电液伺服力控系统的鲁棒迭代学习控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文的工作是将迭代学习控制理论引入电液伺服力控系统,从而改善其控制性能。所提出的控制方法不仅拓宽了控制理论应用的研究范围,而且具有一定的实际工程意义。
     电液伺服力控系统具有输出功率大,可靠性高,反应速度快,操作简单方便等优点,因而广泛应用于各种工程实践中。特别是应用于要求反应迅速精确的大功率自动控制系统中。本文立足于提高电液伺服力控系统的动态响应特性,从而使其满足多方面的应用需求,具有更良好的工业应用前景。
     电液伺服力控系统是一种参数时变、较多非线性因素、参数和结构具有不确定性、高阶、强耦合且经常存在干扰等特性的系统,这些特性使得常规控制方法较难实现对电液伺服系统的高精度控制。近年来,多种智能控制理论方法与鲁棒控制理论方法被用于该系统,为解决具有上述特性的电液伺服系统的建模和控制问题提供了有效的途径。但大多都是针对将电液力伺服系统简化为线性、低阶系统予以研究,目前电液力控系统对控制系统的动态响应特性、跟踪的精度、系统鲁棒性及稳定性的要求愈来愈高,系统的控制需求促使人们不断寻求针对性较强、控制性能较好的控制方法。
     迭代学习控制能实现在被控系统有限时间区间上的完全跟踪任务。它尤其适用于具有重复运行性质的被控对象,利用对象过去运行的信息,通过数次迭代修正控制信号,实现零误差。迭代学习控制算法简单、易于微机实现、跟踪精确,对解决一些实际问题有相当的优点。将迭代学习控制用于电液伺服力控制系统解决系统非线性、高阶等对控制特性的影响具有很好的效果,但单纯的迭代学习控制也存在学习律参数选择比较盲目和算法抗干扰技术有待提高等问题。为此考虑结合诸如自适应控制、变结构控制等鲁棒控制,利用这些算法鲁棒整定系统的能力,尽量避免学习律参数选择的盲目性,在开闭环迭代学习控制结构的基础上综合采用具有反馈与前馈作用的环节,以及引入H∞理论,旨在进行鲁棒迭代学习控制律的设计,力求给出同时兼顾收敛速度和跟踪性能的方法,针对所提出的一系列迭代学习算法,进行理论分析和仿真试验,使每种迭代学习算法的有效性都得到验证。目的是拓宽迭代学习控制的应用范围,加强迭代学习控制的实用性。
     本文的主要工作有:
     1、综述了电液伺服力控制系统的特点和控制要求、控制策略以及应用等方面的研究现状,简要介绍了迭代学习基本概念、原理、算法结构、研究内容以及应用成果,总结了提高算法的收敛速度和跟踪精度的迭代学习控制技术,阐述了本课题的相关研究背景及意义,提出主要研究工作
     2、研究建立电液伺服力控制系统模型的方法。模型研究为分析系统本质特性和提出合理的校正策略提供理论基础。分析了电液伺服阀的非线性因素,建立了电液伺服力控系统几种传递函数模型,在此基础上推导出基于力变量的系统状态空间模型,奠定了理论分析的基础,最后进一步建立了电液伺服力控系统的混合仿真模型,使数字控制器模型与系统的物理模型相结合,这种仿真与建模方法有效地模拟了工程实际。
     3、研究了智能鲁棒迭代学习控制策略,针对系统高阶、初始状态偏移和不确定的未建模动态以及缓慢变化,单纯学习律参数选择比较盲目问题,在开闭环迭代学习控制算法基础上结合自适应控制综合采用同时具有反馈与前馈作用的环节,针对系统的各种干扰、不确定特性、期望轨迹变化的影响,单纯迭代学习算法抗干扰能力不强的缺陷,结合滑模变结构控制,并采用H∞理论,设计鲁棒迭代学习控制律,力求使控制过程更快地收敛于期望值。收敛速度和跟踪性能这两个问题的解决将会推进迭代学习真正成为实用的控制技术。
     4、进行了阀控对称缸电液驱动力伺服系统控制方法研究,分析了电液驱动力伺服系统特性,针对系统模型知之甚少,尤其许多系统参数未知,采用具有前馈与反馈作用的开闭环综合迭代学习自适应控制策略,根据理论分析给出收敛条件,设计结构合理的控制器。重点解决高阶特性、初始状态偏移、未建模动态、油源压力变化、油温变化等未知信息给迭代学习控制用于电液伺服驱动力系统控制所产生的学习参数选择比较盲目的问题。仿真结果表明所提控制策略跟踪性能良好的前提下,迭代学习参数选择趋于合理,学习速度有较大提高。
     5、对电液伺服被动力系统控制策略进行研究。分析阀控非对称缸电液伺服被动力系统特性,针对系统内部位置干扰和负载变化产生多余力、期望随时间变化等问题,以及系统运动加载时不但有位置控制干扰,还有摩擦力产生外部干扰的问题,采用所提出的基于H∞理论的迭代学习变结构控制方法,重点研究进一步提高迭代学习控制抗干扰能力的问题,以增强其鲁棒性,并设计结构合理的控制器,分析给出收敛条件。仿真结果表明该控制策略不但保持传统迭代学习高精度跟踪的特性,鲁棒性得到了提高,使收敛条件得以放宽。
     6、进行电液伺服力控制系统的实验研究,以DSPACE为平台,使用实际的液压一机械系统物理模型和数字控制器模型,搭建了电液伺服驱动力试验系统,以及双缸电液伺服被动力试验系统,设计实验平台装置的硬件和软件。针对电液伺服力控系统的高阶特性、非线性特性、参数不确定性、负载变化、期望变化、抗扰性等问题,采用所构造的各种控制器实现了每种控制策略的快速原型试验。通过实时控制试验,验证所提策略对提高系统快速性、解决不确定性、增强鲁棒性的有效性。
The iterative learning control theory is used to improve the control characteristic of electro-hydraulic force servo control system in this paper, and the proposed control method not only widen the research scope of the control theory application but also which has the theory and actual engineering significance
     The electro-hydraulic force servo control system has some merits such as great output power, high reliability, strong anti-interference ability, rapid respond speed, and simple operation, etc. Hence the system has been widespread used in various engineering practices. Especially, the system is used in the rapid and accurate respond requirement for the big power automatic control system. The dynamic characteristic of electro-hydraulic force servo control system is improved in this paper, which can not only meet various applications, and according with the continuous efforts and long-term target in this technology domain both domestic and overseas. Certainly, the dynamic characteristic improvement has very strong actual significance.
