纳米金刚石石墨化转变以及纳米金刚石/铜复合材料的制备与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
爆轰法合成的纳米金刚石(nanodiamond)不但具有金刚石所固有的硬度极高、化学稳定性和导热性好等优异性能,而且还具有纳米材料的奇异特性,作为铜基复合材料的弥散增强相具有很大的应用潜力。本文采用纳米金刚石作为弥散强化相,用粉末冶金法制备了综合性能较好的铜基复合材料(ND/Cu),重点研究了纳米金刚石的石墨化转变、ND/Cu复合材料的性能以及相应的强化机制。
     对纳米金刚石在不同温度下(900~1400°C)进行退火处理,研究了纳米金刚石的结构变化和石墨化转变机理。结果表明,纳米金刚石石墨化转变的起始温度为1100~1200°C,石墨化转变温度与纳米颗粒的大小相关,颗粒尺寸越大,发生石墨化转变的温度越高。在1400°C退火60min后纳米金刚石转变为形态各异的洋葱碳,转变过程中可以形成内核为纳米金刚石外层由富勒烯外壳包裹的过渡相巴基金刚石(Bucky-diamond)。纳米金刚石向洋葱碳转变的机制为:首先在纳米金刚石表面形成具有六元环结构的石墨碎片;石墨碎片连接并弯曲,在金刚石表面形成封闭的碳壳;转变由表层向心部逐渐进行,直到转变完全。
     采用机械球磨工艺制备纳米金刚石和铜粉的复合粉末,复合粉末经冷压—烧结工艺制得ND/Cu复合材料。研究了成型压力、烧结温度、烧结时间等工艺参数对复合材料微观结构和性能的影响,获得了本实验条件下最佳的粉末冶金工艺参数。采用该工艺制备了不同含量的ND/Cu复合材料并研究了纳米金刚石含量对材料性能的影响。结果表明,纳米金刚石含量低于1.0wt.%时,复合材料的强度、高温稳定性和耐磨性能显著提高;含量大于1.0wt.%,由于纳米金刚石出现较多的团聚现象,复合材料的强度等性能下降。
     采用退火处理的方法对纳米金刚石进行表面改性,研究了表面改性后纳米金刚石的分散性和ND/Cu复合材料的性能。结果表明,纳米金刚石在惰性气体中1000°C退火60min,由于表面结构和化学组成发生变化,纳米颗粒的团聚现象减少。因此复合材料的电导率和强度等性能指标明显提高,其中1.0wt.%ND/Cu复合材料的综合性能较好:电导率>80%IACS,硬度>HV120,抗拉强度>200MPa,抗软化温度为>800°C。
     用环-块式摩擦方法探讨了纳米金刚含量对复合材料摩擦磨损性能的影响及纳米金刚石的减摩机理。结果表明:干摩擦条件下的磨损过程是粘着磨损、氧化磨损、磨粒磨损和疲劳磨损多种磨损机制同时作用的结果。纳米金刚石在改善复合材料耐磨性方面表现出良好的自润滑性,具有减小摩擦系数和增强基体耐磨性的双重作用。
     采用高分辨透射电子显微镜(HRTEM)分析了ND/Cu复合材料的微观组织和界面特征,并探讨了纳米金刚石在复合材料中的强化机制。结果表明,铜基体上分布着单分散的纳米金刚石颗粒,颗粒分布比较均匀。ND/Cu复合材料的主要强化机制为纳米金刚石阻碍位错运动的Orowan机制。分散性良好的纳米金刚石与铜基体之间结合紧密,界面处无溶解和扩散现象,形成增强相与基体直接结合的界面微观结构。
Nanodiamond (ND) powders synthesized by explosive detonation possess not only excellent characteristics of bulk diamond such as superhardness, chemical stability and high thermal conductivity, but also special properties of nanomaterials. Therefore, ND powders as a kind of promising reinforcement have great application potentials in the field of copper matrix composite. In the paper, ND reinforced copper matrix composite (ND/Cu) was prepared by powder metallurgy technique. Graphitization of ND and the composite properties ( tensile strength, softening temperature, wear resistance and corresponding strengthening mechanism ) were mainly investigated.
