交流伺服系统控制参数自整定策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
交流伺服系统的性能与其控制参数密切相关,为了获得满意的伺服性能,必须对设置的控制参数进行整定。自整定不仅是完成伺服系统控制参数整定过程的高效途径,使其在运行前能快速得到满足要求的控制参数,而且使其能在运行过程中根据被控对象特征的变化对控制参数进行在线校正,使伺服系统的性能始终保持最优。进行交流伺服系统控制参数自整定策略研究,是提高伺服系统运行效率和性能的迫切需要,具有重要意义。
     本文以获取交流伺服系统控制参数自整定策略为目标,结合国家科技重大专项“全数字高性能通用驱动装置、交流伺服电机和主轴电机”、国家自然科学基金“数控机床高速高精运动的傅立叶频域控制方法研究”、“基于特征的数控机床运动控制参数自整定策略研究”等项目,主要完成了下述研究:
     1.对伺服系统各组成环节的传递函数进行分析,根据伺服系统的控制结构,分别建立了电流环、速度环、位置环三层控制环节对应的数学模型,利用建立的数学模型,对各层环节的控制参数整定过程进行了分析,获得伺服系统控制参数自整定策略研究的理论依据。
     2.分别对伺服系统控制参数自整定过程中的三个环节:伺服系统被控对象特征辨识、伺服系统控制性能评价方法、控制参数优化方法进行了研究,得到进行控制参数自整定研究的理论基础。
     3.提出了一组伺服系统控制参数离线自整定策略:使电机转子堵转,以q轴电流的阶跃响应过渡指标为目标函数,通过对电流环控制参数进行寻优完成电流环控制参数整定过程;对速度环误差信号进行傅立叶变换,利用误差信号的频谱特性及其他相关参数,对陷波滤波器参数进行整定;对速度环被控对象特征进行非线性重构,以重构结果作为速度环控制参数整定的参考模型,通过对参考模型的控制参数进行寻优完成速度环控制参数整定过程;利用位置环控制参数对跟踪误差的不同影响特性,先后对位置比例增益和位置前馈增益进行寻优,完成位置环控制参数整定过程。
     4.提出了一组伺服系统控制参数在线自校正策略:通过对速度环被控对象的近似模型进行在线辨识,利用辨识模型对速度环控制性能进行预测,根据预测结果对速度环控制参数进行校正;构造了两类位置环控制性能评价指标,根据位置环控制性能的在线评价结果,按二次型最优准则对位置环控制参数进行在线校正。
     5.构建了基于dSPACE的实时仿真平台,对提出的伺服系统控制参数自整定策略进行了快速原型验证和硬件在环仿真。在完成自整定策略的实时仿真验证后,以实际运行工况中的伺服系统为对象,进行了自整定策略的应用验证,证明了其准确性、稳定性及适应性。
The performance of AC servo system and the control parameters are closely related, so the setting parameters of the servo system must be tuned in order to obtain satisfactory servo performance. Self-tuning is an efficient way to complete the servo system control parameter tuning process to get the satisfactory control parameters quickly, furthermore, it can tune the control parameters on-line in accordance with the changes of the characteristics of the controlled object in the running so that the performance of the servo system can always maintain optimal. Therefore, it is urgent and significant to study the self-tuning strategy of AC servo system control parameters to improve the efficiency and performance of servo systems.
     This paper, aiming at obtaining the AC servo system control parameter self-tuning strategies, combined with the National Science and Technology major projects "an all-digital high-performance general-purpose drives, AC servo motor and spindle motor",National Natural Science Fund " Study on the control method of Fourier frequency domain of high speed, high precision motion of CNC machine tool " and "Study on control parameters self-tuning strategy of Feature-based CNC machine tool motion ", mainly completes the following studies:
     1.The transfer function of various components of the servo system was analyzed; corresponding mathematical models of the three control loop namely a current loop,velocity loop and position loop were established respectively according to the control structure of various sectors of the servo system; the process of control parameter tuning was analyzed by using the established mathematical model and theoretical basis for the research of control parameters self-tuning was obtained.
     2.The three main components of control parameters self-tuning were analyzed respectively:the controlled object feature recognition、system performance evaluation methods,control parameter optimization methods, and theoretical foundation for the research was achieved.
