半导体光电极的制备、表征及其光电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文是以光电化学太阳能电池的半导体光电极(包括光阳极和光阴极)的制备、表征与光电性能研究为主要内容,通过各种测试技术和光电化学研究手段,对TiO_2纳米管阵列光阳极的制备、形成机理和有关光电性能进行了较系统的研究;另外还对金属(合金)/p-Si、Ni-Co/AC和Ni-W-P/TiO_2等阴极材料的催化析氢性能进行了研究。
     采用阳极氧化法在钛片上成功获得了排列规则的、垂直导向生长的TiO_2纳米管阵列。最佳反应工艺条件为:阳极氧化电压20 V,HF电解液浓度1(wt)%,室温,反应时间控制在30 min。在此条件下制得的TiO_2纳米管阵列,其管内径约为90 nm,管壁厚约为10 nm,氧化膜厚度约为500 nm。通过XRD分析和计算得出,经600℃退火处理后,电极结构为锐钛矿型与金红石型的混晶结构。
     光电化学测试结果表明,TiO_2纳米管阵列电极具有n型半导体的典型特征。经600℃退火处理的纳米管电极开路电压最大,电荷转移电阻最小,所表现出的光电响应特性与普通TiO_2多孔膜电极基本相似。但TiO_2纳米管阵列光电极具有更高的光电转换效率。其主要原因是纳米管阵列电极独特的管状阵列结构,比多孔膜电极具有更大的孔隙率和比表面积。
     采用溶胶-凝胶法制备不同过渡金属离子掺杂TiO_2纳米管光电极,其光电响应区别很大。在电极电位为0.6 V时,掺杂电极光电性能由大到小的顺序依次为:Zn > Cu > Ni > Fe > Mn。这主要是由掺杂过渡金属离子本身的物理化学性质的不同而引起的。实验结果证实,Ea/r值适中、磁矩值越小的ZnOx/TiO_2电极体系具有更大的光电化学性能。
     采用化学沉积和电沉积技术制备了Pd/p-Si和Ni-Co-P/p-Si纳米晶光阴极。实验结果表明,光照使其析氢反应性能显著提高,p-Si电极表面纳米颗粒的覆盖度对其光电催化析氢性能有显著影响,纳米颗粒的表面覆盖度过小或过大均不利于光电催化析氢性能的提高,其存在一个最佳值。约为35%。
     采用复合电沉积技术制备了Ni-Co/AC复合电极材料。测试表明,Ni-Co/AC复合电极较Ni电极和Ni-Co合金电极具有更高的催化析氢性能,这主要归因于其真实表面积的增大。另外通过控电位沉积技术制备了Ni-W-P/ TiO_2纳米管复合电极材料。测试结果表明,该复合电极的析氢过电位比Ni-W-P合金电极降低130 mV,表现出更好的催化析氢性能。
The purpose of this dissertation is to study the electrochemical preparation, characterization of photoelectrode (anode and cathode) of the photoelectrochemical solar cell (PEC), and their photoelectrochemical properties. The influencing factors, formed mechanism, and related photoelectric properties of TiO_2 nanotubes array photoanode were systematically investigated based on multifarious measured techniques and photoelectrochemical research methods. And the properties for hydrogen evolution of metal (or alloy) /p-Si, AC/Ni-Co and Ni-W-P/TiO_2 photocathodes were investigated. The research contents and the gained chief achievements are as follows:
     TiO_2 nanotube arrays were successfully fabricated by anodic oxidation method on a pure titanium sheet. Optimal reaction conditions for preparation are as follows, 20 V for oxidation voltage, 1(wt) % for concentration of HF electrolytes, 30 min for reaction time and room temperature. In this condition, the aperture size of the nanotube arrays is about 90 nm; the thickness of tube wall is about 10 nm; and the length of nanotube is about 500 nm. The structure of these samples was characterized by XRD. The results show that the structure is a mixture phase of anatase and rutile annealed at 600℃, the rate of rutile phase is about 47.7%, and the average crystalline size is about 19.0 nm.
     The photoelectric measurement results show that the TiO_2 nanotube arrays electrode exhibits the typical property of the n-type semiconductor. The interfacial charge transfer resistance of the electrode annealed at 600℃is minimal, the photocurrent and the signal of open-circuit potential are maximal. Its photoelectric performances are similar with the ordinary TiO_2 porous films electrode. But the photoelectric conversion efficiency of the nanotubes electrode is higher than the porous films electrode. It was mainly due to the high porosity and the large real surface area of the TiO_2 nanotube arrays.