     The microstructural transformation and graphitized mechanism of ND were discussed after the nanoparticles were annealed at 900~1400°C. The onion-like carbons began to form in the range of 1100~1200°C and the graphitized temperature of diamond nanoparticles changed with the crystalline degree corresponding to nanoparticle size. Annealed at 1400°C for 60min all the diamond nanoparticles could transform into onion-like carbons, and there existed an intermediary phase–Bucky diamond with a diamond core encased in fullerene-like shells. The transformation process of onion-like carbons from ND included: formation of graphite fragments with hexagonal carbon rings, connection and curvature of graphite sheets around the surface of nanoparticles, closure of graphite layers from the particle surface towards the center. Composite powders (ND+Cu) after ball milling were cold pressed and sintered. We have obtained the optimized parameters of powder metallurgy by analyzing the effect of initial pressure, sintering temperature and time on composite microstructure and properties. ND/Cu composite was prepared by the optimized process and the effect of ND content on composite properties was discussed. The results showed that low ND content (less than 1.0wt.%) could obviously improve the tensile strength, thermal stability and wear resistance of composite. When the ND content exceeded 1.0wt.%, the tensile strength of composite decreased owing to the aggregating of ND.
     The effect of surface modification on ND dispersion and composite properties was investigated. After annealed at 1000°C for 60min, ND aggregates were diminished due to the modification of surface structure and surface chemistry. The electrical conductivity and strength of composite were increased by surface modification of ND. The 1.0wt.% ND/Cu composite possessed preferable properties of electrical conductivity>80%IACS, hardness>HV120, tensile strength>200MPa and softening temperature>800°C.
     Tribological behavior of ND/Cu composite and the mechanism of ND on reducing the friction were studied by ring-on-block wear method. The results indicated that the wear process of composite was comprehensive effect of adhesion wear, oxidation wear, abrasive wear and fatigue wear. On improving the wear resistance of ND/Cu composite, ND particles exhibited self-lubrication characteristic by reducing friction coefficient and increasing the matrix strength.
     The microstructure and interface characterization were carried out by high- resolution transmission electron microscope and scanning electron microscope. The results demonstrated that the ND particles were homogeneously dispersed in the copper matrix. Dispersion strengthening of Orowan mechanism was the main factor of ND reinforced copper matrix composite. ND and copper matrix combined closely to form the directly integrating interface and there was no dissolution and diffusion in the interfacial area.
引文
[1] 郭斌,金永平,于斌,王尔德,粉末冶金受电弓滑板材料的设计及其性能研究,机械工程材料,2004,28(3):31-39
    [2] 丁俭,原位化学法制备纳米 ZrO2/Cu 复合材料的研究[博士学位论文],天津;天津大学,2007
    [3] 刘平,赵冬梅,田保红,高性能铜合金及其加工技术,北京,冶金工业出版社,2005,2
    [4] M.H. Lin, W. Buchgraber, G. Korb, Thermal cycling induced deformation and damage in carbon fiber reinforced copper composite, Scripta Materialia, 2002, 46:169-173
    [5] C. Eisenmenger-Sittner, C. Schrank, E. Neubauer, etal, Applied Surface Science, 2006, 252:5343-5346
    [6] G. Korb, J. Korab, G. Groboth, Thermal expansion behaviour of unidirectional carbon-fiber-reinforced copper-matrix composites, Composites: Part A, 1998, 29: 1563-1567