     The electro-hydraulic force servo control system is a system which consists of some characteristics, such as high order, strong coupled, time varying, strong nonlinear, uncertain parameters and structure, and normal endure uncertain load interference, and so on. The high accuracy control of electro-hydraulic force servo control system is difficult to realize by using the conventional control method due to these characteristics. In recent years, many intelligent control and robust control theory method is used in the system, which provides the effective way for the electro-hydraulic force servo control system with above characteristics. However, the electro-hydraulic force servo control system is simplified as linear and low order system in most method. With the increasing of tracking accuracy, dynamic respond ability, stability, and robust, the complicacy of system requires to find the more strong target and more excellent control performance of control method.
     The controlled object of iteration learning control method has rerun characteristic, and the control method revises the control signals by using the iteration method and before operation information, which can realizes zero error tracking task in limited time interval of controlled system. The conventional iteration learning control is well known due to the simple algorithm form and accurate tracking, which has certain merits in resolve some actual question. In order to resolve the effect of nonlinear and high order for the system characteristic, the iteration learning control is used in the electro-hydraulic force servo control system. But the simple iteration learning exists in some questions such as the parameters choice of study law is aimless and the anti-interference of arithmetic need improve. Hence many robust control methods are combined with the conventional iteration learning method, such as adaptive control and variable structure control, which uses the robust setting ability for the system to avoid the aimless of study law parameters choice, and the open and closed loop combined with iteration learning control structure with feedback and feed forward action and H∞theory is adopted in the proposed method to design a robust iteration learning control law along with astringency and tracking ability, and a series of iteration learning law design method is proposed in this paper. The effectiveness of the every proposed iteration learning law is confirmed by using simulation and theory, which broadens the application domain and improves the practical applicability of iteration learning control.
     The main work in this paper:
     I) The characteristic and control require and control strategy and current research situation of application of electro-hydraulic force servo control system is summarized, then, the basic concept and idea of iteration is presented and the research and application results of iteration learning control is classify introduced and reviewed, and the convergence speed and tracking accuracy of improved arithmetic of iteration learning control technology is summarized, finally, the relative research background and significance of this project is explored and the main research work is presented.
     Ⅱ) The various modeling method for electro-hydraulic force servo control system is researched. The model research provides the theory base to analyze the nature characteristic of system and propose reasonable revise strategy. Then, the nonlinear characteristic of electric-hydraulic servo valve is analyzed, and the transfer function of valve controlling cylinder electro-hydraulic force servo system is established. Next, the state space model based on force variables and bias variables for electro-hydraulic force servo system are deduced, which can be used as the base of follow-up analysis. Finally, the hybrid simulation model of valve controlling cylinder electro-hydraulic force servo system is introduced, namely, the physical model and digital controller model of system is simulated by using the most close to the actual engineering simulation and modeling method.
     Ⅲ) Many intelligent robust iterative learning algorithms are researched, which is combined with adaptive control. In order to resolve these question such as original state excursion, uncertain and slow changing of non-modeling dynamic, and the aimless of study law parameters choice, the comprehensive open and close loop for the iterative learning control structure is adapted which has the feedback and feed forward action. The alone iterative learning algorithm has the drawback of poor antijamming capability, in order to realize the faster convergence of expected value during learning control process and resolve the effect of astringency and tracking performance during iterative learning control process, which is combined with variable structure control, and uses the H∞theory, and robust iterative learning control law due to the excellent astringency and tracking performance. The iterative learning algorithm became the practical control technology because of the two question is resolved.
     IV) The electro-hydraulic force servo control system is researched and the electro-hydraulic force servo characteristic is analyzed, the comprehensive open and close loop for the iterative learning control structure is adapted which has the feedback and feed forward action due to system model knows a little and a lot of system parameter is unknown. The reasonable structure controller is designed by using the convergence condition of theory analyses. The main question is that the unknown information induces the aimless learning parameter choice of electro-hydraulic force servo control system by using iterative learning control such as high order characteristic, original state excursion, non-modeling dynamic, and the changing of oil sources pressure and oil temperature, which is resolved in the paper.
