单相PWM整流器谐波电流抑制算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:单相PWM整流器以高功率因数、低谐波含量以及能量可以双向流动等优点,广泛应用于新能源发电以及交流传动等领域。尽管与二极管整流相比,PWM整流器电网电流中的谐波含量大大降低,然而并不能完全消除,并受到各种因素的影响。随着PWM整流器的广泛应用,对提高其注入电网电流质量的研究受到越来越多的关注。
     首先建立了单相PWM整流器的数学模型,分析了直流电压脉动、电压谐波、电网电流预测误差以及电网参数对电网电流的影响。对于直流电压脉动引起的谐波电流,可以通过设置直流电压采样陷波器的方法,滤除进入控制环路中的二次脉动分量,抑制对电流环的影响。PWM脉宽调制及死区产生的谐波和电网电压谐波,均可以通过加入重复控制器或者谐振控制器的方法,提高PWM整流器在谐波频率处的输入阻抗,减小电网电流中的谐波含量。
     在光伏发电领域,单相PWM整流器主要用于小功率光伏并网逆变器,功率等级通常在5kW以下,开关频率在10kHz-20kHz之间,控制周期较短。针对单相光伏并网逆变器电流环具有较宽的带宽,以及重复控制数据运算量较小的特点,提出了采用无差拍控制和重复控制相结合的方法抑制电压谐波对电网电流的影响。分析了重复控制器参数对电流环鲁棒性以及动态性能的影响,给出了重复控制器参数的设计方法。研究表明较小的重复控制器增益系数有利于提高电流环的鲁棒性,并减小电网电流幅值阶跃变化时的畸变,但基波电流跟踪速度较慢。
     交流传动电力机车辅助供电系统中,单相PWM整流器的功率为上百千瓦,开关频率通常为2kHz-5kHz。开关频率的下降使电流环带宽变窄,但是控制周期变长,因而可采用带谐波补偿器的比例谐振控制,提高PWM整流器在谐波频率处的输入阻抗。由于基波和谐波谐振控制器具有不同的系数,提出了分别设置基波和谐波谐振控制器系数的方法,得到快速的基波电流动态响应,并达到稳态时抑制谐波电流的目的。目前谐波补偿器多采用并联式,即多个谐波频率处谐振控制器相加的形式。然而并联式谐波补偿器的设计方法难以直观的配置电流环零极点在z平面的位置,提出了级联式谐波补偿器基于z域的根轨迹设计方法,能够灵活配置电流环的零极点分布。从而保证稳态工作时谐波比例谐振控制器对谐波电压的抑制作用,动态响应时不会导致电网电流畸变,同时使基波电流能够快速跟踪指令值。
     交流传动电力机车的主牵引系统中,单相PWM整流器的功率为兆瓦级,两电平单相PWM整流器开关频率通常不到1kHz,使电流环的带宽进一步减小。并且由于数字控制系统存在控制延时,导致电流环性能变差。为了提高电流环的动态响应速度,通常采用预测电流控制。分析了传统的开环电流预测误差对电网电流谐波的影响,而电网电流预测误差导致的电网谐波电流无法通过电流环前向通道中加入内模进行抑制。针对这一问题,提出了采用重复观测器对电网电流进行预测的闭环电流预测算法,通过提高电网电流预测的精度,从而减小电网电流谐波含量。给出了电网电流重复观测器的设计方法,分析了重复观测器以及整个电流环的稳定性。
     电气化铁路的牵引网专门为交流传动电力机车供电,电网与电力机车网侧PWM整流器形成级联系统。尽管单相PWM整流器设计时,能够保证电流环稳定,然而电网短路阻抗以及分布电容等参数将对PWM整流器的稳定性产生影响,导致电网电流振荡,产生大量的谐波。提出了采用电网等效输出阻抗和PWM整流器输入阻抗的阻抗比分析电网参数对电流环稳定性的影响。并分别对单台和多台并联运行时,PWM整流器电流环控制器参数设计进行了分析,避免电网与PWM整流器之间谐振现象的产生。讨论了电流环内模加入对PWM整流器输入阻抗的影响。最后通过仿真和实验验证了理论分析的正确性。
ABSTRACT:Single-phase PWM rectifier has been widely used in the fields of ac electric drives and renewable energy distribution generations with the advantages of high power factor, low current harmonics and bidirectional energy flowing. Although the grid current harmonics are much lower using PWM rectifier than that using diode rectifier, they can not be eliminated completely and are affected by many factors. More and more attentions have been paid on improving grid current quality with PWM rectifiers widely used.
