挤压变形力的数值分析及模拟方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属挤压已成为塑性成形领域中最重要的方法之一,其理论研究与技术开发正面临着一个重要的崭新的发展时期,基础研究与工艺创新紧密结合是推动金属挤压成形进一步发展的关键。挤压制品的组织、性能、表面质量、外形尺寸和形状精度、成材率、挤压模具的优化设计、挤压生产效率等,均与金属在挤压过程中的流动有着密切的关系。建立可靠的数学-力学模型来控制金属在挤压变形过程中的流动行为具有极为重要的理论意义,在此基础上寻求有效的挤压工艺优化设计途径是发展挤压技术、提升挤压制品质量的核心突破点。
     挤压过程中金属流动行为的研究方法,可以分为解析法和实验法两大类。这些方法各自具有其他方法所不具备的特点,适用于不同的具体研究对象,但同时又都存在明显的局限性,并没有在工程实践中得到广泛的应用。长期以来,工艺设计过程中相关参数的确定主要以缺乏理论依据的经验公式为主,这成为制约挤压技术发展的主要瓶颈之一。究其原因,一是缺乏具有理论依据的数学-力学模型,将挤压过程中的变形物理参数与工艺设计几何参数有机联系起来,从而导致设计计算偏差;二是数值模拟技术在金属体积成型领域的应用水平仍不成熟,无法有效指导生产实践。本文采用理论模型与数值模拟相结合的方法针对锥形模正挤压、杯形件反挤压及镦挤复合变形过程展开研究,用具有理论依据的计算方法来代替经验公式,寻求变形物理参数和模具几何参数相互影响的本质规律。
     基于经典塑性理论,应用数值计算方法,研究了挤压过程中变形物理参数与模具几何参数的解析关系,构建了具有塑性成型理论依据的数值分析模型。首先通过精确作图法得到不同摩擦边界条件下、不同变形程度的杯形件反挤压及棒材锥形模正挤压过程的多种滑移线场模型,并以该塑性力学模型为载体,求解出应力场及变形力等物理参数关于滑移线场参数的函数关系。综合应用曲线拟合、求解微分方程、迭代插值及函数求极值等数值分析方法建立了滑移线场参数与模具尺寸、挤压比等关键几何参数的解析关系。在滑移线解的基础上,用几何参数代替滑移线场参数,构建了应力场、单位变形力等变形物理参数关于几何参数的数学模型。基于模块化思想,应用简单边界条件模型通过滑移线场叠加方法建立了复杂边界条件的镦挤复合变形模型。通过纯铝挤压实验验证了杯形件反挤压数值分析模型的可靠性,研究了锥形模正挤压过程中模锥角对于变形过程的影响规律。
     论述了Lagrange网格与Euler网格分别在固体与流体力学行为模拟中的应用特点,综合分析了有限元法与有限体积法在金属大变形、热变形数值模拟领域的局限性及优越性。针对棒材锥形模正挤压、杯形件反挤压进行有限元与有限体积对比模拟,分析了各物理场量对于变形过程的影响规律,研究了有限元软件DEFORM与有限体积软件MSC.SUPERFORGE在体积成形领域的适用范围。应用MSC.SUPERFORGE软件针对镦挤复合成形过程进行有限体积模拟,根据模拟结果调整工艺参数,并最终实现了工艺优化设计。
     挤压过程的数值分析模型可以避免经验公式在工艺设计中的盲目性,以该模型为目标函数,可实现相关工艺参数的优化设计。符合实际变形规律的数值模拟能方法够正确反映变形物理参数与几何参数的相互影响规律,实现计算机辅助优化设计。
Extrusion is one the most important method of metal plastic forming process. The theory research and technology development of it are faced with an important new stage of development. The combination of basic theory research and technological innovation will promote the further development of metal extrusion. There are many technological factors are closely related to the material flow in extrusion, such as the product structure, properties, surface quality, dimension and shape accuracy, finished product rate, the optimization of extrusion die design and extrusion efficiency etc. It is of an extremely important theoretical significance to establish a reliable mathematical-mechanical model to control the material flow behavior in the extrusion process. On this basis, the rational and effective optimum design methods of extrusion process are the key sally port for the development of extrusion technology and improvement the quality of extruded products.