     V) The control strategy of electro-hydraulic passive force servo system is researched and the electro-hydraulic passive force servo characteristic is analyzed, and the iterative learning and variable structure based on H∞theory is adapted to resolve these questions such as location interference of electro-hydraulic load simulator, the redundant force of load change, and the excepted value changing with time variation, etc. There are the location control interference during opposite vertex synergy and.the redundant force of external interference come from frictional force. Here, the drawback of weak anti-interference ability of alone iterative learning is the important question to improve the robustness. A reasonable structure controller is designed and the convergence condition is analyzed. The simulation results shows that the control strategy can remains the high accuracy tracking performance and improves the robustness and relaxes the convergence condition.
     VI) The DSPACE platform is used in the experimental research of electro-hydraulic force servo system, and the electro-hydraulic force servo driving force and double-cylinder electro-hydraulic passive force pilot system is established by using the actual physical model of hydraulic pressure and mechanical system and digital controller, and the hardware and software for experimental platform is designed. The rapid prototype test of every control strategy is realized by using the previous various controllers, and these questions of electro-hydraulic force servo system is improved, such as high order performance, nonlinear characteristic, uncertain parameters, load changing, expected values changing, and jamming-interference, and so on. The proposed strategy is proved to improve the rapidness, uncertainty, and robustness by using the real-time control experimental.
引文
[1]王春行.液压控制系统[M].北京:机械工业出版社,2006:1-7
    [2]王占林.近代电气液压伺服控制[M].北京:北京航空航天大学出版社,2005:1-18
    [3]李洪人.液压控制系统[M].北京:国防工业出版社,1981:299—324
    [4]刘长年.液压伺服系统优化设计理论[M].北京:冶金工业出版社,1989:150-159
    [5]李福义.液压技术与液压伺服系统[M].哈尔滨:哈尔滨工程大学出版社,1992:23-28
    [6]成人先.机械设计手册一液压控制[M].北京:化学工业出版社,2004:75-79
    [7]李连升.刘绍球.液压伺服理论与实践[M].北京:国防工业出版社,1990:80-106
    [8]Herbert E.Merrit.Hydraulic Control Systems [M].USA,1967:70-90
    [9]G P Liu, S Daley. Optimal tuning nonlinear PID control of hydraulic systems [J].Control Engineering Practice,2000(8):1045-1053.
    [10]Ito K I, keo S.PID control performance of a water hydraulic servomotor system[C]. Proceedings of the 41st SICE Annual Conference,2002(3):1732-1735.
    [11]权龙,许小庆,李敏等.电液伺服位置、压力复合控制原理的仿真及试验[J].机械工程学报,2008,9(44):100—105.
    [12]姚建勇,焦宗夏,黄澄.基于动态逆模型的电液位置伺服系统复合控制[J].机械工程学报,2011,47(10):145—151.
    [13]Ahn K, S. Yokota, H. Furuta. Coordinative control of 6-link electro-hydraulic manipulators with dual arm (application of a discrete event control to the insertion task of electric lines into sleeves),2000, 66(645):345-352.
    [14]Khan H, Abou S C, Sepehri N. Nonlinear observer-basedfault detection technique for electro-hydraulic servo-positioning systems [J]. Mechatronics,2005,15:1037-1059.
    [15]loan U, Felicia U,Florica P. Backstepping design for controlling electrohydraulic servos [J]. Journal of the Franklin Institute,2006,343(1):94-110.
    [16]Zhao S D, Wang J.Iterative learning controlo electrol hydraulic proportional feeding system in slotting machine for metal bar cropping [J]. International Journal of MachineTools& Manufacture,2005,45(7): 923-931.
    [17]Justin W. Raade, Kurt R. Amundson, H. Kazerooni.Development of hybrid hydraulic-electric power units for field and service robots [J].Advanced Robotics,2006,20(9):1015-1034.
    [18]王益群,王燕山.电液力控制研究的进展[J].液压与气动,2002:7-14.
    [19]Yao B, Bu F,Reedy J.Adaptive robust motion of single-rod hydraulic actuators, theory and experiments [J]. IEEE/ASME Transactions on Mecha-tronics.2000,5(1):79-91.
    [20]Deticek E, Kiker E. Adaptive force control of hydraulic drives of facility fortesting mechanical constructions [J].ExperimentalTechniques.2001(1):35-39.
    [21]Yoonsu Nam, QFT force loop design for the aerodynamic load simulator,Aerospace and Electronic Systems[J].IEEE Transactions.2001,37(4):1384-1392.
    [22]Niksefat N, Sepehri N.Designing robust force control of hydraulic actuators despite system and environmental uncertainties [J].Control Systems Magazine IEEE.2001,21(2):66-77.
    [23]Ge QiangLi, Jian Cao, Biao Zhang.Design of Robust Controller in Electro-hydraulic Load Simulator[C].Machine Learning and Cybernetics,2006 International Conferenceon,2006,8 (01):779-784.
    [24]Rui Liu, Andre Alleyne. Nonlinear force/pressure tracking of an elcetro-hydraulic actuator [J].ASME Journal of Dynamic Sys-tems, Measurement and Control,2000,122 (3):232-237.