     Mathematical model of single-phase PWM rectifier was established first. Impact on grid current made by dc-link voltage ripple, voltage harmonics, grid current predictive error and grid parameters was analyzed. The dc-link voltage ripple can be filtered by notch filter in the sample loop to eliminate its affect on grid current. PWM rectifier input impedance can be increased by adding repetitive or resonant controller into current-loop to reduce grid current harmonics caused by both grid voltage harmonics and PWM modulation.
     In the field of photovoltaic power generation, single-phase PWM rectifier is mainly used for low-power photovoltaic inverter, usually in5kW power level below. Its switching frequency is often10kHz-20kHz and the control cycle is short. Single-phase photovoltaic inverter current-loop has a wide-bandwidth and computation consumption of repetitive control is small. For these reasons, dead-beat control combined with repetitive control was proposed to eliminate grid current harmonic. Impact on current-loop robustness and dynamic performance by repetitive controller was analyzed. Design method of repetitive controller and current harmonic elimination performance was discussed. It is shown that smaller repetitive controller gain can improve current-loop robust and reduce grid current distortion when grid current amplitude reference steps. However, fundamental current tracking speed will slow down at the same time.
     In ac electric locomotive auxiliary power supply system, single-phase PWM rectifier's power is hundreds of kilowatts and its switching frequency is typically2kHz-5kHz. Low switching frequency will decrease current-loop dynamic performance. Because of the long control cycle, harmonic compensator based on resonant control is proposed to improve PWM rectifier input impedance at harmonic frequency. The design method setting different fundamental and harmonic resonant controller coefficients was proposed to obtain high static and dynamic current-loop performance. Paralleled harmonic compensator by adding multiple harmonic resonant controllers is often used and discussed in references. However, its design method is difficult to visually configure zeros and poles in z plane. Root locus design method of cascaded harmonic compensator in z domain was proposed with the flexibility to configure the distribution of current-loop poles and zeros. In this method, it is can be make sure that current-loop has ability to eliminate harmonic voltage in steady-state and rapid fundamental current tracking without current distortion in dynamic-state.
     In ac electric locomotive main traction system, single-phase PWM rectifier's power is megawatt and switching frequency is typically less than1kHz. The current-loop bandwidth is further reduced. Control delay will also result in deterioration of current-loop performance. Predictive current controller is often used to obtain high dynamic performance. Grid current predictive error using traditional open-loop current predictive method will distort grid current which can not be eliminated by adding internal model into current-loop. The current predictive algorithm based on repetitive control observer was proposed to improve grid current predictive precision. Design method of grid current observer was given and the observer stability and current-loop stability were both discussed.
     Traction network and locomotive grid-side PWM rectifier can be regarded as a cascaded system while traction network is specifically supplying for electric locomotive. PWM rectifier current-loop can be designed to guarantee stability. However, grids short-circuit impedance and distributed capacitance will affect the stability of PWM rectifier leading to grid current oscillation and a large amount of harmonics. Impedance ratio was used to analyze the influence on the stability of the current-loop by network parameters. Current-loop controller parameters design was analyzed respectively for single and multiple paralleled operations to avoid resonance between the grid and PWM rectifier. PWM rectifier input impedance was discussed when repetitive and resonant internal model was introduced. Finally, simulation and experimental results verified that theoretical analysis is correct.
