面向过程监控的非线性特征提取方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代科学技术的发展,流程工业的规模越来越庞大,过程工艺越来越复杂,自动化程度也越来越高。与此同时,人们对工业生产的安全问题、节能减排问题、产业结构优化问题的关注度也在不断提升。传统的过程监控、生产优化和在线测量方案很多是基于机理模型建立的,机理模型具有精确度高、可解释性强等优点,但在实际使用中,由于系统的复杂程度过高而难以获得严格、完整、科学的机理模型,加之测量数据不可避免存在着误差,系统也很难不受随机扰动和噪声的干扰,这些都极大地影响了机理模型准确性的发挥。另一方面,随着计算机科学技术的发展,人们可以比以往任何时候更便捷地获得和存储规模庞大的过程数据,进行比以往任何时候更复杂的科学计算和更快速的数据库检索,这一切都为基于“数据驱动”方式的建模、仿真和优化提供了硬件保障,而统计科学的发展也为之奠定了坚实的理论基础。
     本文所关注的内容正是在这样的背景下,研究面向过程监控的非线性特征提取方法。文中所使用的术语“特征提取”是基于数据驱动的任务之一,如果研究对象是数据,则其目标为从原始的、繁芜复杂的数据中获取有价值的反应系统本质特征的信息,一般所获得的数据是原始信息的更低维表示;如果研究对象为输入输出的关系,则特征提取的结果是得到表征此种关系的模型。可见获取本质特征的过程既可看作对原系统进行建模,也可作为数据预处理步骤而存在,该步骤为后续建模提供更简约的数据集从而在降低模型复杂度的同时获得更精确的计算结果。具体而言,本文结合工业过程数据的特点,进行了以下几方面研究:
     1.研究了经典的线性特征提取算法主成分分析法,以及极限学习机神经网络,用于故障诊断中的故障识别。
     2.提出一种基于核映射的支持向量回归软测量模型,并应用于乙烯聚合反应过程的关键变量测量。
     3.提出基于主曲线和多项式最小二乘的软测量算法,用于二氯乙烷精馏过程的关键流股含水量预测。
     4.利用主曲线技术买现过程监控并在CSTR过程等仿真数据集上取得了理想的结果。
     5.此外,本文还介绍了多种人工神经网络方法以及它们的若干典型应用,并将之作为和本文所提算法对比的参照。本文的创新性工作主要体现在:
     1.用极限学习机分类器进行故障识别时,提出多路学习机表决策略,从而在不增加训练时间的前提下提高分类结果的稳定性。
     2.用支持向量回归进行软测量预测建模时,通过粒子群优化算法估计得到相关模型参数,并对标准的PSO算法进行改进以降低陷入局部极值的风险,提出PSO-SVR模型。
     3.建立了基于主曲线的非线性偏最小二乘模型,应用于软测量预测。在建模时引入相关性增强因子使得主曲线的提取过程能兼顾输入输出间的最大相关性,从而体现PLS的理念。
     4.在主曲线用于监控的应用中,借鉴了多尺度主成分分析的做法,即对小波分解系数进行主曲线建模,提出了基于多分辨率分析的“多尺度主曲线”算法。
     5.在主曲线用于监控的应用中,摈弃神经网络模拟映射关系的传统做法,而代之以插值计算,这样,既避免了神经网络的复杂计算和结果不确定性,又将运算负荷从偏重于建模阶段转变成建模和计算阶段分摊。
With the development of modern science and technology, the process industry is on a much larger scale and process technique is becoming more complex, also, the degree of automation becomes increasingly higher. Meanwhile, the problems of industrial safety, energy conservation, emission reduction, and industrial structure optimization are much concerned. Traditional process methods of such as monitoring, production optimization and online measurement are based on mechanism model, so they are highly accurate and interpretable. In practice, however, it is difficult to obtain rigorous mechanism models because of complexity in process system. And the system is subject to random disturbances, noise interference and measurement error. Such factors also affects the accuracy of mechanism models. With the development of computer science and technology, large numbers of process data can be easily obtained and stored, also more complex scientific computing and more rapid database retrieval can be done. These, with the addition of development of statistical science, provide basic foundations for data-driven modeling, simulation and optimization.