     There are two kinds of main research methods about the rule of material flow in extrusion process, one is the numerical analysis method, the other is the experimental method. Those methods have its independent characteristic and can be used in specific research object. However, all of those methods have not been used widely in engineer practice for its obvious limitation. For a long time, the processing parameters in technological design calculated with empirical formula. One of reason is lack of mathematical-mechanical models with plastic theoretical basis, which can connect the physical parameters and geometrical parameters in extrusion process, the other is numerical simulation technology can not be used correctly in metal bulk forming and can not effectively guide the productive practice. In this paper, backward extrusion with cup-shaped mold, forward extrusion with cone-shaped mold and upsetting-extruding composite deformation process are researched with numerical analysis method and numerical simulation. In this way, the elemental regularity between physical parameters and geometrical parameters can be researched with numerical formula in place of empirical formula.
     The analytic relationship between physical parameters and geometrical parameters was researched with numerical analysis method based on classical plastic theory. The numerical analysis model with plastic theory background was established. At first, with precise graphing method, the slip line field was researched for varying degrees deformation of backward extrusion with cup-shaped mold and forward extrusion with cone-shaped mold in different friction boundary conditions. Then, the function equation about physical parameters (deforming force, stress etc) and slip line field parameters was researched. The analytical relations about slip-line field parameters and key geometric parameters, such as die size, extrusion ratio etc, were established with curve fitting, differential equation, iterated interpolation method and extremum method. Based on slip-line solution, the numerical analysis model between physical parameters and geometrical parameters (die dimension, extrusion ratio etc) was researched. Based on modular theory, analytic model of upsetting-extruding composite deformation with complex boundary conditions were researched with superimposed slip-line field method. The numerical analysis model of backward extrusion with cup-shaped mold process was verified with experiment finaly. The influence regularity of die cone angle for the process of deformation in forward extrusion with cone-shaped mold process was investigated.
     The application of the Lagrange mesh in solid behavior and Euler mesh in fluid behavior was discussed respectively. Limitations and advantages of the finite element method and finite volume method for numerical simulation of large metal deformation were investigated. Comparative simulation for backward extrusion process with cup-shaped and forward extrusion process with cone-shaped mold was studied with FEM and FVM. The influence of physical quantity for the deformation was studied at the same time. The application method of FEM with DEFORM and FVM with MSC.SUPERFORGE was also researched. Upsetting-extruding composite deformation process was simulated with MSC.SUPERFORGE and the technological parameters were adjusted based on the result of simulation. In this way, the optimum design can be realized.
     Blindness of empirical formula in the technological design can be avoided with numerical analysis model. As object function, it can be used for Optimum design of extrusion. Realistic numerical simulation of deformation can be used to research the influence law between the physical parameters and geometric parameters and the realization of computer-aided optimal design.
引文
[1](英)斯莱特RAC.王仲仁等译.工程塑性理论及其在金属成形中的应用[M].北京:机械工业出版社,1983.
    [2]林治平.锻压变形力的工程计算[M].北京:机械工业出版社,1986.
    [3]Hill R, Tupper SJ. A new theory of plastic deformation in wire drawing[J]. Journal of the Iron and Steel Institute.1948,159(353).
    [4]Shield RT. On the plastic flow of metals under conditions of axial symmetry[J]. Proceedings of the Royal Society.A 1955,267(12).
    [5]Lippman H. Principal-line theory of axially symmetric plastic deformation [J]. Journal of the Mechanics and Physics of Solids,1962,111(10).
    [6]Johnson W, kudo H.The mechanics of metal extrusion [M] . Manchester: Manchester University Press,1962.
    [7]林治平,谢水生,程军等.金属塑性变形的实验方法[M].北京:冶金工业出版社,2002.
    [8]黄克坚,包忠诩,陈泽中等.关于挤压变形规律理论研究方法的一些探讨[J].塑性工程学报,2003,10(4):45-51.
    [9]林治平.上限元法在塑性加工工艺中的应用[M].北京:中国铁道出版社,1991
    [10]王祖唐,关廷栋等.金属塑性成形理论[M].北京:机械工业出版社,1989.