     3.A series of off-line auto-tuning strategies of servo control parameters were proposed:Auto-tuning of the control parameters of the current loop was realized by obtaining the optimum step response of the q axis current, employing the rotation optimization method; Fast Fourier changes was used to error signal of the speed closed-loop, the notch filter parameters were tuned by the amplitude-frequency characteristics of the error and other relevant parameters; The reconstruction results of nonlinear characteristics of the controlled object of speed loop were used as a reference model in the control parameter tuning process, by optimizing control parameters of the reference model to complete the auto-tuning of the speed loop control parameters; The impact of the error characteristics of position control parameters was used to optimize, successively and independently, the proportional gain and feed forward gain, completing the auto-tuning process of the position loop control parameters.
     4.A set of servo-system control parameter self-tuning strategies were put forward: The approximation model of the controlled object speed loop was identified on-line, using the identification model to predict the performance of the speed loop, and the speed-loop control parameter was tuned according to the predictions; two types of position loop control performance evaluation index were constructioned, according to the online performance evaluation results of position loop, position loop control parameters were tuned on-line according to the rules of the optimal quadratic.
     5.Real-time simulation platform was constructed based on dSPACE; the proposed servo system control parameter self-tuning strategy rapid prototype simulation and hardware in the loop simulation were carried out. After the real-time simulation experiments, using the servo system in actual operating conditions as objects to verify the application of the self-tuning strategy which was proved accurate, stable and adaptable.
引文
[1]郭庆鼎,孙宜标,王丽梅等.现代永磁电动机交流伺服系统(第一版)[M].北京:中国电力出版社,2006.
    [2]秦忆,周永鹏,邓忠华等.现代交流伺服系统(第一版)[M].武汉:华中理工大学出版社,1995.
    [3]郭庆鼎,王成元.交流伺服系统(第一版)[M].北京:机械工业出版社,1994.
    [4]刘胜,彭侠夫等.现代伺服系统设计(第一版)[M].哈尔滨:哈尔滨工程大学出版社,2001
    [5]肖英奎,尚涛,陈殿生编.伺服系统实用技术(第一版)[M].北京:化学工业出版社,2004.
    [6]王伟,张晶涛,柴天佑.PID参数先进整定方法综述[J].自动化学报,2000,26(3):1-5
    [7]夏红,赏星耀,宋建成.PID参数自整定方法综述[J].浙江科技学院学报,2003,15(4):236-240
    [8]施丽婷,黄筱调,杨勇.数控交流伺服系统三环整定及应用[J].南京工业大学学报(自然科学版),2006,28(4):36-40
    [9]郭宇婕,黄立培,邱阳.交流伺服系统的转动惯量辨识及调节器参数自整定[J].清华大学学报(自然科学版),2002,42(9):1180-1183
    [10]S. Kissling, Ph. Blanc, P. Myszkorowski and I. Vaclavika, Application of iterative feedback tuning (IFT) to speed and position control of a servo drive[J]. Control Engineering Practice,2009,17(7):834-840
    [11]Rajani K. Mudi, Chanchal Dey, Tsu-Tian Lee. An improved auto-tuning scheme for PI controllers[J]. ISA Transactions.47(1):45-52
    [12]C.R. Madhuranthakam, A. Elkamel, H. Budman.Optimal tuning of PID controllers for FOPTD, SOPTD and SOPTD with lead processes[J]. Chemical Engineering and Processing:Process Intensification.2008,47(2),251-264
    [13]R. Padma Sree, M. N. Srinivas, M. Chidambaram.A simple method of tuning PID controllers for stable and unstable FOPTD systems [J]. Computers and Chemical Engineering.2004,28(11):2201-2218
    [14]John E. Seem, Gaylon M, Decious. Fast automatic tuning of a feedback controller [P].US Patents:5568377,1996-11-22.