    [25]G Wu, N Sepehri, K. Ziaei.Design of hydraulic force control system using ageneralized predictivecontrol algorithm [J].Proc.Inst. Elec.Eng.-Contr.Theory Applicant,1998,145(5):428-436.
    [26]L Laval, N K M Sirdi, J C Cadiou. H∞ force control of a hydraulic servo-actuator with environmental uncertainties [J].Proc. IEEE Conf. Roboics and Automation, Minneapolis, MN,1996:1566-1571.
    [27]WenHong Z, Dupuis E, Piedboeuf JC.Adaptive output force tracking control of hydraulic cylinders[C]. American Control Conference,2004(6):5066-5071.
    [28]于少娟,段锁林,吴聚华.电液伺服力控系统的模糊学习控制[J],电机与控制学报2004,1(5):56-59.
    [29]段锁林,安高成,薛军娥等.电液伺服力控系统的自适应滑模控制[J],机械工程学报,5(38)109-113.
    [30]赵慧,韩俊伟,聂伯勋等.基于LMI的H∞控制在电液力控制系统中的应用[J].哈尔滨工业大学学报.2000,6(32):22-25.
    [31]Andrew Alleyne, Rui Liu. A simplified approach to force control for electro-hydraulic systems [J] Control Engineering Practice,2000(8):1347-1356.
    [32]GerretsenA, Mulder M, vanPaassenMM. Comparsonof Position-loop, Velocity-loopand Force-loop Based Control Loading Architectures[C]. Proceedings of AIAA Modeling and Simulation Technologies Conferenceand Exhibit.San Francisco, CA,2005:1-18.
    [33]Wang Hui, Wang Liwen,YanXiangan, et al.Development of Servo-hydraulic Control Loading System and Research on Its Force Tracking Performance[C]. Proceedings of the International Conferenceon Advanced Design and Manufacture. Harbin,2006:135-138.
    [34]Wang Jingfu, Liang Lihua, Zhang Songtao.Application of H∞ Control BasedO11 Mixed Sensitivity in the Electro-hydraulic Load Simulator[C].Interhational Conference on Mechatronics and Automation, 2007.2007(8):2991-2996.
    [35]Lizalde C, Loukianov A, Sanchez E. Force tracking neural control for an electro-hydraulic actuator viasecond order sliding mode[C].Proceedings of the 2005 IEEE International Symposiumon Mediterrean Conference on Control and Automation. Insti-tute of Electrical and Electronics Engineers Computer Society,2005:292-297.
    [36]王明彦,郭奔.基于迭代学习控制的电动伺服负载模拟器[J].中国电机工程学报,2003(12):123-126.
    [37]刘晓东.电液伺服系统多余力补偿及数字控制策略研究[M].2008:48-57
    [38]Clarke DW.Adaptive control of a materials-testing machine, Adaptive Control [J],IEEE Colloquiumon.1996,139(4):1-4.
    [39]华清,焦宗夏.负载模拟器的DRNN神经网络控制[J].机械工程学报.2003,39(1):15-19.
    [40]ZhaoHui, HanJun Wei, MAJian wen. Application of gain scheduled H∞ control in electrohydraulic force servo system with time varying flexibility load [A].Harbin:International AcademicPublishers, 1999.384-388.
    [41]王经甫,叶正茂,李洪人.双阀并联控制在船舶舵机电液负载模拟器多余力抑制中的研究[J].机械工程学报,2005,(4):229—233.
    [12]郝经佳,赵克定,许宏光.双阀控制在电液负载仿真台中的应用[J].中国机械工程,2002(10):13—16.
    [43]徐本洲.被动式电液力控制系统的干扰抵制与渐进跟踪研究[D].哈尔滨工业大学博士论文,1992.70—77
    [44]苗中华,刘成良,王旭永.大摩擦力矩下电液伺服系统高精度控制与实验分析[J].上海交通大学学报,2008,42(10):1731-1735.
    [45]岑豫皖,叶金杰,潘紫微.非线性状态空间方法辨识电液伺服控制系统[J].机械工程学报,2008,44(12):80—85.
    [46]He S,Sepehri N. Modeling and prediction of hydraulic servo actuators with neural networks[C]. Proceedings of the America Control Conference.San Diego California,1999:3708-3712.
    [47]杨军宏,尹自强,李圣怡.阀控非对称缸的非线性建模及其反馈线性化[J].机械工程学报.2006,42(5):203-207.
    [48]倪敬,彭丽辉,项占琴.扩轧管电液伺服系统非线性建模与控制[J].机械工程学报,2009,45(05):250—255.
    [49]林辉,王林.迭代学习控制理论[M].西安:西北工业大学出版社,1998:8-14
    [50]孙明轩,黄宝健.迭代学习控制[M].北京:国防工业出版社,1999:15-18
    [51]于少娟,齐向东,吴聚华.迭代学习控制理论及应用[M].北京:机械工业出版社,2005:11—16
    [52]Uchiyama M.Formation of High Speed Motion Pattern of Mechanical Armby Tria [JJ.Transofthe Society of Instrumentation and Control Engineers,1978,19(5):706-712.