     The different transition metal ions (Fe, Mn, Ni, Cu, and Zn) doped TiO_2 nanotube photoelectrodes were prepared by sel-gol method. The results show that their photoelectric performances were different, and the order of their photocurrent ranked from the highest to the lowest is Zn > Cu > Ni > Fe > Mn. This paper argued that the difference of physical chemical quality of transition metal ions was the main factor of the results. When the TiO_2 nanotube electrode doped with Zn ions has a moderate value of Ea/r and a smaller magnetic moment, it shows much higher photoelectric performance.
     The nanocrystalline Pd modified p-Si and the Ni-Co-P alloy modified p-Si photocathode were prepared by electrochemical technology. The results show that the overpotential for HER of these photocathodes was reduced under illumination, and its catalytic properties were increased evidently. The investigation on relationship between surface fraction and HER current density of both electrodes indicates that the surface fraction of nanoparticles on p-Si electrode has an optimal value, and these optimal fractions of both electrodes are about 35 %.
     The Ni-Co/AC composite electrode was prepared by composite-electrodeposition. The results show that the Ni-Co/AC composite electrode is catalytically more active than the Ni and Ni-Co alloy electrode, which is mainly due to the increase in the real surface area of the electrode. The Ni-W-P/ TiO_2 nanotube composite electrode was prepared by electrodeposition at constant potential. The experimental results show that the overpotential for HER of the composite electrode is 130 mV lower than that of Ni-W-P alloy electrode, the former shows better properties for hydrogen evolution.
引文
[1] 毛宗强,氢能-21 世纪的绿色能源,化学工业出版社,2005,1-3.
    [2] 鲍德佑,氢能-有效利用太阳能的新能源系统,太阳能,1994,4:8-9.
    [3] 朱亚杰,李锦堂,太阳能与可再生能源,太阳能,1995,4:2-6.
    [4] 邹志刚,赵进才,付贤智,光催化太阳能转换及环境净化材料的现状和发展趋势[J].功能材料,2004,35:83-88.
    [5] 倪萌,M. K. H. Leung,K. Sumathy。太阳能制氢技术[J].可再生能源,2003,115:29-31.
    [6] L. Barreto, A. Makihira, K. Riahi. The hydrogen economy in the 21st century: a sustainable development scenario [J]. Int. J Hydrogen Energy, 2003, 28: 267-284.
    [7] Morrison S. R. 吴辉煌译,半导体与金属氧化膜的电化学,科学出版社,1988,1.
    [8] Mills A., Hunte S. L. J. Photochemistry and Photobiology A: Chemistry, 1997, 108, 1.
    [9] Ю.В.Плесков,张天高译,光电化学太阳能转换,北京,科学出版社,1994.
    [10] Ю.Я.Гуревич,Ю.В.Плесков,彭瑞伍译,半导体光电化学,北京,科学出版社,1989.
    [11] M. A. K. Lodhi. Photovoltaics and hydrogen: Future Energy Options [J]. Energy Conversion and Management, 1997, (38): 1881-1893.
    [12] N. C. Ford,J. W. Kane. Solar Power [J]. Bull Ato Sci, 1971, 27: 27.
    [13] A. Kogan. Direct Solar Thermal Splitting of Water and On-Site Separation of the Products L Theoretical Evaluation of Hydrogen Yields [J]. International Journal of Hydrogen Energy, 1997, 22(5): 481-486.
    [14] A. Kogan. Direct Solar Thermal Splitting of Water and On-site Separation of Products. Ⅱ . Experimental Feasibility Study [J]. International Journal of Hydrogen Energy, 1998, 23(2): 89-98.
    [15] A. Kogan, E. Spiesler et a1. Direct Solar Thermal Splitting of Water and on-site of the Products. Ⅲ. Improvement of Reactor Etticiency by Steam Entrainment [J]. International Journal of Hydrogen Energy. 2000, 25: 739-745.
    [16] A.Kogan.Direct Solar Thermal Splitting of Water and On-site Separation of the Products. IV. Development of Porous Ceramic Membranes for a Solar Thermal Water-Splitting Reactor [J]. International Journal of Hydrogen Energy. 2000, 25: 1043-1050.