    [11]赵德文,刘相华,王国栋等.滑移线解与最小上限解一致的证明[J].东北大学学报,1994,4(2):189-194.
    [12]许其亮,史文华.上限元法求解轴对称挤压变形力[J].金属学报,1985,(02):115-123.
    [13]王仲仁等.塑性加工力学基础[M].北京:国防工业出版社,1989.
    [14]G.Samolyk, Z.Pater. Application of the slip-line field method to the analysis of the die cavity filling[J] Journal of Material Processing Technology,153-154 (2004) 729-735.
    [15]M.H. Parsa, P.H. Matin, M.M. Mashhadi.Improvement of initial blank shape for intricate products using slip line field [J]. Journal of Materials Processing Technology,145 (2004) 21-26.
    [16]N.R. Chitkara, M.A. Butt.N. R. Chitkara and M. A. Butt. Axi-symmetric rod extrusion through smooth conical, cosine and square dies slip-line fields solutions using numerical methods[J]. International Journal of Mechanical Sciences,41 (1999) 1191-1215.
    [17]N. Fang, I.S. Jawahir, P.L.B. Oxley.A universal slip-line model with non-unique solutions for machining with curled chip formation and a restricted contact tool[J]. International Journal of Mechanical Sciences,43 (2001) 557-580.
    [18]G.M. Stoica, D.E. Fielden, R. McDaniels, Y. Liu, B. Huang,P.K. Liaw, C. Xu, T.G. Langdon. An analysis of the shear zone for metals deformed by equal-channel angular processing[J]. Materials Science and Engineering,410-411 (2005) 239-242.
    [19]J.P. Wang, The UBST approach to the stress analysis of plane-strain upsetting with a newly constructed model of slip-line field[J]. J. Mater. Process. Technol.58 (1996) 267-273.
    [20]J.P. Wang. A new approach to visioplasticity in plane-strain extrusion[J]. Journal of Materials Processing Technology,79 (1998) 144-154.
    [21]S.K. Biswas, M. Ramesh, Study of forging design using slip-line fields[J]. Journal of Materials Processing Technology,25 (1991) 1-13.
    [22]N.S. Das, B.S. Chawla, C.K. Biswas.An analysis of strain in chip breaking using slip-line field theory with adhesion friction at chip/tool interface[J]. Journal of Materials Processing Technology,170 (2005) 509-515.
    [23]J.E.艾金(美).有限元法的应用与实现[M].北京:科学出版社,1992.
    [24]王瑁成,邵敏:有限单元法基本理论和数值方法[M].北京:清华大学出版社,1997.
    [25]谢水生,王祖唐.金属塑性成形工步的有限元数值模拟[M].北京:冶金工业出版社,1997.
    [26]肖景容,李尚健.塑性成形模拟理论[M].武汉:华中理工大学出版社,1994.
    [27]赵国群.金属体积塑性成形过程数值模拟技术与仿真系统[J].金属成形工艺,2003,21(5):5-8.
    [28]Yang D Y, Lee C M. Finite element analysis of steady-state three dimensional estrusion of section through curved dies [J]. Int J. Mach. Sc.1989,31(2):145-165.
    [29]Shin H W, Kim D W, Kim N K. A simplified three dimensional finite-element analysis of the non asymmetric extrusion processes [J]. Int J Mater. Pro. Tech., 1993,38:567-587.
    [30]Bathe K J. Finite element procedures in engineering analysis [M]. Englewood Clidds:1992.
    [31]Park Y B, Yoon J H. Finite element analysis of twisted sections using recurrent boundary condition [J]. Int. J Mech Sci,1994,36(2):137-148.
    [32]李大永,王洪俊,罗超等.薄壁铝型材挤压有限体积分步模拟[J].上海交通大 学学报,2005,(1):7-9.
    [33]周飞,苏丹,彭颖红,阮雪榆.有限体积法模拟铝型材挤压成形过程[J].中国有色金属学报,2003,13(1):65-70.
    [34]于沪平,彭颖红,阮雪榆.平面分流焊合模成型过程的数值模拟[J].锻压技术,1999,24(5):9-11.