引文
[1]汪海宁.光伏并网功率调节系统及其控制的研究[博士学位论文].合肥:合肥工业大学,2005.
    [2]窦伟,徐正国,彭燕昌,李晶,许洪华.三相光伏并网逆变器输出电流波形控制技术研究[J].太阳能学报,2007,28(11):1262—1265.
    [3]王飞.单相光伏并网系统的分析与研究[博士学位论文].合肥.:合肥工业大学,2005.
    [4]张承慧,叶颖,陈阿莲,杜春水.基于输出电流控制的光伏并网逆变电源[J].电工技术学报,2007,22(8):41—45.
    [5]Kerekes T, Teodorescu R, Rodriguez P, Vazquez G and Aldabas E. A new high-efficiency single-phase transformerless PV inverter topology[J]. IEEE Transactions on Industrial Electronics,2011,58(1):184-191.
    [6]Gonzalez R, Gubia E, Lopez J nad Marroyo L. Transformerless single-phase multilevel-based photovoltaic inverter[J]. IEEE Transaction on Industrial Electronics,2008,55(7):2694-2702.
    [7]Gonzalez R, Gubia E, Lopez J, Sanchis P and Marroyo L. Transformerless inverter for single-phase photovoltaic systems[J]. IEEE Transations on Power Electronics,2007.22(2): 693-697.
    [8]张凌.单相光伏并网逆变器的研制[硕士学位论文].北京:北京交通大学,2007.
    [9]Chang C W, Lin H W, Chen S K. Modeling characteristics of harmonic currents generated by high-speed railway traction drive converters [J]. IEEE Transactions on Power Delivery,2004, 19(2):766-773.
    [10]Macan M. Presentation of a four-quadrant converter based system in traction applications-Reference to modeling, simulation and analysis[C]. European Conference on Power Electronics and Applications, Denmark, Aalborg. September 2-5,2007:1-9.
    [11]Heising C, Bartelt R, Staudt V, Steimel A. Single-phase 50-kW 16.7-Hz four-quadrant line-side converter for railway traction application[C]. Power Electronics and Motion Control Conference, Poland, Poznan, September 1-3,2008:521-527.
    [12]李伟,张黎.交-直-交传动系统网侧变流器预测电流控制方法的计算机仿真及实现[J].中国铁道科学,2002,23(6):49-54.
    [13]张中,张金平,李国峰.HXD2型大功率交流传动货运电力机车牵引电传动系统[J].机车电传动,2008,6:5-8.
    [14]刘长清,郭平华,黄长强,蹇芳.电力机车四象限辅助变流器的研制[J].电力机车与城轨车辆,2003,26(6):18-20.
    [15]Hong-Seok S, Keil R, Mutschler P, et al. Advanced control scheme for a single-phase PWM rectifier in traction applications [C]. Industry Applications Conference, October 12-16,2003, 3:1558-1565.
    [16]张章,郭文杰,张全柱,郑琼林.交流传动互馈试验台脉冲整流器二重化串联系统[J].机车电传动[J],2005,4:41-44.
    [17]郑琼林.现代轨道交通与交流传动互馈试验台[J].电工技术学报,2005,20(1):21-25.
    [18]郭文杰,林飞,郑琼林.交流传动互馈试验平台整流器研究[J].铁道学报,2006,28(1): 31-34.
    [19]訾振宁,林飞,郑琼林.用于逆变器试验的PWM整流器及其控制策略研究[J].铁道机车车辆,2008.28(1):15-17.
    [20]刘志刚,李宝昌,汪至中.电能反馈型电子负载的设计与实现[J].铁道学报,2001,23(3):37-41.
    [21]刁利军,刘志刚.能量回馈式PWM整流器并网的工程设计方法[J].电工技术学报,2005,20(11):75-79.
    [22]王奇.电气化铁道牵引网谐波电流放大仿真分析[J].电气化铁道,2010,(5):4-7.