    [7] J. Korab, G. Korb, P. Stefanik, etal, Effect of thermal cycling on the microstructure of continuous carbon fiber reinforced copper matrix composites, Composites: Part A, 1999, 30:1023-1026
    [8] 于化顺,金属基复合材料及其制备技术,北京,化学工业出版社,2006,5-6
    [9] 克莱因,威瑟斯,金属基复合材料导论,北京,冶金工业出版社,1996,279
    [10] 韩胜利,田保红,宋克兴等,Al2O3 弥散强化铜基复合材料高温拉伸行为的研究,材料开发与应用,2004,19(1):9-11
    [11] 许并社,材料界面的物理与化学,北京:化学工业出版社,2006,8-9
    [12] 程建弈,汪明朴,高强高导高耐热弥散强化铜合金的研究现状,材料导报,2004,18(2):38-41
    [13] S.F. Moustafa, Z. Abdel-Hamid, A.M. Abd-Elhay, Copper matrix SiC and Al2O3 particulate composites by powder metallurgy technique, Materials Letters, 2002, 53:244-249
    [14] Sung-Tag Oh, Tohru Sekino, Koichi Niihara, Fabrication and mechanical properties of 5vol.% copper dispersed alumina nanocomposite, Journal of the European Ceramic Society, 1998, 18:31-37
    [15] Yuang-Fa Lee, Sheng-Long Lee, Effects of Al additive on the mechanical and physical properties of silicon reinforced copper matrix composites, Scripta Materialia, 1999, 41:773-778
    [16] 张中武,周敬恩,席生岐等,机械合金化W-Ni-Fe纳米复合粉的制备及结构研究,材料热处理学报,2004,25(1):1-4
    [17] 范景莲,刘军,严德剑等,细晶钨铜复合材料制备工艺的研究,粉末冶金技术,2004,22(2):83-86
    [18] P.A. Carvalho, I. Fonseca, M.T. Marques, etal, Characterization of copper- cementite nanocomposite produced by mechanical alloying, Acta Materialia, 2005, 53:967-976
    [19] M.T. Marques, V. Livramento, J.B. Correia, etal, Production of copper-niobiun carbide nanocomposite powders via mechanical alloying, Materials Science and Engineering A, 2005, 399:382-386
    [20] Tatsuhiko Aizawa, Cheng Zhou, Nanogranulation process into magneto-resistant Co-Cu alloy on the route of bulk mechanical alloying, Materials Science and Engineering A, 2000, 285:1-7
    [21] J. Ding, N.Q. Zhao, C.S. Shi, etal, In situ formation of Cu-ZrO2 composites by chemical routes, Journal of Alloys and Compounds, 2006, 425:390-394
    [22] Seung I. Cha, Kyung Tae Kim, Salman N. Arshad, etal, Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-lever mixing, Advanced materials, 2005, 17: 1377-1381
    [23] Kyung Tae Kim, Seung I. Cha, Soon Hyung Hong, Hardness and wear resistance of carbon nanotube reinforced Cu matrix nanocomposites, Materials Science and Engineering A, 2007, (449-451):46-50
    [24] Baohong Tian, Ping Liu, Kexing Song, etal, Microstructure and properties at elevated temperature of a nano-Al2O3 particles dispersion-strengthened copper base composite, Materials Science and Engineering A, 2006, (435-436):705-710
    [25] I.S. Kim, S.K. Lee, Fabrication of carbon nanofiber/Cu composite powder by electroless plating and microstructural evolution during thermal exposure, Scripta Materialia, 2005, 52:1045-1049
    [26] 邢宏伟,曹小明,胡宛平等,三维网络SiC/Cu金属基复合材料的凝固显微组织,材料研究学报,2004,18(6):597-605
    [27] 郭春杰,范志康,梁淑华等,熔渗法制备CrW/Cu复合材料的组织与性能研究,中国有色金属学报,2004,14(3):176-181
    [28] Hyun-Ki Kang, Microstructure and electrical conductivity of high volume Al2O3-reinforced copper matrix composites produced by plasma spray, Surface and Coating Technology, 2005, 190:448-45
    [29] Younghwan Jang, Sangshik Kim, Sangkwan Lee, etal, Fabrication of carbon nano-sized fiber reinforced copper composite using liquid infiltration process, Composites Science and Technology, 2005, 65:781-784
    [30] J.Y. Wu, Y.C. Zhou, J.Y. Wang, Tribological behavior of Ti2SnC particulate reinforced copper matrix composites, Materials Science and Engineering A, 2006, 422:266-271
    [31] Y. Zhan, J. Zeng, Y. Zhuang, Tribological properties of Al2O3/CuCrZr composites, Tribology Letters, 2005, 20(2):163-170