    [15]Ravi Lingarkar, LiLiu, Mohamed A.Elbestawi et al. Knowledge based adaptive computer control in manufacturing systems:a case study [J]. IEEE Transaction on systems man and cybernetics,1990,20(3):606-618
    [16]Masahiko Mori, Kazuo Yamazaki, Makoto Fujishima et al. A study on development of an open servo system for intelligent control of a CNC machine tool [J]. CIRP Annals-Manufacturing Technology.2001,50(1),247-250
    [17]Gunter Pritschowand, Jochen Bretschneider.A Self-Tuning Controller for Digitally Controlled Electromechanical Servo Drives in Machine Tools[J]. CIRP Annals Manufacturing Technology.1999,48(1):307-312
    [18]Mu-Tian Yan, Ming-Hung Lee, Ping-Lang Yen. Theory and application of a combined self-tuning adaptive control and cross-coupling control in a retrofit milling machine [J].Mechatronics.2005(15):193-211
    [19]T. Irisa, S. Takata, R. Ueda, T. Sonoda et al. A novel approach on a parameter self-tuning method in an ac servo system [J]. Automatica,1986,22(3):287-294
    [20]I.J.Gyongy, D.W.Clarke. On the automatic tuning and adaptation of PID controllers [J]. Control Engineering Practice.2006,14 (2):149-163
    [21]Wei-Der Chang, Rey-Chue Hwang, Jer-Guang Hsieh.A self-tuning PID control for a class of nonlinear systems based on the Lyapunov approach [J]. Journal of Process Control.2002,12(2):233-242
    [22]Kapil Mulcati, Michael Rasch, Babatunde A et al. An alternative structure for next generation regulatory controllers. Part Ⅱ:Stability analysis, tuning rules and experimental validation [J]. Journal of Process Control,2009,19(2):272-287
    [23]吕骎,吴云洁.基于混沌PID寻优的伺服系统控制方法研究[J].系统仿真学报,2006,18(增2):750-752
    [24]曾玉金,庞文尧,蒋静坪.复合智能控制在交流伺服系统中的应用[J].电工技术杂志,2004,:56-58,32
    [25]李先银,胡乾斌.最优PID控制算法在飞锯位置伺服系统中的应用[J].电气传动,2001,31(1):41-43
    [26]Gunter Pritschow, Jochen Bretschneider. A Self-Tuning Controller for Digitally Controlled Electromechanical Servo Drives in Machine Tools [J].Manufacturing Technology,1999,48(1):307-312
    [27]Lun-Yu Kuo, Jia-Yush Yen. Servo parameter tuning for a 5 axis machine center based upon GA rules [J]. International Journal of Machine Tools & Manufacture.2001,41(11):1535-1550
    [28]陈爽.PSO算法在数控机床交流伺服系统PID参数优化中的应用[J].微计算机信 息,2009,25(3-1):125-126,140
    [29]郭大庆,李晓,赵永进.基于改进PSO算法的PID参数自整定[J].计算机工程.2007,33(18):202-204
    [30]胡海兵,胡庆波,吕征宇.基于粒子群优化的PID伺服控制器设计[J].浙江大学学报工学版,2006,40(12):2144-2148
    [31]杨明,高扬,于泳等.基于迭代学习控制的交流伺服系统PI参数自整定[J].电机与控制学报,2005,9(6):588-592
    [32]朱卫华,杨向宇,永磁同步电动机调速系统新型模糊控制方法[J].微特电机,2005,33(6):29-31,34
    [33]周保,张安年,丁喆,余成林.基于复合控制的位置伺服系统控制方案[J].电机与控制应用,2008,35(3):21-23,28
    [34]盖荣丽,林浒,孙玉娥.参数自整定模糊滑模控制算法研究[J].组合机床与自动化加工技术,2009,6:16-19
    [35]陈益,薄煜明,邹卫军.模糊自适应PID控制在高精度光电跟踪伺服系统中的应用[J].火炮发射与控制学报,2008,4:33-36
    [36]刘妹琴,邓燕妮,廖晓昕.实时遗传算法在位置伺服系统中的应用[J].中国电机工程学报,2000,20(2):5-9
    [37]K.Z. Tang, S.N Huang,K.K. Tan, T.H. Lee.Combined PID and adaptive nonlinear control for servo mechanical systems [J]. Mechatronics.2004,14(6):701-714
    [38]G. P. Liu, S. Daley. Optimal-tuning PID control for industrial systems [J]. Control Engineering Practice.2001,9(11):1185-1194
    [39]Sang-Min Kim, Woo-Yong Hanb. Induction motor servo drive using robust PID-like neuro-fuzzy controller [J]. Control Engineering Practice,2006,14(5):481-487
    [40]FANUC. Servo Tuning Tool Fanuc Servo Guide [EB/OL]. http://www.fanuc.co.jp/en/ product/new_product/2004/0410/0410_servoguide.html,2004-10/2007-12-25
    [41]DANAHER. PMAC Tuning Pro2 [EB/OL]. http://www.deltatau.com/fmenu/PMAC %20SERVO%20ANALYZER.PDF,2007-5
    [42]YASKAWA.∑-Ⅱ系列SGMH/SGDM用户手册设计维护篇[Z].株式会社安川电机,1997
    [43]Panisonic. AC Servo Motor Driver Operating Manual [Z]. Panisonic,2000
    [44]黄立培.电动机控制(第一版)[M].北京:清华大学出版社,2003.