     This thesis is carried out under the backgrounds mentioned above. It studies nonlinear feature extraction for process monitoring. Feature extraction is one of basic tasks of data-driven methods. If industial data are concerned, it intends to obtain the valuable information which describes the process essentially in complex original data. In general, the number of dimension extracted is lower than the original one. Feature extracting can also provide models which represent the relationship between inputs and outputs. Process of obtaining essential feature of industry can be regarded as either modeling of system or data preprocessing step which provide simpler data set for subsequent modeling, reducing the complexity of the model, and obtaining more precise calculation results. Taking into account the characteristics of industrial process data, the following aspects are studied in this thesis.
     1. Classical linear feature extraction algorithm, principal component analysis, is combined with extreme learning machine classifier to obtain model for fault identification in fault diagnosis.
     2. A novel soft-sensing method is proposed and applied to gas-phase ethylene polymerization process. Two important indexes representing the product characteristics, melt index and density, are calculated. The proposed method constructs a predictive model based on the kernel mapping support vector regression.
     3. A soft-sensing algorithm based on principal curves and polynomial least squares is proposed and applied to predict water content of distillation unit of EDC.
     4. Principal curve method is utilized for process monitoring, and it achieves desired results in CSTR and other simulated data.
     5. Besides, this thesis introduces a few typical applications adopting the artificial neural networks as nonlinear feature extraction tools in process monitoring. These are taken as contrast against other nonlinear algorithms.
     Some innovative achievements are obtained, such as:
     1. While utilizing extreme learning machine classifier to identify faults, a voting strategy is taken to enhance the reliability of results.
     2. Improved particle swarm optimization algorithm is utilized to estimate two parameters while using SVR to build soft-sensor and the PSO-SVR model is proposed.
     3. While building models based on principal curves together with nonlinear polynomial least squares and utilizing them to soft-sening, correlation increment factor is designed and the nonlinear feature extracting can give consideration to maximizing relationship between inputs and outputs as in traditional PLS.
     4. In the application of principal curves to process monitoring, multi-scale principal curve algorithm is proposed based on multi-resolution analysis. This algorithm uses wavelet coefficients to model principal curves just as in MSPCA. The experimental results are consistent with theoretical expectations and indicate that the algorithm is effective.
     5. In the application of principal curves to process monitoring, neural network which used to simulate the mapping relationship can be replaced by interpolation. By doing so, the complexity computing of the NN and instability results can be avoided. The computing load is allocated to the stages of modeling and calculation evenly.
引文
[1]刘育明,动态过程数据的多变量统计监控方法研究[D],浙江大学,博士学位论文,2006
    [2]叶鲁彬,工业过程运行安全性能分析与在线评价的研究[D],浙江大学,博士学位论文,2011
    [3]熊丽,基于数据驱动技术的过程监控与优化方法研究[D],浙江大学,博士学位论文,2008
    [4]Smith S. M., Brady J. M., SUSAN-a new approach to low level image processing[J]. International Journal of Computer Vision,1997.23(1):p. 45-78.
    [5]Trajkovic M., Hedley M., Fast corner detection[J]. Image and Vision Computing,1998.16(2):p.75-87.
    [6]Liu Y. M., SVM-based multivariate statistical process control method and its application[J]. Journal of Zhejiang University (Engineering Science),2006. 40(10):p.1720-1731.
    [7]Masood L., Hassan A. Statistical features-ANN recognizer for bivariate process mean shift pattern recognition[C],2010 International Conference on Intelligent and Advanced Systems, ICIAS 2010,2010, Kuala Lumpur, Malaysia.
    [8]Pearson K., On lines and planes of closest fit to systems of points in space[J]. Philosophical Magazine,1901.2(11):p.559-572.
    [9]Hotelling H., Multivariate quality control illustrated by the testing of sample bombsights[J]. Selected techniques of statistical analysis,1947:p.113-184.
    [10]Wise B. M., Veltkamp B. D., Ricker N. L., Kowalski B. R. Principal components analysis for monitoring the West Valley liquid fed ceramic melter[C], Waste Management'88 Proceedings,1988, University of Washington, Seattle, Washington.
    [11]Kresta J. V., MacGregor J. F., Marlin T. E., Multivariate statistical monitoring of process operating performance[J]. The Canadian Journal of Chemical Engineering,1991.69(1):p.35-47.
    [12]Jolliffe I. T., Principal component analysis[M],2002, New York:Springer.
    [13]Jackson J. E., A user's guide to principal components [M],1991:Wiley.
    [14]Abdi H., Williams L. J., Principal component analysis[J]. Wiley Interdisciplinary Reviews:Computational Statistics,2010(2):p.433-459.