    [53]Arimoto S, Kawamura S, Miyazaki F. Bettering Operation of Robots by Learning [J]. J of Robotic Systems,1984,1(2):123-140.
    [54]谢胜利,谢振东,韦岗.非线性分布参数系统跟踪控制的学习算法[J].自动化学报,1999,25(5):627—632
    [55]曾南,应行仁.线性系统迭代学习算法[J].自动化学报,1992,18(1):168-176
    [56]李仁俊,韩正之.迭代学习控制综述[J].控制与决策,2005,(09):961-966
    [57]皮道映,孙优贤.非线性系统开闭环PI型迭代学习控制律及收敛性[J].控制理论与应用,1998,15(3):400—403
    [58]Li X, T W S Chow, J K L. Ho.2-D System Theory Based Iterative Learning Control for Linear Continuous Systems with Time Delays [J]. IEEE Transactions on Circuits and Systems I:Regular Papers,2005,52(7):1421-1430.
    [59]Hladowski L, Galkowski, Krzyszt. etc. Experimentally supported 2D systems based iterative learning control law design for error convergence and performance [J]. Control Engineering Practice,2010, 18(4):339-348.
    [60]Kuc T Y, Lee J S., Nam.K. An iterative learning control theory for a class of nonlinear dynalnic system [J].Automatica,1992,28(6):1215-1221.
    [61]Wallg D.Convergence and robustness of discrete time nonlinear systems with iterative control[J]. Aulomatica,1998,34(11):1445-1448.
    [62]Ma Z, Chen W, Letaief. etc.A Semi Range-Based Iterative Localization Algorithm for Cognitive Radio Networks [J]. IEEE Transactions on Vehicular Technology,2010,59(2):704-717.
    [63]Ghafari S A, Meghdari, G R.Vossoughi, Forward dynamics simulation of human walking employing an iterative feedback tuning approach[J].Proceedings of the institution of Mechanical Engineers. Journal of Systems and Control Engineering 2009,223(3):289-297.
    [64]Tan K K, Zhao S C, Kok Yong.etc.Iterative learning approach toward closed-loop automatic tuning of PID controllers[J]. Industrial and Engineering Chemistry Research,2006,45(12):4093-4100.
    [65]Chen W, M Saif.An iterative learning observer for fault detection and accommodation in nonlinear time-delay systems [J]. Robust and Nonlinear Control,2006,16(1):1-19.
    [66]Chen C,J Hwang.Iterative learning control for position tracking of a pneumatic actuated X-Y table[C].IEEE International Conference on Control Applications (CCA 2004), vol.1.Taipei, Taiwan, China.2004:388-393.
    [67]池荣虎,侯忠生.非线性非仿射离散时间系统的两阶段最优迭代学习控制(英文)[J].自动化学报,2007,33(10):1061-1065.
    [68]徐敏,林辉,刘震.可变学习增益的迭代学习控制律[J].控制理论与应用,2007,24(05):856-860.
    [69]张君海,石成英,林辉.基于向量图分析的一种迭代学习控制算法及其鲁棒性[J].控制理论与应用,2007,24(01):155-159.
    [70]李宏胜.离散系统单调收敛高阶迭代学习控制[J].机械工程学报,2006,42(07):72-75.
    [71]任雪梅,高为炳.任意初始状态下的学习控制[J].自动化学报,1994,20(1):74-79.
    [72]Sun M X, D W Wang, Y Y Wang.Sampled-data iterative learning control with well-defined relative degree [J]. Robust and Nonlinear Control 2004,14(8):719-739.
    [73]Xu J, R. Yan. Fixed point theorem-based iterative learning control for LTV systems with input singularity [J]. IEEE Transactions on Automatic Control,2003,48(3):487-492.
    [74]Xu J X, Tan Y. Linear and Nonlinear Iterative Learning Control [M]. Berlin:Springer-Verlag, 2003:69-82.
    [75]Das I, FA Potra.Subsequent Convergence of Iterative Methods with Applications to Real-Time Model-Predictive Control [J]. IEEE Control Systems Magazine,2003,119(1):96-114.
    [76]Bristow D A., Tharayil M, Alleyne A G A survey of iterative learning control [J]. IEEE Control Systems Magazine 2006,26(3):96-114.
    [77]Tayebi A, J Xu.Observer-based iterative learning controls for a class of time-varying nonlinear systems [J].IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications, 2003,50(3):452-455.
    [78]Madady Ali.A Sele-tuning Iterative Learning Controller for Time Variant Systems [J]. Asian Journal of Control,2008 2008,10(6):666-677.
    [79]Tharayil M, Alleyne A.A time-varying iterative learning controls schem[C]. Proceedings of the American Control Conference (ACC 2004).American:2004:3782-3787
    [80]Ramos J I. Iterative and non-iterative methods for non-linear volterra integro-differential equations[J]. Applied Mathematics and Computation,2009,214(1):287-296.
    [81]Pinte G, Depraetere B, Symens W, etc.Iterative learning control for the filling of wet clutches [J]. Mechanical Systems and Signal Processing,2010,24(7):1924-1937.
    [82]Cordero A, Hueso, Jose L, Martinez Eulalia, etc.Iterative methods for use with nonlinear discrete algebraic [J].models. Mathematical and Computer Modelling,2010,52(7/8):1251-1257.