    [23]孟志强.高次谐波对牵引网保护的危害及改进措施[J].电气化铁道,2006,(z1):131-134.
    [24]朱学军,陈昭荣.电气化铁道牵引供电系统谐波抑制浅析[J].重庆工业高等专科学校学报,2002,17(4):54-56.
    [25]姚楠.电气化铁道牵引网基波与谐波模型研究[硕士学位论文].北京:北京交通大学,2008.
    [26]张曙光.CRH1型动车组[M].北京:中国铁道出版社,2008.
    [27]Alfred B, Joachim H. Multiloop control of a unity power factor fast switching ac to dc converter[C]. Proceedings of Power Electronics Specialist Conference,1982,171-179.
    [28]Hirofumi A. Instantaneous reactive power compensators comprising switching devices without energy storage components[J]. IEEE Transactions on Industry Applications,1984, IA-20(3): 625-630.
    [29]Green A W, Boys J T, Gates G F.3-phase voltage sourced reversible rectifier[J]. IEE proceedings B of Electric Power Application,1988,135(6):362-370.
    [30]Dixon J W, Ooi B T. Indirect current control of a unity power factor sinusoidal current boost type three-phase rectifier[J]. IEEE Transactions on Power Electronics,1988,35(4):508-515.
    [31]张崇巍,张兴.PWM整流器及其控制[M].北京:机械工业出版社,2003.
    [32]Sato Y and Kataoka T. A current-type PWM rectifier with active damping function[J]. IEEE Transactions on Industry Applications,1996,32(3):533-541.
    [33]张兴,季建强,余勇,刘正之,张崇魏.电流型PWM整流器低电压应力空间矢量PWM(SVPWM)研究[J].中国电机工程学报,2004,24(2):144-149.
    [34]刘志刚,和敬涵.基于电流型PWM整流器的电子模拟负载系统研究[J].电工技术学报,2004,19(6):74-77.
    [35]Enjeti P N, Ziogas P D and Lindsay J F. A current source PWM inverter with instantaneous current control capability[J]. IEEE Transactions on Industry Application,1991,27(3):582-588.
    [36]Salo M and Tuusa H. A vector controlled current-source PWM rectifier with a novel current damping method[J]. IEEE Transactions on Power Electronics,2000,15(3):464-470.
    [37]赵仁德,贺益康,刘其辉.提高PWM整流器抗负载扰动性能研究[J].电工技术学报,2004,19(8):67-72.
    [38]Twining E and Holmes D G. Grid current regulation of a three-phase voltage source inverter with an LCL input filter[J]. IEEE Transactions on Power Electronics,2003,18(3):888-895.
    [39]张宪平,林资旭,李亚西,许洪华.LCL滤波的PWM整流器新型控制策略[J].电工技术学报,2007,22(2):74-77.
    [40]Papavasiliou A, Papathanassiou S A, Manias S N, Demetriadis G. Current control of a voltage source inverter connected to the grid via LCL filter[C]. Power Electronics Specialists Conference, Orlando, Florida, USA,2007.
    [41]张强,张崇巍,张兴,谢震.风力发电用大功率并网逆变器研究[J].中国电机工程学报,2007,27(16):54-59.
    [42]陈瑶,金新民,童亦斌.三相电压型PWM整流器网侧LCL滤波器[J].电工技术学报,2007,22(9):124-129.
    [43]原熙博,李永东,王琛琛.基于零序分量注入的三电平PWM整流器目标优化控制[J].电工技术学报,2009,24(3):116-121.
    [44]葛兴来,冯晓云.动车组牵引传动三电平逆变器SVPWM控制[J].西南交通大学学报,2008,43(5):566-572.
    [45]宋文胜,冯晓云,蒋威.一种单相三电平中点箝位整流器的SVPWM控制方法[J].电工技术学报,2007,22(7):69-73.
    [46]张曙光.CRH2型动车组[M].北京:中国铁道出版社,2008.