    [15]Miranda A. A., LeBorgne Y. A., Bontempi G., New routes from minimal approximation error to principal components[J]. Neural Processing Letters, 2008.27(3).
    [16]Nomikos P., Macgregor J. F., Monitoring batch processes using multiway principal component analysis[J]. AICHE Journal,1994.40(8):p.1361-1375.
    [17]何慧娟,陈健,邹宇华,基于DPCA方法的传感器故障检测与诊断[J].传 感器与微系统,2009.28(12).
    [18]Wold H., Multivariate analysis[M],1966, New York:Academic Press.
    [19]Sasb(?)a S., Alm(?)ya T., Flatbergb A., Aastveita A. H., Martens H., LPLS-regression:a method for prediction and classification under the influence of background information on predictor variables[J]. Chemometrics and Intelligent Laboratory Systems 2008.91(2):p.121-132.
    [20]Wold S., Wold N. K., Skagerberg B., Nonlinear PLS modeling[J]. Chemometrics and Intelligent Laboratory Systems,1989.7(1-2):p.53-65.
    [21]Wold S., Sjostrom M., Eriksson L., PLS-regression:a basic tool of chemometrics[J]. Chemometrics and Intelligent Laboratory Systems 2001. 58(2):p.109-130.
    [22]Wold S., Nonlinear partial least squares modelling Ⅱ. Spline inner relation[J]. Chemometrics and Intelligent Laboratory Systems,1992.14(1-3):p.71-84.
    [23]Lindgren F., Geladi P., Wold S., The kernel algorithm for PLS[J].Journal of Chemometrics,1993.7:p.45-59.
    [24]潘立登,李大宇,马俊英,软测量技术原理与应用[M],2008:中国电力出版社.
    [25]Wold H., Softmodelling by latent variables:the non-linear iterative partial least squares (NIPALS) approach[J]. Perspectives in Probability and Statistics, 1975:p.117-142.
    [26]Darlington R. B., Weinberg S. L., Walberg H. J., Canonical variate analysis and related techniques[J]. Review of Educational Research,1973.43(4):p. 433-454.
    [27]Herault J., Jutten C, Blind separation of sources, Part Ⅰ:An adaptive algorithm based on neuromimetic architecture[J]. Signal Processing,1991.24: p.1-10.
    [28]Herault J., Jutten C., Comon P., Blind separation of sources, Part Ⅱ:Problem statement[J]. Signal Processing,1991.24:p.11-20.
    [29]Hyvarinen A., Oja E., A fast fixed-point algorithm for independent component analysis[J]. Neural Computation,1997.9:p.1483-1492.
    [30]Hyvarinen A., Karhunen J., Independent component analysis[M],2001:John Wiley & Sons.
    [31]Hyvarinen A., Fast and robust fixed-point algorithms for independent component analysis[J]. IEEE Transactions on neural networks,1999.8(3):p. 622-634.
    [32]Dong D., McAvoy T. J., Nonlinear principal component analysis-based on principal curves and neural networks[J]. Computers and Chemical Engineering,1996.20(1):p.65-78.
    [33]Hecht-Nielsen R., Application of counter propagation networks[J]. Neural Networks,1988.1.
    [34]McCulloch W., Pitts W., A logical calculus of the ideas immanent in nervous activity[J]. Bulletin of Mathematical Biophysics,1943.7:p.115-133.
    [35]Rosenblatt F., The perceptron-a perceiving and recognizing automaton[R], Cornell Aeronautical Laboratory,1957
    [36]Rosenblatt F., The perceptron:A probabilistic model for information storage and organization in the brain[J].Psychological Review,1958.65(6):p. 396-408.
    [37]Minsky M., Papert S., Perceptrons[M],1969, Cambridge:MIT Press.
    [38]Rumelhart D. E., McClelland J. L., Parallel distributed processing: exploretions in the microstructure of cognition[M],1986, Cambridge:MIT Press.
    [39]Broomhead D. S., Lowe D., Multivariate functional interpolation and adaptive networks[J]. Complex Systems,1988(2):p.321-355.
    [40]Huang G. B., Zhu Q. Y., Siew C. K. Extreme learning machine:a new learning scheme of feedforward neural networks[C], International Joint Conference on Neural Networks,2004, Budapest, Hungary.
    [41]Kohonen T., Self-organized formation of topologically correct feature maps[J]. Biological Cybernetics,1982.43:p.59-69.