    [32] Yongzhong Zhan, Guoding Zhang, The role of graphite particles in the high-temperature wear of copper hybrid composites against steel, Materials and Design, 2006, 27:79-84
    [33] Yongzhong Zhang, Guoding Zhang, Friction and wear behavior of copper matrix composites reinforced with SiC and graphite particles, Tribology Letters, 2004, 17(1):91-98
    [34] 何奖爱,王玉玮,材料磨损与耐磨材料,沈阳:东北大学出版社,2001,34-35
    [35] 陈华辉,邢建东,李卫,耐磨材料应用手册,北京:机械工业出版社,2006
    [36] B. Bhushan,Introduction to tribology,摩擦学导论,葛世荣译,北京:机械工业出版社,2007,210-212
    [37] 张钦钊,李强,王爱香,刘紫兰,黄向东,铜-石墨自润滑触头材料的研究进展,材料导报,2005,19(2):43-46
    [38] YongZhong Zhan, Guoding Zhang, Graphite and SiC hybrid particles reinforced copper composite and its tribological characterstic, Journal of materials science letters, 2003, 22:1087-1089
    [39] M. Kestursatya, J.K. Kim, P.K. Rohtgi, Wear performance of copper-graphite composite and a leaded copper alloy, Materials Science and Engineering A, 2003, 339:150-158
    [40] Atsushi Hirata, Masaki Igarashi, Takahiro Kaito, Study on solid lubricant properties of carbon onions produced by heat treatment of diamond clusters or particles, Tribology International, 2004, 37:899-905
    [41] Z.J. Qiao, J.J. Li, N.Q. Zhao, Structural evolution and Raman study of nanocarbon from diamond nanoparticles, Chemical Physics Letter, 2006, 429(4-6):479-482
    [42] 郭明星,汪明朴,李周等,机械合金化制备不同粒子弥散强化铜合金的研究,稀有金属,2004,28(5):926-930
    [43] 湛永钟,张国定,蔡宏伟,高导电耐磨铜基复合材料的研究,机械工程材料,2003,27(11):18-21
    [44] A. Brendel, J. Woltersdorf, E. Pippel, etal, Titanium as coupling agent in SiC fiber reinforced copper matrix composites, Materials Chemistry and Physics, 2005, 91: 116-123
    [45] 王疆,郦剑,凌国平等,纳米 Cu-Al2O3 复合材料的烧结法制备研究,材料科学与工程学报,2004,22(6):893-895
    [46] Z.Y. Ma, S.C. Tjong, High temperature creep behavior of in-situ TiB2 particulate reinforced copper-based composite, Materials Science and Engineering, 2000, 284:70-76
    [47] C.C. Leong, L. Lu, J.Y.H. Fuh, etal, In-suit formation of copper matrix composites by laser sintering, Materials Science and Engineering A, 2002, 338:81-88
    [48] 王涂根,吴玉程,王文芳等,纳米 AlN 颗粒增强铜基复合材料的组织与性能研究,粉末冶金工业,2005,15(4):21-24
    [49] A. Moisala, Q. Li, I.A. Kinloch, et al, Composites Science and Technology, 2006, 66: 1285-1288
    [50] 丁志鹏,张孝彬,许国良等,碳纳米管/铝基复合材料的制备及摩擦性能研究,浙江大学学报,2005,11:1811-1815
    [51] 董树荣,应济,鲁阳,巴基管增强铜基复合材料的磨损性能研究,机械科学与技术,2001,20(1):94-95
    [52] 董树荣,涂江平,张孝彬,粉末冶金法制备纳米碳管增强铜基复合材料的研究,浙江大学学报,2001,35(1):29-32
    [53] Younghwan Jang, Sangshik Kim, Sangkwan Lee, etal, Fabrication of carbon nano-sized fiber reinforced copper composite using liquid infiltration process, Composites Science and Technology, 2005, 65:781-784
    [54] Katsuhito Yoshida, Hideaki Morigami, Thermal properties of diamond/copper composire material, Microelectronics Reliability, 2004, 44:303-308
    [55] 王秦生,超硬材料制造,北京:中国标准出版社,23
    [56] Q. Sun, O.T. Inal, Fabrication and characterization of diamond/copper composites for thermal management substrate applications, Materials Science and Engineering B, 1996, 41:261-266
    [57] V. Medeliene, V. Stankevic, G. Bikulcius, The influence of artificial diamondadditions on the formation and properties of an electroplated copper metal matrix coating, Surface and Coating Technology, 2003, 168:161-168
    [58] Katsuhito Yoshida, Hideaki Morigami, Thermal properties of diamond/copper composite material, Microelectronics Reliability, 2004, 44:303-308
    [59] Zhijun Qiao, Jiajun Li, Naiqin Zhao, etal, Graphitization and microstructure transformation of nanodiamond to onion-like carbon, Scripta Materialia, 2006, 54(2):225-229