    [35]王匀.扁挤压筒强度分析与设计方法研究[D].燕山大学博士学位论文,2003.
    [36]闫洪.工艺参数对铝型材挤压变形规律的影响[J].中国有色金属学报,2002,12(6):1154-1161.
    [37]闫洪.角铝型材挤压过程的数值模拟[J].中国有色金属学报,2001,11(2):202-205.
    [38]周喆,李明瑞,黄文彬等.压力加工数值模拟中的体积改变问题[J].机械工程学报,2002,38(2):61-64.
    [39]彭颖红.金属塑性成形仿真技术[M].上海:上海交通大学出版社,1999.
    [40]Ferziger J H, Peric M. Computational Methods for Fluid Dynamics [M]. Berlin: Springer-Verlag,2002:373-381.
    [41]E D Vries, Peiran Ding. Simulation of 3D forging and extrusion problems using a FVM[C]. Tokyo, Japan, Proceeding of 17th MSC JAPAN Users Conference. Japan.1999, (1):155-161.
    [42]P.R. Ding, D.Y. Ju, T. Inoue, Numerical simulation of forging and subsequent heat treatment of a rod by a finite volume method [J]. Acta Metall, Sinica (English Letts.),13 (1) (2000) 270-280.
    [43]P.R. Ding, T. Inoue, S. Imatani, Forging process simulation incorporating strain-induced phase transformation by the finite volume method [M]. Simulation of Materials Processing:Theory, Methods and Applications, Swets& Zeitlinger, Lisse,2001.
    [44]Mehtaa B V, Al-Akeria Ibrahim, Gunasekeraa Jay S, et al.3D flow analysis inside shear and streamlined extrusion dies for feeder plate design [J]. Journal of Materials Processing Technology (S0924-0136),2001,113(1):93-97.
    [45]S.H. Kim, S.W. Chung, S. Padmanaban, Investigation of lubrication effect on the backward extrusion of thin-walled rectangular aluminum case with large aspect ratio[J]. Journal of Materials Processing Technology,180 (2006) 185-192.
    [46]黄克坚,包忠诩,陈泽中,等.有限体积法在挤压模具设计中的运用[J].稀有金属材料与工程,2004,33(8):855-857.
    [47]黄克坚,包忠诩,周天瑞.有限体积数值模拟技术在型材挤压变形规律研究中的运用[J].轻合金加工技术,2003,31(4):29-31.
    [48]黄克坚,包忠诩.有限体积数值模拟技术在宽展挤压模具设计中的应用[J].塑性工程学报,2005,12(6):34-37.
    [49]黄光法,林高用.大挤压比铝型材挤压过程中的数值模拟[J].中国有色金属学报,2006,16(5):887-893.
    [50]Williams A J, Croft T N, Cross M. Computational modelling of metal extrusion and forging process [J]. Journal of Materials Processing Technology (S0924-0136),2002,125-126(2):573-582.
    [51]B.K. Lee, H.H.Kwon, H.Y. Cho,Astudy on the automated process planning system for cold forging of non-axisymmetric parts using FVM simulation[J]. J. Mater. Process. Technol,130-131 (2002) 524-531.
    [52]M. Sedighi, S. Tokmechi, Using FVM in modeling forging processes of complex aluminum parts[C].Proceedings of the International Conference of Metal Fabrication and Welding, Nottingham, UK,2003:165-173.
    [53]M. Sedighi, S.Tokmechi.A new approach to preform design in forging process of complex parts [J] Journal of Materials Processing Technology,2007,43 (6)
    [54]周飞,苏丹.有限体积法模拟铝型材挤压成形过程[J].中国有色金属学报,2003,13(1):65-70.
    [55]周飞,苏丹,彭颖红.有限体积法仿真金属塑性成形的基本理论[J].上海交通大学学报,2002,36(7):915-919
    [56]周飞.铝型材挤压存限元/有限体积复合数值模拟技术研究[D].上海交通大学博士学位论文,2002.
    [57]罗超,李大永.薄壁铝型材挤压成形的一种有效模拟方法[J].上海交通大学学报,2004,38(7):1134-1137.