    [42]史峰,王小川,郁磊,李洋,Matlab神经网络30个案例分析[M],2010:北京航空航天大学出版社.
    [43]阎平凡,张长水,人工神经网络与模拟进化计算[M],2000,北京:清华大学出版社.
    [44]Scholkopf B., Smola A., Muller K. R., Nonlinear component analysis as a kernel eigenvalue problem[J].Neural Computation,1998.10(5):p. 1299-1319.
    [45]Liang Y. H., Wang Z. Y., Gu S., Xu X. W., Cao X. Y., Pedestrian detection using KPCA and FLD algorithms[M].2007 IEEE International Conference on Automation and Logistics,2007.1572-1575.
    [46]Yu P. F., Lu J. G., Wu Y. L., Sun Y. X., Soft sensor based on kernel principal component analysis and radial basis function neural network for microbiological fermentation[M]. WCICA 2006:Sixth World Congress on Intelligent Control and Automation, Vols 1-12, Conference Proceedings,2006. 4851-4855.
    [47]Suykens J. A. K., Vandewalle J., Least squares support vector machine classifiers[J]. Neural Processing Letters,1999.9:p.293-300.
    [48]Wu D. H., A novel feature extraction method and its relationships with PCA and KPCA[M]. Proceedings of the 2008 Chinese Conference on Pattern Recognition,2008.50-55.
    [49]Rosipal R., Trejo L. J., Kernel partial least squares regression in reproducing kernel Hilbert space[J].Journal of Machine Learning Research,2002.2(2):p. 97-123.
    [50]Li Y. Z., Ming F., Yang J. Y., Pan R. L., An efficient method of nonlinear feature extraction based on SVM[M].2006 9th International Conference on Control, Automation, Robotics and Vision, Vols 1-5,2006.1420-1425.
    [51]张军平,王珏,主曲线研究:综述[R],中国科学院自动化研究所,2002
    [52]Hastie T., Principal curves and surfaces[R], Laboratory for computational Statistics Stanford University, Dept. of Statistics,1984
    [53]Hastie T., Stuetzle W., Principal curves[J]. Journal of the American Statistical Association,1989.84(406):p.502-516.
    [54]De'ath G., Principal curves:a new technique for indirect and direct gradient analysis[J]. Ecology,1999.80(7):p.2237-2253.
    [55]Seung H. S., Lee D. D., The manifold ways of perception[J]. Science,2000.12: p.2268-2269.
    [56]McFarland J. L., Fuchs A. F., Discharge patterns in nucleus prepositus hypoglossi and adjacent medial vestibular nucleus during horizontal eye movement in behaving macaques[J]. Journal of Neurophysiology,1992.68:p. 319.
    [57]Taube J. S., Head direction cells and the neurophysiological basis for a sense of direction[J].Prog. Neurobiol,1998.55:p.225.
    [58]Banfield J. D., Raftery A. E., Ice floe identification in satellite images using mathematical morphology and clustering about principal curves[J]. Journal of the American Statistical Association,1992.87(417):p.7-16.
    [59]Kegl B., Krzyzak A., A polygonal line algorithm for constructing principal curves[M]. Neural Information Processing Systems,1998:MIT Press. 501-507.
    [60]Kegl B., Krzyzak A., Learning and design of principal curves[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000.22(3):p. 281-297.
    [61]Reinhard K., Niranjan M., Subspace models for speech transitions using principal curves[J]. Proceedings of Institute of Acoustics,1998.20(6):p. 53-60.
    [62]Reinhard K., Niranjan M., Parametric subspace modeling of speech transitions[J]. Speech Communication,1999.27(1):p.19-42.
    [63]Hermann T., Meinicke P., Ritter H. Principal curve sonification[C], Proceedings of International Conference on Auditory Display,2000.
    [64]Wilson D. J. H., Irwin G. W., Lightbody G., RBF principal manifolds for process monitoring[J]. IEEE Transactions of Neural Networks,1999.10(6): p.1424-1434.
    [65]Tibshirani R., Principal curves revisited[J]. Statistics and Computation,1992. 2:p.183-190.
    [66]Kegl B., Principal curves:learning, design, and applications, University, 1999.
    [67]Verbeek J. J., Vlassis N., Krose B., A k-segments algorithm for finding principal curves[J]. Pattern Recognition Letters 2002.23(8):p.1009-1017.