    [45]陈先锋.PMSM位置伺服系统的分析设计及其应用研究[D].南京:南京工业大学,2005
    [46]白玉成.交流伺服系统控制策略及总线接口技术的研究[D].武汉:华中科技大学,2008
    [47]Min-Seok Kim, Sung-Chong Chung. A systematic approach to design high-performance feed drive systems [J]. International Journal of Machine Tools & Manufacture.2005,45(12):1421-1435
    [48]George W.Younkin.Industrial Servo Control Systems Fundamentals and Applications (Second Edition) [M]. Marcel Dekker, Inc:New York,2003
    [49]刘辉.交流伺服系统及参数辨识算法研究[D].南京:南京航空航天大学,2005
    [50]冯巧玲,吴娟,范为福等.自动控制原理(第二版)[M].北京:北京航空航天大学出版社,2007
    [51]GEllis. Control System Design Guide(Second Edition)[M].Boston:Academic press, 2000
    [52]刘强.高性能机械伺服系统运动控制技术综述[J].电机与控制学报,2008,12(5):603-609
    [53]朱其新,刘红俐.伺服系统中一种新的带阻滤波器的设计[J].微计算机信息,2008,24(7-1):57-58,56
    [54]Kazuo Sato, Yasufumi Yoshiura. Gain adjusting method for servo control device [P]. US Patents:2006/0087275,2006-3-27.
    [55]王秀峰,卢桂章.系统建模与辨识(第一版)[M].北京:电子工业出版社,2004
    [56]李言俊,张科.系统辨识理论及应用(第一版)[M].北京:国防工业出版社,2003
    [57]侯媛彬,汪梅,王立琦.系统辨识及其MATLAB仿真(第一版)[M].北京:科学出版社.2004
    [58]刘兴堂.应用自适应控制(第一版)[M].西安:西北工业大学出版社,2003
    [59]徐东,王田苗,刘敬猛等.基于参数辨识的永磁同步电机电流精确控制方法[J].电力自动化设备:2008,28(11):30-34
    [60]安群涛,孙力,赵克.一种永磁同步电动机参数的自适应在线辨识方法[J].电工技术学报.2008,23(6):31-36
    [61]舒志兵.交流伺服运动控制系统(第一版)[M].北京:清华大学出版社,2006
    [62]H.Hahn, K-D, Leimbach, A.Piepenbriink. Inertia parameter identification of rigid bodies using a multi-axis test facility[C]//Proceedings of the IEEE Conference on Control Applications.Glasgow:IEEE,1994:1735-1737
    [63]陈荣.永磁同步电机伺服系统研究[D].南京:南京航空航天大学,2004
    [64]I.D.郎道.论自适应控制(第一版)[M].北京理工大学出版社,1992
    [65]Peter D.Hansen. Self-tuning controller that etracts process model[P]. US Patents:5394322,1995-2-28.