    [17] Fujishima A., Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode [J]. Nature, 1972, 238: 37-38
    [18] Wenfeng Shangguan, Akira Yoshida. Influence of Catalyst Structure and Modification on the Photocatalytic Production of Hydrogen from Water on Mixed Metal Oxides [J]. Int. J. Hydrogen Energy. 1999, 24: 425-1431.
    [19] Sang Chun Moon, Hiroaki Mametsuka, Soiehi Tabata et a1. Photocatalytic Production of Hydrogen from Water Using TiO2 and B/TiO2 [J]. Catalysis Today.2000,58:125-132.
    [20] Kyeong Hwan Chung, Dae Chul Park. Photocatalytic Decomposition of Water over Cesium -Loaded Potassium Niobate Photocatalysts [J]. Journal of Molecular Catalysis A:Chemical 1998, 129: 53-59.
    [21] Tetsuya Kida, Guoqing Guan, Akira Yoshich. LaMnO3/CdS nanocomposite:a new photocatalyst for hydrogen production from water under visible light irradiation [J]. Chemical Physics Letters. 2003, 371: 563-567.
    [22] T. Bak, J. Nowotny, M. Rekas, C. Csorrel1. Photo-electrochemical hydrogen generation from water using solar energy. Materials related aspects [J]. Int. J. Hydrogen Energy, 2002, 27: 991-1022.
    [23] Chandra S. Photoelectrochemical solar cells [M]. NewYork: Gordon and Breach, 1985.
    [24] E. Miller, R. Rocheleau. High-efficiency photoelectrochemical hydrogen production using multijunction amorphous silicon photoelectrodes [J]. Energy Fuels, 1998, 12: 3-10.
    [25] E. Miller, R. Rocheleau. Amorphous silicon/photoelectrochemical multifunction cell for hydrogen production [J]. Int. J Hydrogen Energy, 2003, 28: 615-623.
    [26] E. Miller, R. Rocheleau. Electrochemical behavior of reactively sputtered iron-doped nickel oxide [J]. J Electrochem Soc. 1997, 144(9): 3072-3077.
    [27] E. Miller, R. Rocheleau. Electrochemical and electrochromic behavior of reactively sputter nickel oxide [J]. J Electrochem Soc. 1997, 144(6): 1995-2003.
    [28] Stuart Licht, Efficient solar Generation of Hydrogen Fuel a Fundamental analysis[J]. International Journal of Hydrogen Energy. 2002, 4: 790-795.
    [29] Stuart Licht, Sysanta Ghosh et a1. High Efficiency Solar Energy Water Splitting to Hydrogen Fuel:Probing RuS2 Enhancement Multiple Band Electrolysis [J]. Solar Energy Materials & Solar Cells. 2002, 70: 471-480.
    [30] Stuart Licht, B. Wang, et a1. Over 18% Solar Energy Conversion to Generation of Hydrogen Fuel;Theory an d Experimental for Efficient Solar Water Splitting [J].International Journal of Hydrogen Energy. 2001, 26: 6539.
    [31] P. R. Mishra, P. K. Shukla et al. Investigation and optimization of Nanostructured TiO2 Photoelectrode in Regard to Hydrogen Production through Photoelectrochemical Process [J]. Int. J. Hydrogen Energy. 2003, 28: 1089- 1094.
    [32] P. K. Shukla, R. K. Karn, et a1. Studied on PV Assited PEC Solar Cells for Hydrogen Production through Photoelectrolysis of Water [J]. International Journal of Hydrogen Energy. 2002, 27: 135-141.
    [33] O. N. Srivastava, R. K. Karn et al. Semiconductor-septum Photoelectrochemical Solar Cell for Hydrogen Production [J]. Int. J. Hydrogen Energy. 2000, 25: 495-503.
    [34] Moon S C, Matsumura Y, Kitano M, et al. Hydrogen Production Using Semiconducting Oxide Photocatalysts[J]. Res. Chem. Intermed, 2003, 29(3): 233-256.
    [35] Ashokkumar M. An Overview on Semiconductor Particulate Systems for Photoproduction of Hydrogen [J]. Int. J. Hydrogen Energy, 1998, 23(6): 427- 438.
    [36] Linsebigler A L, Lu G Q, Yates J T. Photocatalysis on TiO2 Surfaces:Principles, Mechanisms, and Selected Results [J]. Chem. Rev., 1995, 95(3): 735-758.