    [83]Becerra Bonache, L Case, John. Iterative learning of simple external contextual languages[J]. Theoretical Computer Science,2010,411(29/30):2741-2756.
    [84]Liu T, GAO F, Wang Y. IMC-based iterative learning control for batch processes with uncertain time delay [J].Journal of Process Control,2010,20(2):173-180.
    [85]邓志东,孙增折.异步自学习控制的频域稳定性分析[J].信息与控制,1994,23(1):1-7.
    [86]阮小娥,连建帮,吴慧卓.具有反馈信息的迭代学习控制律在Lebesgue-p范数意义下的收敛性[J].自动化学报,2011,37(4):513—516.
    [87]朱胜,孙明轩,何熊熊.严格反馈非线性时变系统的迭代学习控制[J]. 自动化学报,2010,36(3):454—458.
    [88]王晔,刘山.期望轨迹可变的非线性时变系统迭代学习控制[J].浙江大学学报(工学版),2009,43(05):839—843.
    [89]Mezghani M, Roux G, Cabassud M etc. Application of iterative learning control to an exothermic semibatch chemical reactor [J].IEEE Transactions on Control Systems Technology,2002,10(6): 822-834.
    [90]Jiang P, R Unbehauen. Robot visual servoing with iterative learning control [J]. IEEE Transactions on Systems,2002,32(2):281-287.
    [91]C T Freeman, P L Lewin, E Rogers.etc. Iterative learning control applied to a gantry robot and conveyor system [J]. Transactions of the Institute of Measurement and Control,2010,32(3):251-264
    [92]Sahoo S K, S K Panda, J X. Xu.Iterative Learning Control based Direct Instantaneous Torque Control of Switched Reluctance Motors[C]. PESC Record-IEEE Annual Power Electronics Specialists Conference, IEEE 35th Annual Power Electronics Specialists Conference (PESC04), Germany: Aachen,2004:4832-4837.
    [93]蒋平,陈辉堂,王月娟.机器人自学习控制的稳定性分析方法及其应用[J].自动化学报,1997,23(4):462—467.
    [94]Hua G, M Sun. Neural Networks Iterative Learning Control:A Terminal Sliding Mode Approach [J]. 7th World Congress on Intelligent Control and Automation (WCICA 2008), vol.8. Chongqing, China, 2008:3119-3124.
    [95]Norrlof M, Gunnarsson S. Disturbance Aspects of Iterative Learning Control [J].Engineering Applications of Artificial Intelligence,2001,14(1):87-94.
    [96]侯忠生,晏静文.带有迭代学习前馈的快速路无模型自适应入口匝道控制[J].自动化学报MOTO,2009,35(5):588—595.
    [97]Meng D, Jia Y,Du J.etc.Robust iterative learning control design for uncertain time-delay systems based on a performance index [J].2010,4(5):759-772.
    [98]Xu J X, Viswanathan.B.Adaptive robust iterative learning control with dead zone scheme [J].Automatica,2000,36(1):91-99.
    [99]Medjo T T, L Tebou.Adjoint-based iterative method for robust control problems in fluid mechanics [J]. SIAM Journal on Numerical Analysis,2004,42(1):302-325.
    [100]Bien H. Study on robustness of iterative learning control with non-zero initial error [J]. International Journal of Control,1996,64(03):345-359.
    [101]Tayebi A, Abdul S, Zaremba. etc. Robust Iterative Learning Control Design:Application to a Robot Manipulator [J]. IEEE/ASME Transactions on Mechatronics,2008,13(5):608-613.
    [102]Lee H S,Bien Z. Study on robustness initial error[J].International Journal of Control of iterative learning control with non-zero 1996,64(3):345-359.
    [103]Park KH, Bien Z, Wang D H.A Study on the Robustness of a PID-type Iterative Learning Controller Against Initial State Error[J]. Int J of System Science,1999,30(1):49-59.
    [104]Wang D W.Conaergence and robustness of discrete time nonlinear systems with iterative learning control [J].Automatica.l998.34 (11):1445-1448.
    [105]Bie Huh, K M.Higher order iterative learning control algorithm [J]. Proceedings Control Theory and Applications,1989,136(3),105-112.
    [106]Amann N,Owens D.H,Rogers E. Iterative learning control using optimal feedback and feedforward actions[J], International Journal of Control,1996,65(2):277-293.
    [107]Doyle J C, Francis B A, Itanenbaum A R. Feedback control theory [M]. London Maxwell Macmillan, 1992:34-38.
    [108]徐湘元.自适应控制理论与应用[M].北京:电子工业出版社,2006:1-3.
    [109]Yao B,Bu F P, George T C.Non-linear adaptive robust control of electro-hydraulic systems driven by double-rod actuators [J].International Journal of Control.2001 (8):761-775.
    [110]Liu Xiaodong, Li Changchun, Zhou Xin. Synchroni Zation Control Study for Two Cylinders Electro-hydraulie Gras Ping System. [C] International Conference on Mechatronics and Automation.2007. ICMA2007:16501654
    [111]Garagic D,Srinivasan K.Application of nonlinear adaptive control techniques to an electrohy-draulic velocity servomechanism[J].IEEE Transactions on Control Systems Technology, 2004,12(2):303-314.