    [60] V.L. Kuznetsov, A.L. Chuvilin, E.M. Moroz, Effect of explosion conditions on the structure of detonation soots: ultradisperse diamond and onion carbon, Carbon, 1994, 32(5):873-882
    [61] 文潮,孙德玉,李迅,炸药爆轰法制备纳米石墨粉及其在高压合成金刚石中的应用,物理学报,2004,53(4):1260-1264
    [62] J.B. Donnet, E. Fousson, T.K. Wang, Dynamic synthesis of diamonds, Diamond and Related Materials, 2000, 9:887-892
    [63] 王柏春,朱永伟,陈立舫等,爆轰产物法合成纳米金刚石研究现状,矿冶工程,2002,22(3):96-100
    [64] K. Iakoubovskii, M.V. Baidakova, B.H. Wouters. Structure and defects of detonation synthesis nanodiamond, Diamond and Related Materials, 2000, 9: 861-865
    [65] J.Hiraki, H. Mori, E. Taguchi, etal, Transformation of diamond nanoparticles into onion-like carbon by electron irradiation studied directly inside an ultrahigh-vacuum transmission electron microscope, Applied Physics Letters, 2005, 86:223101
    [66] T. Enoki, Diamond-to-Graphite conversion in nanodiamond and the electronic properties of nanodiamond-derived carbon system, Physics of the Solid State, 2004, 46(4): 651-656
    [67] A. Kruger, F. Kataoka, M. Ozawa, etal, Unusually tight aggregation in detonation nanodiamond: Identification and disintegration, Carbon, 2005, 43:1722-1730
    [68] E.D. Eidelman, V.I. Siklitsky, L.V. Sharonova, etal, A stable suspension of single ultrananocrystalline diamond particles, Diamond and Related Materials, 2005, 14:1765-1769
    [69] Hideo Sawada, Jun Kurachi, Hidetake Takahashi, etal, Dispersion of nanodiamond into organic media by the use of fluoroalkyl end-capped oligomers—applications to surface modification of poly(methyl methacrylate) with the dispersednanodiamond, Polymers for Advanced Technologies, 2005, 16:651-654
    [70] Kang Xu, Qunji Xue, Deaggregation of ultradispersed diamond from explosive detonation by a graphitization-oxidation method and by hydroiodic acid treatment, Diamond and Related Materials, 2007, 16(2):277-282
    [71] Lang Li, J.L. Davidson, Charles M. Lukehart, Surface functionalization of nanodiamond particles via atom transfer radical polymerization, Carbon, 2006, 44: 2308-2315
    [72] B.V. Spitsyn, J.L. Davidson, M.N. Gradoboev, Inroad to modification of detonation nanodiamond, Diamond and Related Materials, 2006, 15:296-299
    [73] 罗立群,张泾生,朱永伟,纳米金刚石的研究与应用现状,材料导报,2004,18:127-131
    [74] 石晓琴,江晓红,陆路德等,铜/纳米金刚石复合物的结构及其对高氯酸铵热分解的催化作用,无机化学学报,2006,22(2):316-320
    [75] Jeong-Yeong Lee, Dong-Phill Lim, Dae-Soon Lim, Tribological behavior of PTFE nanocomposite films reinforced with carbon nanoparticles, Composites: Part B, 2007, 16(2):277-282
    [76] Jung-Yeob Lee, Dae-Soon Lim, Tribological behavior of PTFE films with nanodiamond, Surface and Coatings Technology, 2004, 188-189:534-538.
    [77] T. Tyler, O. Shenderova, G. Cunningham, Thermal transport properties of diamond-based nanofluids and nanocomposites, Diamond and Related Materials, 2006, 15(11-12):2078-2081
    [78] O. Shenderova, T. Tyler, G. Cunningham, etal, Nanodiamond and onion-like carbon polymer nanocomposites, Diamond and Related Materials, 2007, 16(4-7):1213-1217
    [79] 徐滨士,朱绍华,刘世参,材料表面工程,哈尔滨:哈尔滨工业大学出版社,2005,213-214
    [80] 王立平,高燕,薛群基等,纳米金刚石对电沉积镍基复合镀层微观结构及抗磨性能的影响,摩擦学学报,2004,24(6):488-492,
    [81] 金属基纳米金刚石复合材料的制备工艺研究,相英伟,张晋远,金成海,粉末冶金工艺,2001,11(2):14-20
    [82] 成会明,纳米碳管制备、结构、物性及应用,北京:化学工业出版社,124
    [83] S.V. Rotkin, Y. Gogotsi, Analysis of non-planar graphitic structures: from arched edge planes of graphite crystals to nanotubes, Materials research innovation, 2002, 5:191-200
    [84] Daniel Ugarte, Curling and closure of graphitic networks under electron-beam irradiation, Nature, 1992, 359:707-709