    [47]Kukrer O, Komurcugil H. Control strategy for single-phase PWM rectifiers[J]. Electronics Letters,1997,33(21):1745-1746.
    [48]王英,张纯江,陈辉明.三相PWM整流器新型相位幅值控制数学模型及其控制策略[J].中国电机工程学报,2003,23(1):85-89.
    [49]Green A W, Bous J T. Hysteresis current-forced three-phase voltage sourced reversible rectifier[J]. IEE Proceedings B of Electric Power Applications,1989,136(3):113-120.
    [50]Kang B J, Liaw C M. Robust hysteresis current-controlled PWM scheme with fixed switching frequency[J]. IEE Proceedings of Electric Power Applications,2001,148(6):503-512.
    [51]Jian Hu. Deadbeat controlled PWM converter [Dissertation]. Montreal:McGill University, 1999.
    [52]李春龙,沈颂华,卢家林,张建荣.基于状态观测器的PWM整流器电流环无差拍控制技术[J].电工技术学报,2006,21(12):84-89.
    [53]刘俊岭,杨耕,耿华,王宏宝.数字化有源滤波器时延补偿方法的分析和验证[J].电力电子技术,2007,41(11):31-33.
    [54]郭卫农,陈坚.基于状态观测器的逆变器数字双环控制技术研究[J].中国电机工程学报,2002,22(9):64-68.
    [55]Bin Yu. Predictive current controlled PWM strategy for grid-connected single-phase inverter[Dissertation]. Canada:The University of New Brunswick,2004.
    [56]Hung G K, Chang C C, Chen C L. Analysis and implementation of a delay-compensated deadbeat current controller for solar inverters [J]. IEE Proceedings of Circuits Devices System, 2001,148(5):279-286.
    [57]Hua C C, Wu C W, and Chuang C W. A digital predictive current control with improved sampled inductor current for cascaded inverters[J]. IEEE Transactions on Industrial Electronics,2009,56(5):1718-1726.
    [58]Yu B, Chang L C. Improved predictive current controlled PWM for single-phase grid-connected voltage source inverters[C]. Power Electronics Specialists Conference, Recife,2005: 231-236.
    [59]Holmes D G, Martin D A. Implementation of a direct digital predictive current controller for single and three phase voltage source inverters[C]. Industry Applications Conference, San Diego,1996,2:906-913.
    [60]Mohamed Y A I and El-Saadany E F. An improved deadbeat current control scheme with a novel adaptive self-tuning load model for a three-phase PWM voltage-source inverter[J]. IEEE Transactions on Industrial Electronics,2007,54(2):747-759.
    [61]Rodriguez J, Pontt J and et. al. Predictive current control of a voltage source inverter[J]. IEEE Transactions on Industrial Electronics,2007,54(1):495-502.
    [62]Cortes P, Kazmierkowski M P and et. al. Predictive control in power electronics and drives[J]. IEEE Transactions on Industrial Electronics,2008,55(12):4312-4323.
    [63]张章.15kW互馈试验台四象限变流器二重化串联系统的研究[硕士学位论文].北京:北京交通大学,2005.
    [64]Blasko V. A new mathematical model and control of a three-phase AC-DC voltage source converter[J]. IEEE Transactions on Power Electronics,1997,12(1):116-123.
    [65]沈传文,刘玮,路强,张晶晶.基于前馈解耦的三相PWM整流器研制[J].电力电子技术,2006,40(2):28-32.
    [66]李永东.交流电机数字控制系统[M].北京:机械工业出版社,2002.
    [67]Rowan T M, Kerkman R J. A new synchronous current regulator and an analysis of current-regulated PWM inverters[J]. IEEE Transactions on Industrial Applications,1986, IA-22(4):678-690.
    [68]Harnefors L. Implementation of resonant controllers and filters in fixed-point arithmetic[J]. IEEE Transactions on Industrial Electronics,2009,56(4):1273-1281.