    [37] 余家国,赵修建,赵青南等. TiO2纳米薄膜的溶胶-凝胶工艺制备和表征[J].物理化学学报,2000,16(9):792-797.
    [38] Y. Ohko, S. Saitoh, T. Tatsuma, et al. Photoelectrochemical Anticorrosion and Self-Cleaning Effects of a TiO2 Coating for Type 304 Stainless Steel [J]. J. Electrochem. Soc. 2001, 148(1): B24-B28.
    [39] Zheng M P, Jin Y P, Jin G L, et al. Charaterization of TiO2-PVP nanocomposites prepared by the sol-gel method [J]. J. Materials science letters, 2000, 19(5): 433- 436.
    [40] E. D. Traversa, M. Luisa, et al. Sol-Gel Preparation and Characterization of Ag-TiO2 Nanocomposite Thin Films [J]. J. Sol-Gel Sci. Technol, 2000, 19(1/2/3): 733-736.
    [41] M. Isamu, T. Yoshihiro, T. Yasutake, et a1. Two-Dimensional Sol-Gel Synthesis of Ultrathin Zirconia and Hetero-Layered Titania/Zirconia Films [J]. J. Sol-Gel Sci. Technol., 2000, 19 (1/2/3): 227-230.
    [42] L. Kavan, B. O’Regan, A. Kay, M. Gratzel. Preparation of TiO2 (anatase) films on electrodes by anodic oxidative hydrolysis of TiCl3 [J]. J. Electroana1. Chem. 1993, 346: 291-307.
    [43] C. Natarajan, G. Nogami. Cathodic Electrodeposition of Nanocrystalline Titanium Dioxide Thin Films [J]. J. Electrochem. Soc. 1996, 143(5): 547-550.
    [44] S. Karuppuchamy, D. P. Amalnerkar, K. Yamaguchi, et al. Cathodic Electrodeposition of TiO2 Thin Films for Dye-Sensitized Photoelectrochemical Applications [J]. Chemistry Letters, 2001, 30(1): 78-79.
    [45] 邱健斌,曹亚安,马颖等. 担载材料对TiO2薄膜光催化活性的影响[J].物理化学学报,2000,16(1):1-4.
    [46] Fu Z W, Kong J L, Qin Q Z. et al. In situ spectroelectrochemical behaviour of nanocrystalline TiO2 thin films electrode fabricated by pulsed laser deposition [J], Science in China (Series B), 1999, 42(5): 493-500.
    [47] S. Takeda, S. Suzuki, H. Odaka, H. Hosono. Photocatalytic TiO2 thin film deposited onto glass by DC magnetron sputtering [J]. Thin Solid Film, 2001, 392(2):338-344.
    [48] 魏培海,姚发业,王娅娟. MOCVD法制备TiO2薄膜的光电化学性质研究[J].山东师大学报(自然科学版),2000,1 5(2):151-153.
    [49] 傅正文,孔继烈,秦启宗等. 脉冲激光沉积纳米TiO2薄膜电极的现场光电化学[J].中国科学: B辑,1999,29(6):546-552.
    [50] 刘 畅,暴宁钟,杨祝红等. 过渡金属离子掺杂改性TiO2的光催化性能研究进展[J].催化学报,2001,22(2):215-218.
    [51] Asahi R, Morikawa T, Ohwaki T, et al. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides [J]. Science, 2001, 29(13): 269-271.
    [52] Choi W Y, Termin A, Hoffmann M R. The Role of Metal Ion Dopants in Quantum-Sized TiO2:Correlation between Photoreactivity and Charge Carrier Recombination Dynamics [J]. J. Phys. Chem, 1994, 98(51): 13669-13679.
    [53] Anpo M, Takeuchi M. The Design and Development of highly Reactive Titanium Oxide Photocatalysts Operating under Visible Light Irradiation [J]. J. Catal, 2003, 216(1-2): 505-516.
    [54] Dvoranova D, Brezova V, Mazur M, et al. Investigations of Metal-Doped Titanium Dioxide Photocatalysts [J]. Appl. Catal. B, 2002, 37(2): 91-105.
    [55] Kato H, Kudo A. Visible-Light-Response and Photocatalytic Activities of TiO2 and SrTiO3 Photocatalysts Codoped with Antimony and Chromium [J]. J. Phys. Chem. B, 2002, 106(19): 5029-5034.