    [68]杨敏,基于数据驱动的非线性建模方法的研究[D],浙江大学,硕士学位论文,2011
    [69]Aizerman M., Braverman E., Rozonoer L., Theoretical foundations of the potential function method in pattern recognition learning[J]. Automation and Remote Control,1964(25):p.821-837.
    [70]高翔,独立分量分析与盲源分离在流程工业过程监控中的应用研究[D],江南大学,硕士学位论文,2008
    [71]Kassidas A., Taylor P. A., MacGregor J. F., Off-line diagnosis of deterministic faults in continuous dynamic multivariable processes using speech recognition methods[J]. Journal of Process Control,1998.8(5-6):p. 381-393.
    [72]Lin J., Qu L. S., Feature extraction based on Morlet wavelet and its application for mechanical fault diagnosis[J]. Journal of Sound and Vibration, 2000.234(1):p.135-148.
    [73]孙颖楷,王光学,基于PCA预处理的图像特征属性约简[J].中国图象图形学报,2007.12(10):p.1897-1900.
    [74]王培良,葛志强,宋执环,基于迭代多模型ICA-SVDD的间歇过程故障在线监测[J].仪器仪表学报,2009.30(7):p.1347-1352.
    [75]张超,陈建军,郭迅,基于第2代小波和EMMD的转子系统复合故障诊断[J].振动、测试与诊断,2011.31(1):p.98-103.
    [76]Qin S. J., Statistical process monitoring:basics and beyond[J]. Journal of Chemometrics,2003.17(8-9):p.480-502.
    [77]Yoon S., MacGregor J. F., Fault diagnosis with multivariate statistical model part Ⅰ:Using steady state fault signatures[J]. Journal of Process Control,2001. 11(4):p.387-400.
    [78]张杰,阳宪惠,多变量统计过程控制[M],2000,北京:化学工业出版社.
    [79]Turnip A., Hong K. S., Classifying mental activities from EEG-P300 signals using adaptive neural networks[J]. International Journal of Innovative Computing Information and Control,2012.8(9):p.6429-6443.
    [80]Yuan H. Y., Chen G. J., Xie Y. L., Feature evaluation and extraction based on neural network in analog circuit fault diagnosis[J]. Journal of Systems Engineering and Electronics,2007.18(2):p.434-437.
    [81]马笑潇,黄席樾,柴毅,基于SVM的二叉树多类分类算法及其在故障诊断中的应用[J].控制与决策,2003.18(3):p.272-276,284.
    [82]翟永杰,韩璞,王东风,王国鹏,基于损失函数的SVM算法及其在轻微故障诊断中的应用[J].中国电机工程学报,2003.23(9):p.198-203.
    [83]Hoskins J. C., Kaliyun K. M., Himmelblau D. M., Fault diagnosis in complex chemical plants using artificial neural networks[J]. AIChE Journal,1991. 37(1):p.137-141.
    [84]余志雄,周创兵,李俊平,史超,基于v-SVR算法的边缘稳定性预测[J].岩石力学与工程学报,2005.24(14):p.2468-2475.
    [85]廖士中,丁立中,贾磊,支持向量回归多参数的同时调节[J].南京大学学报(自然科学版),2009.45(5):p.585-592.
    [86]Huang C. L., Wang C. J., A GA-based feature selection and parameters optimization for support vector machines[J].Expert Systems with Applications,2006.31(2):p.231-240.
    [87]Huang R. Q., Xi L. F., Li X. L., Liu C. R., Qiu H., Lee J., Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods[J]. Mechanical Systems and Signal Processing,2007.21(1):p.193-207.
    [88]Bhat N. V., Minderman P. A., McAvoy T., Wang N. S., Modeling chemical process systems via neural computation[J]. IEEE Control Systems Magazine, 1990.10(3):p.24-30.
    [89]阎威武,朱宏栋,邵惠鹤,基于最小二乘支持向量机的软测量建模[J].系统仿真学报,2003.15(10):p.1494-1496.
    [90]Shewhart W. A., Economic control of quality of manufactured product [M], 1931, New York:Van Nostrand.
    [91]毛先柏,李昌禧,PCA-SVM在模拟电路故障诊断中的应用[J].计算机测量与控制,2009.17(7):p.1250-1252.
    [92]孙卫祥,陈进,吴立伟,伍星,基于PCA与决策树的转子故障诊断[J].振动与冲击,2007.26(3):p.72-74.