    [69]Fukuda S, Imamura R. Application of a sinusoidal internal model to current control of three-phase utility-interface converters[J]. IEEE Transactions on Power Electronics,2005, 52(2):420-426.
    [70]赵清林,郭小强,邬伟扬.单相逆变器控制技术研究[J].中国电机工程学报,2007,27(16):60-64.
    [71]Lezana P, Silva C A, Rodriguez J, Perez M A. Zero-steady-state-error input-current controller for regenerative multilevel converters based on single-phase cells[J]. IEEE Transactions on Industrial Electronics,2007,54(2):733-740.
    [72]郭小强,邬伟扬,赵清林.新型并网逆变器控制策略比较和数字实现[J].电工技术学报,2007,22(5):111-116.
    [73]Zmood D N, Holmes D G. Stationary frame current regulation of PWM inverters with zero steady-state error[J]. IEEE Transactions on Power Electronics,2003,18(3):814-822.
    [74]Teodorescu R, Blaabjerg F, Liserre M, Loh P C Proportional-resonant controllers and filters for grid-connected voltage-source converters[J]. IEE Proceedings of Electric Power Applications,2006,153(5):750-762.
    [75]Liserre M, Teodorescu R, Blaabjerg F. Multiple harmonics control for three-phase grid converter systems with the use of PI-RES current controller in a rotating frame[J]. IEEE Transactions on Power Electronics,2006,21(3):836-841.
    [76]Etxeberria-Otadui I, Viscarret U, Caballero M, Rufer M, Bacha S. New optimized PWM VSC control structures and strategies under unbalanced voltage transients[J]. IEEE Transactions on Industrial Electronics,2007,54(5):2902-2914.
    [77]Yuan X, Merk W, Stemmler H and Allmeling J. Stationary-frame generalized integrators for current control of active power filters with zero steady-state error for current harmonics of concern under unbalanced and distorted operating conditions [J]. IEEE Transactions on Industry Applications,2002,38(2):523-532.
    [78]Fukuda S, Yoda T. A novel current-tracking method for active filters based on a sinusoidal internal model[J]. IEEE Transactions on Industrial Applications,2001,37(3):888-895.
    [79]Yepes A G, Freijedo F D, Doval-Gandoy J, Lopez O, Malvar J and Fernandez-Comesana P. Effects of discretization methods on the performance of resonant controllers [J]. IEEE Transactions on Power Electronics,2010,25(7):1692-1712.
    [80]王剑.四象限级联型多电平变换器用PWM整流器高性能控制[博士学位论文].北京:清华大学,2009.
    [81]Lenwari W, Sumner M, Zanchetta P and Culea M. A high performance harmonic current control for shunt active filters based on resonant compensators[C]. IECON 2006, Paris, France,2007.
    [82]Lascu C, Asiminoaei L, Boldea I and Blaabjerg F. High performance current controller for selective harmonic compensation in active power filters[J]. IEEE Transactions on Power Electronics,2007,22(5):1826-1835.
    [83]Yepes A G, Freijedo F D and et. al. High-performance digital resonant controllers implemented with two integrators [J]. IEEE Transactions on Power Electronics,2011,26(2):563-576.
    [84]Middleton R H, Goodwin G C. Improved finite word length characteristics in digital control using delta operators[J]. IEEE Transactions on Automatic Control,1986, AC-31(11): 1015-1021.
    [85]Kauraniemi J, Laakso T I, Hartimo I and Ovaska S J. Delta operator realizations of direct-form IIR filters[J]. IEEE Transactions on Circuits and Systems,1998,45(1):41-52.
    [86]张纯江,张婧,邬伟扬,徐殿国.基于Delta算子的谐振控制器实现高频链逆变器波形控制[J].电工技术学报,2008,23(7):81-85.
    [87]Newman M J, Holmes D G. Delta operator digital filters for high performance inverter applications[J]. IEEE Transactions on Power Electronics,2003,18(1):447-454.