    [56] Yu J C, Yu J G, Ho W K, et al. Effects of F-Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders [J]. Chem. Mater, 2002, 14(9): 3808-3816.
    [57] Khan S U M, Al-Shahry M, Ingler W B. Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2 [J]. Science, 2002, 297: 2243-2245.
    [58] Service R F. Catalyst Boosts Hopes for Hydrogen Bonanza. Science, 2002, 297(5590): 2189-2190.
    [59] Fujishima A, Comment on “Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2” I [J]. Science, 2003, 301(5640): 1673a.
    [60] Hagglund C, Gratzel M, Kasemo B. Comment on “Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2” II [J]. Science, 2003, 301(5640):1673b.
    [61] Lackner K S. Comment on “Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2”[J]. Science, 2003, 301(5640): 1673c.
    [62] Khan S U M, Al-Shahry M, Ingler W B. Response to Comments on“Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2”[J]. Science, 2003, 301(5640):1673d.
    [63] Spanhel L, Weller H, Henglein A. Electron Injection from Illuminated CdS into Attached TiO2 and ZnO Particles [J]. J. Am. Chem. Soc, 1987, l09(22): 6632- 6635.
    [64] Gopidas K R, Bohorquez M, Kamat P V. Photophysical and Photochemical Aspects of Coupled Semiconductors Charge-Transfer Processes in Colloidal CdS-TiO2, and CdS-AgI Systems [J]. J. Phys. Chem, 1990, 94(16): 6435-6440.
    [65] Vogel R, Hoyer P, Weller H. Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors [J]. J. Phys. Chem, 1994, 98(12): 3183-3188.
    [66] Fujii H, Ohtaki M, Eguchi K, et al. Preparation and Photocatalytic Activities of a Semiconductor Composite of CdS Embedded in a TiO2 Gel as a Stable Oxide Semiconducting Matrix [J]. J. Mol. Catal. A: Chem, 1998, 129(1): 61-68.
    [67] Wu J H, Uchida S, Fujishiro Y, et al. Synthesis and Photocatalytic Properties of HNbWO6/TiO2 and HnbWO6/Fe2O3 Nanocomposites [J]. J. Photo. Photobio. A, 1999, 128(1/3): 129- 133.
    [68] Yin S, Maeda D, Ishitsuka M, et a1. Synthesis of HTaWO6/(Pt, TiO2) Nano- composite with High Photocatalytic Activities for Hydrogen Evolution and Nitrogen Monoxide Destruction [J]. Solid State Ionics, 2002, 151(1/4): 377- 383.
    [69] 王传义, 刘春艳, 沈涛. 半导体光催化剂的表面修饰[J].高等学校化学学报,1998,19(12):2013-2019.
    [70] Duonghong D, Borgarello E, Gratzel M. Dynamics of Light-Induced Water Cleavage in Colloidal Systems [J]. J. Am. Chem. Soc. 1981, 103(16): 4685- 4690.
    [71] Borgarello E, Kiwi J, Pelizzetti E, et al. Sustained Water Cleavage by Visible Light [J]. J. Am. Chem. Soc. 1981, 103(21): 6324-6329.
    [72] Li Yuexiang, Lu Gongxuan, Li Shuben. Photocatalytic Transformation of Rhodamine B and Its Effect on Hydrogen Evolution over Pt/TiO2 in the Presence of Electron Donors [J]. J. Photoch Photobia A, 2002, 152(3): 219- 228.
    [73] Dhanalakshmi K B, Latha S, Anandan S, et al. Dye Sensitized Hydrogen Evolution from Water [J]. Int. J. Hydrgen Energ. 2001, 26(7): 669-674.
    [74] Abe R, Hara K, Sayama K, et al. Steady Hydrogen Evolution from Water on Eosin Y-Fixed TiO2 Photocatalyst Using a Silane-Coupling Reagent under Visible Light Irradiation [J]. J. Photoch Photobia A, 2000, 137(1): 63-69.
    [75] Abe R, Sayama K, Arakawa H. Efficient Hydrogen Evolution from Aqueous Mixture of I- and Acetonitrile Using a Meocyanine Dye-Sensitized Pt/TiO2 Photocatalyst under Visible Light Irradiation [J]. Chem. Phys. Lett, 2002, 362(5/6): 441-444.