    [85] B.C. Wang, H.W. Wang, J.C. Chang, etal, More spherical large fullerenes and multi-layer fullerene cages, Journal of Molecular Structure, 2001, 540:171-176
    [86] M.I. Heggie, M. Terrons, B.R. Eggen, etal, Quantitative density-functional study of nested fullerenes, Physical Review B, 1998, 57(21):13339-13342
    [87] M.Y. Gamarnik, Size-related stabilization of diamond nanoparticles, Nanostructured Materials, 1996, 7(6):651-658
    [88] Satoshi Tomita, Andrzej Burian, John C. Dore, etal, Diamod nanoparticles to carbon onions transformation: X-ray diffraction studies, Carbon, 2002, 40:1469-1474
    [89] M.V. Baidakova, V.I. Siklitsky, A.YA. Vul, Ultradisperse-diamond nanoclusters, fractal structure and diamond-graphite phase transition, Chaos, Solitions and Fractals, 1999, 10(12):2153-2163
    [90] Jian Chen, S.Z. Deng, Jun Chen, etal, Graphitization of nanodiamond powder annealed in argon ambient, Applied Physics Letters, 1999, 74:3651-3653
    [91] V.L. Kuznetsov, Yu.V. Butenko, V.I. Zaikovskii, etal, Carbon redistribution processes in nanocarbons, Carbon, 2004, 42:1057-1061
    [92] A.I. Shames, A.M. Panich, W. Kempinski, etal, Defect and impurities in nanodiamond: ERP, NMR and TEM study, Journal of Physics and Chemistry of solids, 2002, 63:1993-2001
    [93] N.S. Xu, Jian Chen, S.Z. Deng, Effect of heat treatment on the properties of nano-diamond under oxygen and argon ambient, Diamond and Related Materials, 2002, 11:249-256
    [94] D.S. Zhao, M. Zhao, Q. Jiang, Size and temperature dependence of nanodiamond-nanographite transition relater with surface stress, Diamond and Realted Materials, 2002, 11:234-236
    [95] B.L. Prasad, Hirohiko Sato, Toshiaki Enoki, Heat-treatment effect on the nanosized graphite π-electron system during diamond to graphite conversion, Physical Review B, 2000, 62(16):11209-11218
    [96] Yu.V. Butenko, V.L. Kuznetsov, A.L. Chuvilin, etal, Kinetics of graphitization of dispersed diamonds at low temperatures, Journal of Applied Physics, 2000, 88(7):4380-4388
    [97] O.E. Andersson, B.L.V. Prasad, H. Sato, etal, Structure and electronic propertiesof graphite nanoparticles, Physical Review B, 1998, 58(24): 16387-16395
    [98] Cun-Do Lee, Heat-induced transformation of nanodiamond into a tube-shaped fullerene, Physical Review Letters, 2003, 91(26):265701
    [99] 张立德,谢思深,纳米材料和纳米结构,北京,化学工业出版社,2005,19
    [100] Jiang Q, Li JC, Wilde G, The size dependence of the diamond-graphite transition, Journal of Physics-Condensed Materials, 2000, 12(26):5623-5627
    [101] A.S. Barnard, S.P. Russo, I.K. Snook, Coexistence of bucky diamond with nanodiamond and fullerene carbon phase, Physical Review B, 2003, 68:073406
    [102] J. Qian, C. Pantea, J. Huang, etal, Graphitization of diamond powders of different sizes at high pressure-high temperature, Carbon, 42:2691-2697
    [103] V.L. Kuznetsov, I.L. Zilberberg, Yu.V. Butenko, etal, Theoretical study of the f ormation of closed curved graphite-like structures during annealing of diamond surface, Journal of Applied Physics, 1999, 86(2):863-869
    [104] C. Pantea, J. Qian, G.A. Voronin, etal, High pressure study of graphitization of diamond crystals, Journal of Applied Physics, 2002, 91(4):1957-1962
    [105] V.L. Kuznetsov, I.L. Ziberberg, Yu.V. Butenko, etal, Theoretical study of the formation of closed curved graphite-like structures during annealing of diamond surface, Journal of Applied Physics, 1999, 86(2):863-870
    [106] V.L. Kuznetsov, A.L. Chuvilin, Yu.V. Butenko, etal, Onion-like carbon from ultra-disperse diamond, Chemical Physics letters, 1994, 222:343-348