    [88]王久和,李华德.一种新的电压型PWM整流器直接功率控制方法[J].中国电机工程学报,2005,25(16):47-52.
    [89]Hadian Amrei S R,徐殿国,郎永强.一种PWM整流器直接功率控制方法[J].中国电机工程学报,2007,27(25):78-84.
    [90]Noguchi T, Tomiki H,Kondo S. Direct power control of PWM converter without power-source voltage sensors[J]. IEEE Transactions on industry applications,1998,34(3):473-479.
    [91]Viola J, Restrepo J, Aller M J, et al. Simplified control structure for current control of single phase rectifiers using COT-ANN-PWM[C]. Proceedings of International Joint Conference on Neural Networks, Orlando, Florida, USA, August 12-17,2007:1370-1374.
    [92]Kwon B H, Youm J H, Lim J W and et. al. Three-phase PWM synchronous rectifiers without line-voltage sensor[J]. IEE Proceedings of Electric Power Applications,1999,146(6):632-636.
    [93]赵仁德,贺益康.无电网电压传感器三相PWM整流器虚拟电网磁链定向矢量控制研究[J].中国电机工程学报,2005,25(20):56-61.
    [94]訾振宁,林飞,马颖涛.PWM整流器无电网电压传感器控制策略研究[J].电气传动,2009,39(10):27-30.
    [95]Malinowiski M, Mariusz S C. Sensorless control strategies for three-phase PWM rectifiers [M]. Warsaw:Warsaw University of Technology,2001.
    [96]王久和,黄立培,杨秀媛.三相电压型PWM整流器的无源性功率控制[J].中国电机工 程学报,2008,28(21):20-25.
    [97]王久和.电压型PWM整流器的非线性控制[M].北京:机械工业出版社,2008.
    [98]郭文杰,林飞,郑琼林.三相电压型PWM整流器的级联式非线性PI控制[J].中国电机工程学报,2006,26(2):138-142.
    [99]王成智,邹旭东,贾凯,李芬,邹云屏,佘煦.滤波器在单相PWM整流器中的应用[J].高电压技术,2008,34(5):942-948.
    [100]陈瑶,童亦斌,金新民.基于PWM整流器的SVPWM谐波分析新算法[J].中国电机工程学报,2007,27(13):76-80.
    [101]马琳,金新民,唐芬,梁京哲.小功率单相并网逆变器并网电流的比例谐振控制[J].北京交通大学学报,2010,34(2):128-132.
    [102]马兆彪,惠晶,潘建.基于重复PI控制的光伏并网逆变器的研究[J].电力电子技术,2008,42(3):25-27.
    [103]窦伟,徐正国,彭燕昌,李晶,许洪华.三相光伏并网逆变器电流控制器优化设计[J].电工技术学报,2010,25(8):85-90.
    [104]邹仁.四象限变流器瞬态电流控制的仿真研究[J].机车电传动,2003,(6):17-20.
    [105]张凯.基于重复控制原理的CVCF-PWM逆变器波形控制技术研究[博士学位论文].武汉:华中理工大学,2000.
    [106]贲冰.基于重复控制的逆变器复合控制技术研究[硕士学位论文].秦皇岛:燕山大学,2007.
    [107]张凯,彭力,熊健,陈坚.基于状态反馈与重复控制的逆变器控制技术[J].中国电机工程学报,2006,10(5):56-62.
    [108]刘新民,邹旭东,康勇,柳彬.带状态观测器的逆变器增广状态反馈控制和重复控制[J].电工技术学报,2007,22(1):91-95.
    [109]熊健,史鹏飞,张凯,周亮.基于积分环节电压微分反馈的逆变器重复控制策略[J].电工技术学报,2007,22(1):85-90.
    [110]Zhou K L, Wang D W, Zhang B, Wang Y G. Plug-in dual-mode-structure repetitive controller for CVCF PWM inverters[J]. IEEE Transactions on Industrial Electronics,2009,56(3): 784-791.