    [76] Abe R, Sayama K, Arakawa H. Significant Influence of Solvent on Hydrogen Production from Aqueous I3-/I- Redox Solution Using Dye-Sensitized Pt/TiO2 Photocatalyst under Visible Light Irradiation [J]. Chem. Phys. Lett, 2003, 379(3/4): 230-235.
    [77] Michael Graetze1. Perspectives for Dye-sensitized Nanocrystalline Solar [J]. Solar Cells. Prog. Photovolt. Res. Appl., 2000, 8: 171-185.
    [78] R. Konenkamp, L. Dloczik, K. Ernst, C. Olesch. Nanostructures for solar cells with extremely thin absorbers [J]. Physica E, 2002, 14: 219-223.
    [79] S. Z. Chu, K. Wada, S. Inoue, S. Todomki. Fabrication and characteristics of on glass by Al anodization and electrodeposition [J]. Electrochimica Acta, 2003, 48:3147-3153.
    [80] Craig A, Grimes, et al. Hydrogen sensing using titania nanotubes [J]. Sensors and Actuators B, 2003, 93: 338-344.
    [81] R. Beranek, H. Hildebrand, P. Schmuki. Self-Organized Porous Titanium Oxide Prepared in H2SO4/HF Electrolytes [J]. Electrochemical and Solid-State Letters, 2003, 6(3): B12-B14.
    [82] Andrei G., Hiroaki T., Jan M. M., et al. Titanium oxide nanotubes prepared in phosphate electrolytes [J]. Electrochemistry Communications, 2005, 7: 505-509.
    [83] Hiroaki T., Andrei G., Jan M. M., et al. Self-organized TiO2 nanotubes prepared in ammonium fluoride containing acetic acid electrolytes [J]. Electrochemistry Communications, 2005, 7: 576-580.
    [84] J. L. Zhao, X. H. Wang, R. Z. Chen, et al. Fabrication of titanium oxide nanotube arrays by anodic oxidation [J]. Solid State Communication, 2005, 134: 705-710.
    [85] Adachi M,Okada I,Ngamsinlapasathian S, et al. Dye-sensitized solar cells using semiconductor thin film composed of titania nanotubes [J]. Electrochemistry, 2002, 70(6): 449-452.
    [86] Adachi M, Murata Y, Okada I, et al. Formation of titania nanotubes and applications for dye-sensitized solar cells [J]. Journal of the Electrochemical Society,2003,150(8): G488-G493.
    [87] Uchida S, Chiba R, Tomiha M, et al. Application of titania nanotubes to a dye-sensitized solar cell [J]. Electrochemistry, 2002, 70(6): 418-420.
    [88] Suffredini H B,Cerne J L,Crnkovic F C,et al.Recent developments in electrode materials for water electrolysis[J].Int. J. Hydrogen Energy, 2000, 25(5): 415-423.
    [89] Campillo B, Sebastian P J, Gamboa S A, et al. Electrodeposited Ni-Co-B alloy: application in water electrolysis [J]. Materials Science and Engineering C, 2002, 19(1-2): 115-118.
    [90] 肖友军.含稀土 La 的镍基合金电镀及其析氢电催化行为研究[J].南方冶金学院学报,2004,25(1):55-57.
    [91] 汪继红,费锡明,龙光斗.稀土铈对镍-钴合金电极的析氢催化性能的影响[J].材料保护,2003,36(6):12-13.
    [92] 黄 令,许书楷,周绍民等.纳米晶镍-钼合金电沉积层的结构与性能[J].应用化学,1999,16(2):38-41.
    [93] 黄 令,杨防阻,许书楷等.纳米晶 Ni-Mo-Co 合金镀层的结构与析氢行为[J].应用化学,2001,18(10):767-771.
    [94] 张卫国,姚素薇,赵转清等.p 型单晶硅上电镀纳米 Ni-W-P 合金电极及其光照析氢研究[J].应用化学,2001,18(10):790-793.
    [95] 赵转清,姚素薇,张卫国等.镍钼修饰的 p 型硅电极材料的制备和性能[J].材料研究学报,2002,16(1):83-87.
    [96] Paseka I. Evolution of hydrogen and its sorption on remarkable active amorphous smooth Ni-P(x) electrodes [J]. Electrochim. Acta, 1995, 40(11): 1633-1640.
    [97] Paseka I, Velicka J. Hydrogen evolution and hydrogen sorption on amorphous smooth Me---P(x) (Me=Ni, Co and Fe--Ni) electrodes [J]. Electrochim. Acta, 1997, 42(2): 237-242.