    [58]周飞,苏丹.铝型材挤压有限元和有限体积对比模拟[J].上海交通大学学报,2003,37(7):1072-1076.
    [59]陈泽中,娄臻亮.复杂铝型材挤压成形有限体积仿真[J].上海交通大学学报,2005,39(1):28-40.
    [60]李大永,王洪俊.薄壁铝型材挤压有限体积分步模拟[J].上海交通大学学报,2005,39(1):6-9.
    [61]W. Xianghong, Z. Guoqun, L. Yiguo, M. Xinwu, Numerical simulationand die structure optimization of an aluminum rectangular hollow pipe extrusion process [J]. Journal of Materials Processing Technology,435-436(2006) 266-274.
    [62]刘静安.铝型材挤压模具设计,制造,使用及维修[M].北京:冶金工业出版社,2002.
    [63]刘静安,谢建新.大型铝合金型材挤压技术与模具优化设计[M].北京:冶金工业出版社,2003.
    [64]刘静安,谢水生.铝合金材料的应用与技术开发[M].北京:冶金工业出版社,2004.
    [65]刘静安.铝合金大型挤压材生产现状及应用前景[J].轻合金加工技术,2005,33(4):8-11.
    [66]王华昌,陈钢,华林等.开式模锻变形过程理论分析与毛边尺寸的理论优化设计方法[J].中国机械工程,1996,7(1):78-80.
    [67]陈学文,王进,陈军,阮雪榆.热锻成形过程数值模拟与多目标设计优化技术研究[J].塑性工程学报,2005,12(4):17-21.
    [68]王广春.基于微观组织优化的锻造工艺预成形及毛坯形状优化设计[J].塑性工程学报,2007,14(2):69-72.
    [69]邹琳,夏巨谌.混合多目标遗传算法及其在热挤压模具型腔形状优化设计中的应用[J].中国机械工程,2006,17(21):2261-2265.
    [70]刘玉红,李付国;吴诗惇等.基于特征的锻件分类及特征有限元法[J].航空材料学报,2002,22(2):17-20.
    [71]刘静安.挤压模具技术的理论与实践[M].科学技术文献出版社,1989.
    [72]高军,赵国群,李丽华.铝合金型材挤压技术现状与发展趋势[J].汽车工艺与材料,2002(6):21-24.
    [73]陈泽中,包忠诩,柳和生等.铝型材挤压研究进展[J].金属成形工艺,2000,18(5):1-5.
    [74]吕炎主编.锻件缺陷分析与对策[M].北京:机械工业出版社,1999.
    [75]马庆贤,曹起骧,钟约先.大型锻件的模拟技术及内部质量控制研究[J].中国机械工程,1999,10(9),1021-1023.
    [76]苑世剑,李峰,刘钢.不同摩擦挤压过程中金属流动行为的变形分区研究[J].金属学报,2007,43(02):199-204
    [77]吴诗惇.挤压理论[M].北京:国防工业出版社,1994.
    [78]汪大年.金属塑性成形原理[M].北京:机械工业出版社,1986.
    [79]陈平昌,朱六妹.材料成形原理[M].武汉:机械工业出版社,2006.
    [80]谢建新,刘静安.金属挤压理论与技术[M].北京:冶金工业出版社,2001:94-105.
    [81]王仲仁等.关于滑移线场理论推广应用于轴对称变形问题的研究[C].第二 届全国塑性加工理论学术讨论会宣读论文,1981.
    [82]王祖唐.金属塑性加工工步的力学分析[M].北京:清华大学出版社,1987.
    [83]张连洪等.开式挤压成形工艺中的临界参数[J].天津大学学报,1997,30(5):672-675.
    [84]丁丽娟.数值计算方法[M].北京:北京理工大学出版社,1997.
    [85]J.M奥特加.数值分析.中译本[M].北京:高等教育出版社,1984.
    [86]刘德学,任淮辉,秦小琼、李旭东.锥形凸台成形的一种叠加力学模型[J].中国机械工程,2008.19(23):2873-2876.
    [87]周剑平编著.Origin实用教程(7.5版)[M].北京:机械工业出版社,1988.