    [111]Ye Y Q, Zhou K L, Zhang B, et al. High-performance repetitive control of PWM DC-AC converters with real-time phase-lead FIR filter[J]. IEEE Transactions on Circuits and Systems, 2006,53(8):768-772.
    [112]Zhang B, Wang D W, Zhou K L, Wang Y G. Linear phase lead compensation repetitive control of a CVCF PWM inverter[J]. IEEE Transactions on Industrial Electronics,2008,55(4): 1595-1602.
    [113]Costa-Castello R, Grino R, Fossas E. Odd-harmonic digital repetitive control of a single-phase current active filter [J]. IEEE Transactions on Power Electronics,2004,19(4):1060-1068.
    [114]Garcia-Cerrada A, Pinzon-Ardila O, Feliu-Batlle V, Roncero-Sanchez P, et al. Application of a repetitive controller for a three phase active power filter[J]. IEEE Transactions on Power Electronics,2007,22(1):237-246.
    [115]耿攀,戴珂,魏学良,张凯,康勇.三相并联型有源电力滤波器电流重复控制[J].电工技术学报,2007,22(2):127-131.
    [116]魏学良,戴珂,方听,康勇.三相并联型有源电力滤波器补偿电流性能分析与改进[J].中 国电机工程学报,2007,27(28):113-119.
    [117]Grino R, Cardoner R, Costa-Castello R, Fossas E. Digital repetitive control of a three-phase four-wire shunt active filter[J]. IEEE Transactions on Industrial Electronics.2007,54(3): 1495-1503.
    [118]郑琼林.有源补偿滤波统一理论和关联指令分区控制技术的研究[硕士学位论文].北京:北方交通大学,1992.
    [119]Zhou K L, Wang D W. Digital repetitive controlled three-phase PWM rectifier[J]. IEEE Transactions on Power Eletronics,2003,18(1):309-316.
    [120]Wu X H, Panda S K, Xu J X. DC link voltage and supply-side current harmonics minimization of three phase PWM boost rectifiers using frequency domain based repetitive current controllers[J]. IEEE Transactions on Power Electronics,2008,3(4):1987-1997.
    [121]Wang C, Zou Y, et. al. Research on the single-phase PWM rectifier based on the repetitive control[C]. IEEE International Conference on Industrial Technology,2008:21-24.
    [122]唐诗颖,彭力,康勇.脉宽调制逆变电源数字双环控制技术研究[J].中国电机工程学报,2009,29(15):55-60.
    [123]Liserre M, Teodorescu R and Blaabjerg F. Stability of photovoltaic and wind turbine grid-connected inverters for a large set of grid impedance values[J]. IEEE Transactions on Power Electronics,2006,21(1):263-272.
    [124]朱成花,严仰光.输入滤波器与开关变换器相互作用的分析[J].电力电子技术,2004,38(4):23-25.
    [125]朱成花,严仰光.一种改进的阻抗比判据[J].南京航空航天大学学报,2006,38(3):315-320.
    [126]吴涛.直流分布式供电系统中子模块输入输出阻抗的分析[硕士学位论文].南京:南京航空航天大学,2007.
    [127]Middlebrook R D. Input filter consideration in design and application of switching regulators[C]. IEEE IAS Annual Meeting,1976:336-382.
    [128]Wildrick C M and Lee F C. A method of defining the load impedance specification for a stable distributed power system[J]. IEEE Transactions on Power Electronics,1995,10(5):280-285.
    [129]Feng X, Liu J, Lee F C. Impedance specifications for stable dc distributed power systems[J]. IEEE Transations on Power Electronics,2002,17(2):157-162.
    [130]Feng X, Ye Z, Xing K, Lee F C and Borojevic D. Impedance specification and impedance improvement for dc distributed power system[C]. Power Electronics Specialists Conference, USA,1999:889-894.
    [131]郑琼林.交流传动HXD1电力机车谐振原因分析与对策[J].变频器世界,2009,(5):40-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700