    [98] Han Q, Liu K, Chen J, et al. A study on the electrodeposited Ni–S alloys as hydrogen evolution reaction cathodes [J]. Int. J. Hydrogen Energy, 2003, 28(11): 1207-1212.
    [99] Han Q, Chen J, Liu K, et al. The heat-treatment effect of amorphous Ni-S(La) electrode on the hydrogen evolution reaction in an alkaline media[J]. Int. J. Hydrogen Energy, 2004, 29(6): 597-603.
    [100] Han Q, Liu K, Chen J, et al. Hydrogen evolution reaction on amorphous Ni-S-Co alloy in alkaline medium[J]. Int. J. Hydrogen Energy, 2003, 28(12): 1345-1352.
    [101] Han Q, Liu K, Chen J, et al. Study of amorphous Ni–S–Co alloy used as hydrogen evolution reaction cathode in alkaline medium[J]. Int. J. Hydrogen Energy, 2004, 29(3): 243-248.
    [102] Wu G, Li N, Dai C S. Electrochemical preparation and characteristics of Ni-Co-LaNi5 composite coatings as electrode materials for hydrogen evolution [J]. Materials Chemistry and Physics, 2004, 83(2-3): 307-314.
    [103] Panek J, Serek A, Budniok A, et al. Ni + Ti composite layers as cathode materials for electrolytic hydrogen evolution [J]. Int. J. Hydrogen Energy, 2003, 28(2): 169-175.
    [104] Shi Y L, Yang Z, Li M K, et al. Electroplated synthesis of Ni-P-UFD, Ni-P-CNTs, and Ni-P-UFD-CNTs composite coatings as hydrogen evolution electrodes [J]. Materials Chemistry and Physics, 2004, 87(1): 154-161.
    [105] B. O’Regan, M.Gratzel. A low-cost, high-efficiency solar cell based on dye- sensitized colloidal TiO2 film [J]. Nature, 1991, 353: 737-739.
    [106] A. Michailouski, D. Almawlawi, G. S. Cheng, et al. Highly regular anatase nanotubule arrays fabricated in porous anodic templates [J]. Chem. Phys. Lett., 2001, 349(1/2): 1-5.
    [107] Z. R. Tian, J. A. Voigt, J. Liu, et al. Large oriented arrays and continuous films of TiO2-based nanotubes [J]. J. Am. Chem. Soc., 2003, 125(41): 12384-12385.
    [108] D. V. Bavykin, V. N. Parmon, A. A. Lapkin, et al. The effect of hydrothermal conditions on the Mesoporous Structure of TiO2 Nanotubes [J]. J. Mater. Chem. 2004, 14: 3370-3377.
    [109] X. H. Li, W. M. Liu, H. L. Li. Template synthesis of well-aligned titanium dioxide nanotubes [J]. Appl. Phys. A. 2005, 80: 317-320.
    [110] Pu L., Bao X. M., Zou J. P., et al. individual alumina nanotubes [J]. Angew. Chem., Int. Ed. 2001, 40: 1490-1493.
    [111] Gong D, Grimes C A, Varghese O K, et al. Titanium oxide nanotube arrays prepared by anodic oxidation [J]. J. Mater. Res., 2001, 16: 3331-3334.
    [112] Varghese O K, Gong D, Paulose M, Grimes C A, et al. Crystallization and high-temperature structural stability of titanium oxide nanotube arrays [J]. J. Mater. Res. 2003, 18: 156-165.
    [113] 柳闽生,杨迈之,李永舫等.纳米尺度TiO2/聚吡咯多孔膜电极光电化学研究[J].高等学校化学学报,1997,18(6):938-942.
    [114] 郝彦忠,武文俊.纳米结构TiO2/聚 3-甲基噻吩多孔膜电极光电化学研究[J].化学学报,2005,63(3):215-218.
    [115] Hua Yu, Xinjun Li, Shaojian Zheng, et al. Photocatalytic activity of TiO2 thin film non-uniformly doped by Ni [J]. Materials Chemistry and Physics. 2006, 97: 59-63.
    [116] Sodergen S, Hagfeldf A, Dsson J, et al. Theoretical models for the action spectrum and the current-voltage characteristics of microporous semiconductor films in photoelectrochemical cells [J]. J. Phys. Chem. 1994, 98: 5552-5556.