    [112]Duraiswamy S,George T,C.Chiu.Nonlinear adaptive nonsmooth dynamic surface control of electro-hydraulic systems[C].American Control Conference.Denver,Colorado,2003:3287-3292
    [113]BU Fanping, YAO Bin. Nonlinear model based coordination adaptive robust control of electro-hydraulic robotic manipulators [J].PrasticaI issue and comparative studies. ASME International Mechanical Engineers Congress and Exposition (IMECE),2001,3(1):1-9.
    [114]管成,潘双夏.电液伺服系统的非线性鲁棒自适应控制[J].中国电机工程学报,2007,27(24):107—112.
    [115]王益群,宁淑荣,刘建.热轧立辊电液伺服系统的自适应模糊控制[J].机械工程学报,2007,43(12):1-4.
    [116]全权,杨德东,蔡开元.带有自适应补偿的不确定时滞系统鲁棒跟踪控制(英文)[J].自动化学报,2010(08):1189—1194.
    [117]杨胜跃,罗安,樊晓平.不确定性机器人系统自适应鲁棒迭代学习控制(英文)[J].控制理论与应用,2003(05):707—712.
    [118]Taibi A.Adaptive Iterative Learning Control for Robot Manipulators [J].Automatica,2004, 40(7):1195-1203.
    [119]Tayebi A.Model reference adaptive iterative learning control for linear systems [J].International Journal of Adaptive Control and Signal Processing,2006,20(9):475-489.
    [120]Islam S, A Tayebi.New adaptive iterative learning control (AILC) for uncertain robot manipulators [J]. In 2004 Canadian Conference on Electrical and Computer Engineering,2004,3(1.1):1645-1651.
    [121]Chien C, C Hsu. C Yao.Fuzzy System-Based Adaptive Iterative Learning Control for Nonlinear Plants with Initial State Errors [J]. IEEE Transactions on Fuzzy Systems,2004,12(5):724-732.
    [122]Chien C, A Tayebi. Further results on adaptive iterative learning control of robot manipulators [J]. Automatica,2008,44(3):830-837.
    [123]Chen W, L Zhang.Adaptive Iterative Learning Control for Nonlinearly Parameterized Systems with Unknown Time-Varying Delays [J]. International Journal of Control, Automation and Systems,2010, 8(2):177-186.
    [124]Chen H D, Jiang P.Adaptive iterative learning control for nonlinear systems with unknown control gain [J]. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME 2004, 126(4):916-920
    [125]Choi J Y, Lee J S.Adaptive iterative learning control of uncertain robotic systems [J].IEE Proceedings-Control Theory and Applications,2000,147(2):217-223.
    [126]Ashraf S, Muhammad E, Al-Habaibeh A. Self-learning control systems using identification-based adaptive iterative learning controller[J]. Journal of Mechanical Engineering Science,2008,222(7): 1177-1187.
    [127]Abramovich Y I, Frazer G J, Johnson B A. Iterative Adaptive Kronecker MIMO Radar Beamformer: Description and Convergence Analysis [J]. IEEE Transactions on Signal Processing,2010,58(7): 3681-3691.
    [128]Rotariu I, M Steinbuch, R Ellenbroek.Adaptive Iterative Learning Control for High Precision Motion Systems [J]. IEEE Transactions on Control Systems Technology,2008,16(5):1075-1082.
    [129]Roberts W,Stoica P, Li J.Iterative Adaptive Approaches to MIMO Radar Imaging [J].IEEE Journal on Selected Topics in Signal Processing,2010,4(1):5-20.
    [130]French M, Rogers E.Non-linear iterative learning by an adaptive Lyapunov technique [J]. International Journal of Control,2000,73(10):840-850.
    [131]Norrlof M. An adaptive iterative learning control algorithm with experiments on an industrial robot [J].IEEE Transactions on Robotics and Automation,2002,18(2):245-251.
    [132]Kuc T Y, Han WG.An adaptive PID learning control of robot manipulators [J]. Automatica,2000,36, 717-725.
    [133]W Weihong,H Zhongsheng,J Shangtai.Overview of the Iterative Feedback Tuning.In Control Conference[C] Proceedings of the 26th Chinese Control Conference, Zhangjiajie, China,2007:14-18.
    [134]Wang Y, Chien C, Teng C.Direct adaptive iterative learning control of nonlinear systems using an output-recurrent fuzzy neural network [J].2004.34(3):348-1359.
    [135]Wang L, Lamare R C, Yukawa M.Adaptive Reduced-Rank Constrained Constant Modulus Algorithms Based on Joint Iterative Optimization of Filters for Beamforming [J]. IEEE Transactions on Signal Processing,2010,58(6):2983-2997.
    [136]Bayram I, Selesnick I W.A Subband Adaptive Iterative Shrinkage/Thresholding Algorithm [J]. IEEE Transactions on Signal Processing,2010,58(3):1131-1143.
    [137]Zhu Y L, Pagilla P R. Adaptive estimation of time varying parameters in linearly parameterized systems [J]. Journal of Dynamic Systems, Measurement and Control Transactionsof the ASME,2006, 128(3):691-695
    [138]Marino R, Tomei P.Adaptive control of linear time varying systems [J]. Automatica,2003,39 (4):651-659.