    [66]Ming-Chang Shih, Shy-I Tseng. Identification and position control of a servo pneumatic cylinder [J]. Control Engineering Practice.1995,3(9):1285-1290
    [67]李清泉.自适应控制系统的理论、设计与应用(第一版)[M].北京:科学出版社,1990
    [68]王正林,郭阳宽.过程控制与Simulink应用(第一版)[M].北京:电子工业出版社,2006
    [69]薛定宇.反馈控制系统设计与分析(第一版)[M].北京:清华大学出版社,2000
    [70]陶永华.新型PID控制及其应用[M].北京:机械工业出版社,2005
    [71]王鹤曾.工业过程PID控制器的设计与性能评价研究[D].浙江:浙江大学,2004
    [72]K. K. Tan, T. H. Lee, X. Jiang. On-line relay identification, assessment and tuning of PID controller [J]. Journal of Process Control.2001,11(5):483-496
    [73]吴沧浦.最优控制的理论与方法(第二版)[M].北京:国防工业出版社,2000
    [74]石文兵.数控机床进给伺服系统PID参数自整定仿真研究[D].武汉:华中科技大学,2007
    [75]高健.机械优化设计基础(第二版)[M].北京:科学出版社,2000
    [76]王永骥.神经元网络控制(第一版)[M].北京:机械工业出版社,1998
    [77]刘瑛.基于神经网络的交流调速智能控制研究[D].武汉:华中科技大学,2005
    [78]Giulio D Emilia, Antonio Marra, Emanuela Natale. Use of neural networks for quick and accurate auto-tuning of PID controller [J], Robotics and Computer-Integrated Manufacturing.2007,23(2):170-179
    [79]邱公伟,林瑞全.参数自整定2自由度PID全神经元实现的仿真研究[J].系统仿真学报.2002,14(10):1293-1295
    [80]C. F. Wong, J. Shippen, B. Jones. Neural network control strategies for low specification servo actuators [J]. International Journal of Machine Tools and Manufacture.1998,38(9):1109-1124
    [81]陈荣,邓智泉,严仰光.永磁同步伺服系统电流环的设计[J].南京航空航天大学学报,2004,36(2):220-226
    [82]林晓凡,白国枝.矢量控制电流环的内模解耦控制[J].微电子学与计算机.2008,25(12):187-189
    [83]万山明,吴芳,黄声华.永磁同步电机的数字化电流控制环分析[J].华中科技大学学报(自然科学版).2007,35(5):48-51
    [84]宋宝,唐小琦,吴建昆.基于二阶系统的伺服电流调节器的参数整定[J].机械与电子.2004,9:13-15
    [85]Nyman P.O., Sulkowski W. PMSM robust current control with adaptive tuning of axis decoupling[C]//The 29th Annual Conference of the IEEE Industrial Electronics Society. Roanoke:IEEE,2003:2239-2244
    [86]B.Nahid Mobarakeh, F.Meibody-Tabar, F.M.Sargos. On-line identification of PMSM electrical parameters based on decoupling Control [C]//Proceedings of 2001 IEEE Industry Applications Society 36th Annual Meeting. Chicago:IEEE.2001:266-273
    [87]Peter Schmidt, Thomas Rehm. Notch filter tuning for resonant frequency reduction in dual Inertia Systems[C]//Thirty-Fourth IAS Annual Meeting on Industry Applications Conference. AZ:IEEE,1999:1730-1734
    [88]Huijun Wang, Dong-Hee Lee, Zhen-Guo Lee et al. Vibration rejection scheme of servo drive system with adaptive notch filter[C]//Power Electronics Specialists Conference 2006. Jeju:IEEE,2006:1-6
    [89]Alex J. Smola, Bernhard Sch lkopf. A tutorial on support vector regression [J], Statistics and Computing.2004,14(8):199-222
    [90]V.Vapnik.The Nature of Statistical Learning Theory [M]. New York: Springer-Verlag,1998
    [91]Cortes C, Vapnik V. Support vector machine [J], Machine Learning.1995,20(3): 273-297
    [92]Kyung-Rae Cho, Jul-Ki Seok and Dong-Choon Lee. Mechanical parameter identification of servo systems using robust support vector regression[C]//Power Electronics Specialisis Conference 2004. Aachen:IEEE,2004:
    [93]刘涵,刘丁.基于支撑向量机的参数自整定PID非线性系统控制[J].控制理论与应用.2008,25(3):468-474
    [94]邵群涛.位置环参数的在线调试[J].江苏大学学报(自然科学版).2002,23(3):84-86
    [95]S. Kissling, Ph. Blanc, P. Myszkorowski et al.Application of iterative feedback tuning (IFT) to speed and position control of a servo drive [J].Control Engineering Practice.2009,17(7):834-840
    [96]刘希喆,吴捷.永磁直线同步电动机速度环自抗扰控制器的设计[J].电工技术学报.2004,19(4):6-11
    [97]Jia-Yush Yen, Hui-Man Chang.Performance robustness and stiffness analysis on a machine tool servo design [J]. International Journal of Machine Tools & Manufacture. 2004,44(5):523-531
    [98]李建军,桂卫华.永磁同步电机交流伺服系统负载转矩动态补偿方法[J].电机与控 制应用.2006,33(5):11-15
    [99]Kok Kiong Tan, Tong Heng Lee, Sunan Huang et al. Predictive and self-tuning PI control apparatus for expanded process control application [P].美国专利:6751510B1, 2004-6-15.