    [93]Tipping M. E., Bishop C. M., Probabilistic principal component analysis[J]. Journal of the Royal Statistical Society Series B-Statistical Methodology,1999. 61(3):p.611-622.
    [94]陆慧娟,张金伟,马小平,郑文斌,极限学习机集成在肿瘤分类中的应用[J].数学的实践与认识,2012.42(17):p.148-154.
    [95]赵立杰,袁德成,柴天佑,基于多分类概率极限学习机的污水处理过程操作工况识别[J].化工学报,2012.63(10):p.3173-3182.
    [96]Huynh H. T., Won Y. W., Kim J. J., An improvement of extreme learning machine for compact single-hidden-layer feedforward neural networks[J]. International Journal of Neural Systems,2008.18(5):p.433-441.
    [97]周江嫚,黄清秀,彭敏放,杨超,董娜,基于差分进化优化ELM的模拟电路故障诊断[J].计算机工程与应用,2012:p.1-6.
    [98]高相铭,刘付斌,杨世凤,基于极限学习机的供水管网故障智能诊断方法[J].计算机工程与设计,2013.34(8):p.2887-2891.
    [99]崔力云,基于EMD样本熵和极限学习机的输电线路故障类型识别[J].广西电力,2012.35(2):p.10-13,54.
    [100]Huang G. B., Zhu Q. Y., Siew C. K., Extreme learning machine:theory and applications[J]. Neurocomputing,2006.70:p.489-501.
    [101]Downs J. J., Vogel E. F., A plant-wide industrial process control problem[J]. Computers & Chemical Engineering,1993.17(3):p.245-255.
    [102]石向荣,梁军,叶鲁彬,胡斌.一种基于主元分析和贝叶斯分类的故障诊断方法[C], Proceedings of the 8th World Congress on Intelligent Control and Automation,2010, Jinan, China.
    [103]葛哲学,孙志强,神经网络理论与Matlab R2007[M],2008,北京:电子工业出版社.
    [104]尚长军,陈曦,钱积新,基于PCA-BP神经网络的精馏塔产品组成软测量模型[J].工业仪表与自动化装置,2003(4):p.33-36.
    [105]杨敏,胡斌,费正顺,郑平友,梁军,基于DPCA-RBF网络的工业流化床乙烯气相聚合过程的软测量研究[J].仪器仪表学报,2010.31(3):p.481-487.
    [106]Li J. B., Liu X. G., Melt index prediction by RBF neural network optimized with an adaptive new ant colony optimization algorithm [J]. Journal of Applied Polymer Science,2011.119(5):p.3093-3100.
    [107]刘苏苏,孙立民,支持向量机与RBF神经网络回归性能比较研究[J].计算机工程与设计,2011.32(12):p.4202-4205.
    [108]Wang Y. L., Hu Y. D., Li G. D., Wei Q. S., Application of high-order MCI method to predict aqueous solubility of aliphatic alcohols[J]. Asian Journal of Chemistry,2007.19(6):p.4512-4522.
    [109]王华忠,俞金寿,基于混合SVR-PLS方法的丙烯腈收率软测量建模[J].控制与决策,2005.20(5):p.549-552.
    [110]Cao L. J., Tay F. E. H., Support vector machine with adaptive parameters in financial time series forecasting[J].IEEE Transactions on Neural Networks, 2003.14(6):p.1506-1518.
    [111]韦红旗,牛中敏,江文豪,叶亚兰,自适应遗传优化的最小二乘支持向量回归机在煤粉着火温度建模中的应用[J].燃烧科学与技术,2011.17(3):p.191-195.
    [112]Cortes C., Vapnik V., Support-vector networks[J]. Machine Learning,1995. 1995(20).
    [113]Vapnik Vladimir N., The nature of statistical learning theory[M],1995, Berlin: Springer-Verlag.
    [114]Boser B. E., Guyon I. M., Vapnik V. A training algorithm for optimal margin classifiers[C], Proceeding of the 5th Annual ACM Workshop on COLT,1992, Pittsburgh.
    [115]Smola A., Scholkopf B., A tutorial on support vector regression[R], University of London,1998
    [116]Drucker H., Burges C. J. C., Kaufman L., Smola A., Vapnik V., Support vector regression machines[M]. Advanced in Neural Information Processing Systems,1996.151-161.