    [88]王卫卫.金属与塑料成形设备[M].北京:机械工业出版社,1996.
    [89]宋玉泉,李正.函数模拟法求解锥形模超塑挤压的力学场[J].中国科学,1991,22(6):654-662.
    [90]陈森灿,叶庆荣编著.金属塑性加工原理[M].北京:清华大学出版社,1991.254-262.
    [91]俞汉青,陈金德编.金属塑性成形原理[M].北京:机械工业出版社,1999.
    [92]彭大暑.金属塑性加工原理[M].长沙:中南大学出版社,2004,2.
    [93]J. Lemaitre, J. L. Chaboche著,余天庆,吴玉树译.固体材料力学[M].北京:国防工业出版社,1997.
    [94]胡海萍,朱为昌.棒线材轧制的上限法解[J].钢铁研究学报,1997,9(6):16-19.
    [95]刘德学,袁子洲.锥形模正挤压变形力的一种解析解[J].锻压技术,2006,31(1):80-82.
    [96]陈胤,林涵,黎文锋等.开式冷挤压工艺参数的上限法分析与实验研究[J].福建工程学院学报,2009,7(3):253-255.
    [98]刘德学.锥形凸台成形的模型元方法研究[D].兰州理工大学硕士学位论文,2004.
    [99]S.Karabay,M.Yilmaz,M.Zeren.Investigation of extrusion ratio effect on mechanical behaviour of extruded alloy AA-6101 from the billets homogenized-rapid quenched and as-cast conditions[J]. Journal of Materials Processing Teehnology, 2005,160:138-147.
    [100]C.Tpas, J.Zhou, J.Duszczyk. A comparative on iso-speed extrusion and isothermal extrusion of 6061A1 alloy using 3D FEM simulation[J]. Materials Processing Technology,2001,114:145-153.
    [101]J.Lof, Y.Blokhuis. FEM simulation of the extrusion of complex thin-walled aluminium sections [J]. Journal of Materials Processing Technology,2002, 122:344-354.
    [102]G..Li,etal. Recent development and applications of three-dimensional finite element modeling in bulk forming Process [J] Journal of Materials Processing Technology,2001,113:40-45.
    [103]J.Zhou,etal.3D FEM simulation of the whole cycle of aluminum extrusion throughout the transient state and the steady state using the updated Lagrangian approach[J]. Journal of Materials Processing Technology,2003, vol.134:383-397
    [104]F.Chanda, J.zhou, J.Duszezyk. FEM analysis of aluminum extrusion through square and round dies [J]. Materials and Design,2000,21:323-335.
    [105]X.Duan, etal. Application of finite element method in the hot extrusion of aluminum alloys [J]. Materials Science and Engineering,2004,369:66-75.
    [106]Q.Li etal. Finite element investigations upon the influence of Pocket die designs on metal flow in aluminum extrusion (Part Ⅰ. Effect on Pocket angle and volume on metal flow[J]. Journal of Materials Processing Technology,2003, 135:189-196.
    [107]Q.Li, etal. Finite element investigations upon the influence of Pocket die designs on metal flow in aluminum extrusion Part Ⅱ. Effect on Poeket angle and volume on metal flow[J]. Journal of Materials Processing Technology,2003, 135:197-203.
    [108]N.Hao, etal. Numerical design of the die and for shape extrusion[J]. Journal of Materials Processing Technology,2000,101:81-84.
    [109]张雄等.任意拉格朗日-欧拉描述法研究进展[J].计算力学学报,1997,14(1):91-10.
    [110]孙剑,汤广发等.非规则网格有限体积法处理不规则边界的研究[J].湖南大学学报,2001,28(2):78-82.
    [111]林清安.Pro/ENGINEER 20001零件设计初级篇(上下)、中级篇(上下)、高级篇(上下)共六册[M].北京:北京大学出版社,2001
    [112]钟建琳.Pro/ENGINEER典型机械设计[M].北京:机械工业出版社,2002.
    [113]黎步松,周钢等.基于STL文件格式的实体分割算法研究与实现[J].华中科技大学学报,2002,30(3)40-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700