J].工程机械,2007,8(38).54-57
    [12]陈正利.我国液压挖掘机发展的几个重要阶段及其前景展望[J].建筑机械,1999(1).17-23
    [13]郭春利.国产挖掘机与装载机产销量巨大反差的探源-兼论我国国产挖掘机振兴之路[J].今同工程机械.2003(4).32-34
    [14]张凯丽.中国工程机械代理制现状、存在问题及发展趋势[J].今日工程机械,2003(3).23-25
    [15]孔凡宏,季霞.十年一轮回?近期工程机械市场情况的分析和预测[J].工程机械与维修,2003(5).35-37
    [16]张启君,刘伟.国内挖掘机行业发展的探讨[J].筑路机械与施工机械化,2005(2).1-6
    [17]张大庆.液压挖掘机工作装置运动控制研究[D]:[博士学位论文].长沙:中南大学.2006.
    [18]蔡自兴.机器人学.北京:清华大学出版社,2000.
    [19]谢存禧,朱武涛.焊接机器人总体机构设计计算方法[R].国家“七五”攻关项目技术报告,1989.
    [20]付京逊.机器人学:控制、传感技术、视觉、智能,北京:中国科技教育出版社,1989.
    [21]谢存禧,李琳.空间机构设计与应用创新,北京:机械工业出版社,2008.
    [22]Zweiri,Yahya H.A generalized Newton method for identification of closed-chain excavator arm paramenters.International Conference on Robotics and Automation,v1,2003,103-108
    [23]于国飞,宋文荣,许纯新.基于Matlab的挖掘机工作装置动力学方程[J].农业机械学报.2003,34(2).93-96
    [24]W.Nukulwuthiopas,et.al.Dynamic Modeling of One-wheel Robot by Using Kane's Method.IEEE ICIT'02 2002 524-529 Bangkok,Thailand
    [25]P.Betch,P.Steinmann.Constrained integration of rigid body dynamics.Comput.Method Appl.Mech.Engrg.2001(191).487-492
    [26]Jain A,Rodriguez G.Diagonalized Lagrangian robot system.IEEE Transaction on Robotics And Atomation.1995,11(4).517-518
    [27]K.S.ANDERSON and J.H.CRITCHLEY.Improved "Order-N" Performance Algorithm for Simulation of Constrained Multi-rigid-body Dynamic Systems.Multi-rigid-body Dynamics.2003(9).185-212
    [28]楚中毅,曲东升,孙立宁,崔晶.机器人动力学分析的等效有限元建模方法[J].机械工程学报.2005,41(6).13-18
    [29]Earth-moving machiney-Hydraulic excavators-Methods of measuring tool forces.ISO6015,1989(E)
    [30]Hydraulic excavators-Terminology.ISO7135,1993
    [31]Hydraulic excavator and backhoe digging forces.SAE J1179 FEB90
    [32]孙志广.液压挖掘机工作装置优化设计及性能仿真[D]:[硕士学位论文].长春:吉林大学.2004
    [33]姬鹏.液压挖掘机反铲装置的运动学仿真及动力学分析[D]:[硕士学位论文].长春:吉林大学.2004
    [34]同济大学主编.单斗液压挖掘机(第二版).北京:中国建筑工业出版社,1986
    [35]孔德文,赵克利,徐宁生等.液压挖掘机.北京:化学工业出版社,2007
    [36]朱红妹,卫少克,刘钊.液压挖掘机挖掘工况与挖掘力分布特性分析[J].机电设备.2007(8).9-12
    [37]薛渊,陆念力,李良.单斗液压挖掘机铲斗挖掘负荷分析[J].建筑机械化.2006(6).28-30
    [38]洪昌银.液压挖掘机反铲装置特殊工作尺寸及挖掘轨迹包络图[J].重庆建筑工程学院学报.1992,14(3).1-11
    [39]杜文靖.液压挖掘机工作装置设计关键技术研究[D]:[博士学位论文].长春:吉林大学.2007
    [40]黄欣娜,李纲.液压挖掘机工作装置计算机动态模拟显示及工作性能分析[J].机械科学与技术.1997,16(2).370
    [41]Septimiu E.Salcudean,Shahram Tafazoli,P.D.Lawrence,et al.Impedance Control of a Teleoperated Excavator.Processing of the ICAR 1997,Monterey.19-25
    [42]何清华,张大庆,郝鹏等.液压挖掘机工作装置仿真研究[J].系统仿真学报.2006,18(3).735-738
    [43]李渊博.基于WindowsCE的挖掘机器人轨迹规划与控制研究[D]:[硕士学位论文].长沙:中南大学.2006
    [44]Hydraulic excavators-Methods of measuring tool forces,GB/T 13332-91,1992
    [45]陈玉峰,宋立权,韩文强.液压挖掘机工作装置运动与动力综合优化[J].建筑机械,2005f2):80
    [46]孙家根,韩军瞿.挖掘机臂销磨损与断料分析[J].建筑机械,2000(12):56-57
    [47]于国飞,宋文荣,许纯新.挖掘装置操作臂末端轨迹控制的试验研究[J].中国机械工程,2003(9):1448-1451
    [481陈世教,荣洪均,冀满忠等.液压挖掘机反铲工作装置整机理论复合挖掘力的计算及应用[J].工程机械,2007(4):39-43
    [49]薛渊,吕广明,陆念力.复合形法在液压挖掘机铲斗连杆机构优化设计中的应用[J].现代制造工程,2006(3):114-116
    [50]曹俊,朱如鹏.遗传算法的发展及其在机械工程领域中的应用[C].第三届中日机械技术史国际学术会议.北京:中国机械工程学会,2002.10:410-416
    [51]程育仪.工程机械优化设计.北京:中国铁道出版社,1987.
    [52]赵家宏.液压挖掘机反铲装置的优化设计[J].建筑机械,1996(10).11-12
    [53]郑惠强,王业文.液压挖掘机动臂优化设计数学模型的建立[J].中国工程机械学报,2006,4(2).143-144
    [54]车仁炜,吕广明,陆念力.液压挖掘机铲斗机构的优化设计[J].黑龙江大学自然科学学报,2005,22(1).127-128
    [55]陈新度.遗传算法在离散结构变量结构优化设计中的应用[J].华中理工大学学报,1997(8)
    [56]李强,周济.机械系统动态优化设计的混合基因算法[J].华中理工大学学报,1997(1)
    [57]Jenk insW M.Towards Structure Op tim ization via The Genetic Algorithm[J].Computer & Structure,1991,40(5):1321-1327
    [58]Hajela P.Genetic Search an Approach to the Nonconvex Optimization P roblem[J].AIAA Journal,1991,26(7)
    [59]Kalyanmoy Deb.Design for a Weld Beam via Genetic Algorithms[J].AIAA Journal,1991,29(11):444-451
    [60]De Jong K A.A nalysis Initial Population Size for Binary-Coded Genetic Algorithms[C].TGGA,Rept.85001,Univ.of Alabama,Tuscaloose,A1,Nov.1985
    [61]刘金琨.先进PID控制MATLAB仿真.北京:电子工业出版社,2005.
    [62]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,2001:34
    [63]梁尚明,殷国富.现代机械优化设计方法.北京:化学工业出版社,2005:264-281
    [64]张石强.正铲液压挖掘机挖掘性能通用分析方法研究[D]:[硕士学位论文].重庆:重庆大学.2006
    [65]孙志广.液压挖掘机工作装置优化设计及性能仿真[D]:[硕士学位论文].长春:吉林大学.2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700