    [117] Radmiloviae V, Gasteiger H. A, Ross Jr. P. N. Structure and Chemical Composition of a Supported Pt-Ru Electrocatalyst for Methanol Oxidation [J]. J. Catal. , 1995, 154: 98-106.
    [118] Spurr R. A, Myers H. Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer [J]. Anal. Chem., 1957, 29: 760-762.
    [119] Wang X. P, Yu Y, Hu X. F, et al. Hydrophilicity of TiO2 films prepared by liquid phase deposition [J]. Thin Solid Films, 2000, 371: 148-152.
    [120] Bickley R. I, Gonzalez Carreno T, Lees J. S, et al. A structural investigation of titanium-dioxide photocatalysts [J]. J. Solid State Chem, 1991, 92: 178-190.
    [121] 冷文华,张昭,成少安等.直接热氧化制备氧化钛薄膜电极的研究Ⅰ制备、结构和电化学性质[J].化学物理学报,2001,14(6):705-710.
    [122] 赵转清,姚素薇,张卫国等.TiO2 修饰的镍基光电极的制备及光电化学性能[J].物理化学学报,2002,18(5):473-476.
    [123] 康志敏,郝彦忠,王庆飞等.聚吡咯敏化纳米TiO2电极的光电化学研究[J].功能材料,2004,35(2):220-222.
    [124] 武文俊,郝彦忠.纳米光电化学电池的敏化剂及其敏化机理研究[J].河北科技大学学报,2004,25(2):4-9.
    [125] 李卫华,乔学斌,高恩勤等.3d 过渡金属掺杂 TiO2 纳米晶膜电极的光电化学研究[J].高等学校化学学报,2000,21(10):1534-1538.
    [126] 顾庆超,楼书聪,戴庆平等,化学用表,南京,江苏科学技术出版社,1979:9.
    [127] 冯良荣,吕绍洁,邱发礼.过渡元素掺杂对纳米 TiO2 光催化剂性能的影响[J].化学学报,2002,60(3):463-467.
    [128] Hollenberg J W, Chen E N, Lakeram K. Development of a photovoltaic energy conversion system with hydrogen energy storage [J]. Int. J. Hydrogen Energy 1995, 20(3): 239-243.
    [129] Simarro R, Cervera-March S, Splugas S E. Hydrogen photoproduction in a continuous flow system with u.v.-light and aqueous suspensions of RuOx/Pt/TiO2 [J]. Int. J. Hydrogen Energy, 1985, 10(4): 221-226.
    [130] Pandey R N, Misra M, Srivastava O N. Solar hydrogen production using semiconductor septum electrode based photo- electron chemical solar cells [J]. Int. J. Hydrogen Energy, 1998, 23(10): 861-865.
    [131] Tsuyosi T, Sigeru I, Akira T, et al. Mechano-catalytic overall water splitting on some oxides (II) [J]. Applied Catalysis A, 2000, 200: 255-262.
    [132] Li G, Kneer E A, Vermeire B. A comparative electrochemical study of copper deposition onto silicon from dilute and buffered hydrofluoric acids [J]. J. Electrochem. Soc., 1998, 145(1): 241-246
    [133] 黄令,徐书楷,周绍民等.纳米晶镍-钼合金电沉积层的结构与性能[J].应用化学,1999,16(2):38-41.
    [134] Kunugi Y, Nonka T, Chong Y C, et al. Electroorganic reactions on organic electrodes-part 15: Electrolysis using composite-plated electrodes-part IV. Polarization study on a hydrophobic Ni/PTFE composite- plated nickel electrode [J]. Eletrochim. Acta., 1992, 37(2): 353-355.
    [135] Chiaki I, Naoji F, Masashi T. Electrochemical preparation and characterization of Ni/(Ni+RuO2) composite coatings as an active cathode for hydrogen evolution [J]. Electrochim. Acta., 1992, 37(4): 757-758.
    [136] 武刚,李宁,周瑞德等.电沉积Co-Ni-Al2O3复合镀层微观结构及高温性能[J].复合材料学报,2004,21(2):8-13.
    [137] 周理.氢能利用与高表面活性炭吸附储氢技术[J].科技导报,1999,12:10-11.
    [138] 张卫国,姚素薇,赵转清等.P 型单晶硅上电镀纳米 Ni-W-P 合金电极及其光照析氢研究[J].应用化学,2001,18(10):790-793.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700