    [117]Hsu C. W., Chang C. C., Lin C. J., A practical guide to support vector classification[R], National Taiwan University,2008
    [118]Tay F. E. H., Cao L. J., Application of support vector machines in financial time series for ecasting[J].Omega,2001.29:p.309-317.
    [119]Kennedy J., Eberhart R. Particle swarm optimization[C], Proceedings of IEEE International Conference on Neural Networks,1995, Perth, Australia.
    [120]Shi Y. H., Eberhart R. A modified particle swarm optimizer[C], Proceedings of IEEE International Conference on Evolutionary Computation,1998, San Diego.
    [121]Clerk M., Kennedy J., The particle swarm-explosion, stability, and convergence in a multidimensional complex space[J]. IEEE Transactions evolutionary computation,2002.6(1):p.58-73.
    [122]McAuley K. B., MacGregor J. F., Optimal grade transitions in a gas phase polyethylene reactor[J]. AIChE Journal,1992.38(10):p.1564-1576.
    [123]史峰,王辉,郁磊,胡斐,Matlab智能算法30个案例分析[M],2010,北京:北京航空航天大学出版社.
    [124]Qin S. J., McAvoy T. J., Nonlinear PLS modeling using neural networks[J]. Computers & Chemical Engineering,1992.16(4):p.379-391.
    [125]梁军,工业流化床乙烯气相聚合中的在线测量与模型分析(Ⅰ)[J].传感技术学报,2003.16(3):p.242-248.
    [126]梁军,工业流化床乙烯气相聚合中的在线测量与模型分析(Ⅱ)[J].传感技术学报,2003.16(3):p.249-255.
    [127]梁军,汪小勇,王文庆,基于神经网络PLS方法的软测量建模研究[J].浙江大学学报(工学版),2004.38(6):p.676-681.
    [128]Wang H. Q., Song Z. H., Fault detection behavior and performance analysis of principal component analysis based process monitoring methods[J]. Industrial and Engineering Chemistry Research,2002.41(10):p.2455-2464.
    [129]Kramer M. A., Nonlinear principal component analysis using autoassociative neural networks[J]. AIChE Journal 1991.37(2):p.233-243.
    [130]Lee J. M., Yoo C. K., Lee I. B., Fault detection of batch processes using multiway kernel principal component analysis[J]. Computers and Chemical Engineering,2004.28(9):p.1837-1847.
    [131]Maulud A., Wang D., Romagnoli J. A., A multi-scale orthogonal nonlinear strategy for multi-variate statistical process monitoring[J]. Journal of Process Control,2006.16(7):p.671-683.
    [132]Bakshi B. R., Multiscale PCA with application to multivariate statistical process monitoring[J]. AIChE Journal,1998.44(7).
    [133]Ganesan R., Das T. K., Venkataraman V., Wavelet-based multiscale statistical process monitoring:A literature review[J]. HE Transactions,2004.36(9).
    [134]Tan S. F., Michael L. M., Reducing data dimensionality through optimizing neural network inputs[J]. AIChE Journal,1995.41(6):p.1471-1480.
    [135]Jia F., Martin E. B., Morris A. J., Non-linear principal component analysis for process fault detection[J]. Computers and Chemical Engineering,1998.22:p. 851-854.
    [136]张晨,韩月秋,陶然,基于改进鲁棒自联想神经网络的传感器故障诊断新方法[J].仪器仪表学报,1999.20(2):p.170-172.
    [137]Zhao S., Xu Y., Multivariate statistical process monitoring using robust nonlinear principal component analysis[J]. Tsinghua Science & Technology, 2005.10(5):p.582-586.
    [138]Harkat M. F., Mourot G., Ragot J., Nonlinear PCA combining principal curves and RBF-networks for process monitoring[J]. WeA,2003.14(3):p. 1956-1961.
    [139]Nomikos P., MacGregor J. F., Multivariate SPC charts for monitoring batch processes[J]. Technometrics,1995.37(1).
    [140]Liu Y. M., Liang J., Hu B., Ye L. B., Shi X. R., A multivariable statistical process monitoring method based on multiscale analysis[J].CIESC Journal, 2009.60(4):p.952-958.
    [141]Misra M., Yue H. H., Qin S. J., Ling C., Multivariate process monitoring and fault diagnosis by multi-scale PCA[J]. Computers and Chemical Engineering, 2002.26:p.1281-1293.
    [142]Marlin T. E., Process control[M],1995, New York:McGraw-Hill.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700