    [139]高为炳.变结构控制的理论及设计方法[M].北京:科学出版社,1998:130,241-248.
    [140]刘金琨.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,2005:2-14 109-181.
    [141]Sha Dao hang,Bajic V B,Yang Hua yong.New Model and Sliding Mode Control of Hydraulic Elevator Ve-locity Tracking System[J]. Simulation Practice and Theory,2002 (9):365-385.
    [142]Hwang C L. Sliding Mode Control Using Time-varying Switching Gain and Boundary Layer for Electrohydraulic Position and Differential Pressure Control [J].IEE Proc. Control Theory andAppl-ications,1996,143(4):325-332.
    [143]Chen Hong Ming, RennJyhCh yang, SuJuhng Perng.Sliding Mode Control with Varying Boundary Layers for an Electro-hydraulic Position ServoSystem [Jj.The International Journal of Manufac-turing Technology,2005, (26):117-123.
    [144]Liu Y, Handroos H.Technical note sliding mode control for a class of hydraulic position servo [J].Mechatronics,1999,9(1):111-123.
    [145]Bonchis A,Corke P I,Rye D C,et al.Variable structure methods in hydraulic servo systems control[J].Automatica,2001,37(4):589-595.
    [146]Mohamed A G.Variable structure control for electro-hydraulic position servo system[C].The 27th Annual Conference of the IEEE Industrial Electronics Society,Denver,USA,2001:2195-2198.
    [147]Yanada H, Ohnishi H. Frequency-shapedsliding mode control of an electro-hydraulic servomoto [J]. Journal of Systems andControl andDynamics,1999,213(1):441-448
    [148]Zhang Youwang, Gui Weihua. Compensation for secondary uncertainty in electro-hydraulic servo systemby gainadaptive sliding mode variable structure control [J].Journal of Central SouthUniversity of Tech-nology,2008,15(2):256-263.
    [149]刘云峰,缪栋.电液伺服系统的自适应模糊滑模控制研究[J].中国电机工程学报,2006,26(14):140—144.
    [150]靳宝全.电液位置伺服控制系统的模糊滑模控制方法研究[D].太原:太原理工大学,2010:95-100
    [151]李运华,杨丽曼,张志华.电液伺服系统的二阶滑模控制算法研究[J].机械工程学报,2005.41(03):72—75.
    [152]张细政,王耀南.电液伺服系统参数自校正滑模变结构控制[J].中国机械工程,2009,20(11):1285-1289.
    [153]Tomas Rodriguez, Banks M SP, Salamci MU.Sliding Mode Control for Nonlinear Systems An Iterative Approach.In Proceedings of the 45th IEEE Conference on Decision and Control[C]. Proceedings of the IEEE Conference on Decision and Control 2006,14(4):4963-4968.
    [154]Tan Y K, Panda S K. Iterative Learning based Sliding-mode Position Controller for Linear Permanent Magnet Brushless DC Servo Motors[C].Industrial Electronics Conference Proceedings, ECON 2004-30th Annual Conference of IEEE Industrial Eelctronics Society. South Korea.:Busan. 2004:2864-2869.
    [155]Lu Y, Xi Tong Gong, Cheng Yu Dian. Iterative learning control based on sliding modes[C].International Conference on Modelling, Identification, and Control, Innsbruck, Austria. 2002,28(9):1412-1433.
    [156]Roopaei M F. Shabaninia, Karimaghaee P. Iterative sliding mode control, [C]. Nonlinear Analysis: Hybrid Systems 2008.2(2):256-271
    [157]Mainali K, Panda S K, Xu JX. et al. Repetitive position tracking performance enhancement of linear ultrasonic motor with sliding mode-cum-iterative learning control[C]. Proceedings of the IEEE International Conference,2004:352-357.
    [158]Xiaoguang H, Zheng Yuanxi, Gu Wenquan.et al. Variable structure with sliding mode and iterative learning control for nonlinear system[J].Advances in the Astronautical Sciences.1995:989-993
    [159]Yu ShaoJuan,Qi Xiang Dong,Han Ru Cheng.etc.Application of an iterative learning sliding mode controller to inverse pendulum system[C].Proceedings of 2004 International Conference. 2004:788-791.
    [160]解学书,钟宜生.H∞控制理论[M].北京:清华大学出版社,1994.56—60
    [161]樊立萍,刘义.直线电机的H∞迭代学习控制设计[J].电力系统及其自动化学报DLZD,2009(02),21(2):87—91.
    [162]刘山.迭代学习控制系统设计及应用[D].杭州:浙江大学,2002:70-77
    [163]郭毓,陈庆伟,胡维礼.一类时变系统模型参考自适应迭代学习控制[J].南京理工大学学报(自然科学版),2007(06):663—667.
    [164]李俊民,王元亮,李新民.未知时变时滞非线性参数化系统自适应迭代学习控制[J].控制理论与应用,2011(06),28(6):861-868.
    [165]Amann N, Owens D H, Rogers E.An H∞ approach to linear iterative learning control design[J].International Journal of Adaptive Control and Signal Processing,1996,10(6):767-781.
    [166]王岩,付永领.模糊滑模迭代学习控制算法在液压系统中应用[J].北京航空航天大学学报,2007,33(1):86—89.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700