    [100]Shinichi Kobayashi, Ichiro Awaya, Hiroshi Kuromaru. and Katsumi Oshitani.Dynamic model based auto-tuning digital servo driver.IEEE Transaction on Industrial Electrionics.1995,42(5):913-917
    [101]舒迪前.预测控制系统及其应用(第一版)[M].北京:机械工业出版社,1996
    [102]王伟.广义预测控制理论及其应用(第一版)[M].北京:科学出版社,1998
    [103]李晓杰.基于GPC的自适应PID控制器在挤出机温度控制中的研究与应用[D].济南:山东大学,2007
    [104]Min Xu, Shaoyuan Li, Chenkun Qi, Wenjian Cai. Auto-tuning of PID controller parameters with supervised receding horizon optimization [J]. ISA Transactions. 2005,44(4):491-500
    [105]K. K. Tan, S. N. Huang, T. H. Lee. Development of a GPC-based PID controller for unstable systems with deadtime [J]. ISA Transactions.2000,39(1):57-70
    [106]Cetin Elmas, Oguz Ustun. A hybrid controller for the speed control of a permanent magnet [J]. Control Engineering Practice.2008,16(3):260-270
    [107]K. Yamuna Rani, H. Unbehauen. Study of predictive controller tuning methods [J]. Automatica.1997,33(12):2243-2248
    [108]虞文华,吴昭同.伺服系统动特性对数控机床圆轨迹加工精度影响的机理[J].中国机械工程.1995,6(1):21-23
    [109]曲永印,赵希梅,郭庆鼎等.永磁同步电动机伺服系统自校正零相位误差跟踪控制[J].电工技术学报.2008,23(1):60-64
    [110]R. Ramesh, M.A. Mannan, A.N. Poo, Tracking and contour error control in CNC servo systems [J]. International Journal of Machine Tools & Manufacture [J]. 2005,45(2):301-326
    [111]M. Linjama, T. Virvalo, J. Gustafssonb et al, Hardware-in-the-loop environment for servo system controller design, tuning and testing [J]. Microprocessors and Microsystems.2000,24 (1):13-21
    [112]dSPACE. dSPACE User Guide-Implementation Guide[M]. Paderborn:dSPACE GnbH,2005
    [113]Borut Zupan. Extension software for real-time control system design and implementation with MATLAB-SIMULINK. Simulation Practice and Theory [J]. 1998,6(8):703-719
    [114]Guoyang Cheng, Wenguang Jin. Parameterized design of nonlinear feedback controllers for servo positioning systems [J]. Journal of Systems Engineering and Electronics.2006,17 (3):593-599
    [115]宋科,刘卫国,骆光照.控制系统硬件在回路实时仿真实验平台的dSPACE实现.微特电机[J].2008,36(4):28-31
    [116]蒋华庆,柴建云,曹冬宇.基于dSPACE的大型风电机组系统控制器测试平台的研制[J].电机与控制应用.2007,34(11):11-15
    [117]T.H. Yan, X.D. Chen, R.M. Lin.Servo system modeling and reduction of mechatronic system through finite element analysis for control design.Mechatronics [J], 2008,18(9):466-474
    [118]童南建,程佳,王宣银.基于dSPACE的大惯量转台控制系统设计[J].机床与液压.2007,35(12):138,142

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700