    [107] V.L. Kuznetsov, Yu.V. Butenko, A.L. Chuvilin, etal, Electrical resistivity of graphitized ultra-disperse diamond and onion-like carbon, Chemical Physics letters, 2001, 336:397-404
    [108] A.S. Barnard, S.P. Russo, I.K. Snook, Structural relaxation and relative stability of nanodiamond morphologies, Diamond and Related materials, 2003, 12: 1867-1872
    [109] Gun-Do Lee, C.Z. Wang, Jaejun Yu, etal, Heat-induced transformation of nanodiamond into a tube-shaped fullerene: A molecular dynamics simulation, Physical Review Letters, 2003, 91(26):265701
    [110] A. Brodka, T.W. Zerda, A. Burian, Graphitization of small diamond cluster Molecular dynamics simulation, Diamond and Related materials, 2006, 15:1818-1821
    [111] O.O. Mykhaylyk, Y.M. Solonin, D.N. Batchelder, etal, Transformation of nanodiamond into carbon onions: A comparative study by high-resolutiontransmission electron microscopy, electron energy-loss spectroscopy, x-ray diffraction, small-angle x-ray scattering, and ultraviolet Raman spectroscopy, Journal of Applied Physics, 2005, 97:074302
    [112] A.S. Barnard, Theory and modeling of nanocarbon phase stability, Diamond and Related Materials, 2006, 15(2-3):285-291
    [113] Q. Jiang, Z.P. Chen, Thermodynamic phase stabilities of nanocarbon, Carbon, 2006, 44:79-83
    [114] C.Z. Wang, K.M. Ho, M.D. Shirk, etal, Laser-induced graphitization on diamond (111) surface, Physical Review Letters, 2000, 85(19):4092-4095
    [115] M. Veres, M. Fule, S. Toth, etal, Surface enhanced Raman scattering investigation of amorphous carbon, Diamond and Related Materials, 2004, 13: 1412-1415
    [116] M. Pandey, R.D. cunha, A.K. Tyagi, Defects in CVD diamond: Raman and XRD studies, Journal of Alloys and Compounds, 2002, 333:206-265
    [117] M. Jinno, Y. Ando, S. Bandow, etal, Raman scattering study for heat-treated carbon nanotubes: The origin of ≈1855cm-1 Raman band, Chemical Physics Letters, 2006, 418:109-114
    [118] D. Roy, Manish Chhowalla, H. Wang, Characterization of carbon nano-onions using Raman Spectroscopy, Chemical Physics Letters, 2003, 373:52-56
    [119] A.V. Gubarevich, J. Kitamura, S. Usuba, Onion-like carbon by plasma spraying of nanodiamonds, Carbon, 2003, 41:2601-2606
    [120] S. Prawer, K.W. Nugent, D.N. Jamieson, etal, The Raman spectrum of nanocrystalline diamond, Chemical Physics Letters, 2000, 332:93-97
    [121] D.R. Tallant, J.E. Parmeter, M.P. Siegal, etal, The thermal stability of diamond like carbon, Diamond and Related Materials, 1995, 4:191-199
    [122] S Talapatra, Ju-Yin Cheng, N Chakrapani, etal, Nanotechology, 2006, 17: 305-309
    [123] J.B. Wang, C.Y. Zhang, X.L. Zhong, etal, Cubic and hexagonal structures of diamond nanocrystals formed upon pulsed laser induced liquid-solid interfacial reaction, Chemical Physics Letters, 2002, 361:86-90
    [124] E. Perevedentseva, A. Karmenyan, P.H. Chung, etal, Surface enhanced Raman spectroscopy of carbon nanostructures, Surface Science, 2006, 600(18): 3723-3728
    [125] G.N. Yushin, S. Osswald, V.I. Padalko, etal, Effect of sintering on structure ofnanodiamond, Diamond and Related Materials, 2005, 14:1721-1729
    [126] M.S. Zwanger, F. Banhart, A. Seeger, Formation and decay of spherical concentric-shell carbon clusters, Journal of Crystal Growth, 1996, 163:445-454
    [127] V.Yu. Osipov, T. Enoki, K. Takai, etal, Magnetic and high resolution TEM studies of nanographite derived from nanodiamond, Carbon, 2006, 44:1225-1234
    [128] Lu-Chang Qin, Sumio Iijima, Onion-like graphitic particles produced from diamond, Chemical Physics Letters, 1996, 262:252-258
    [129] A.S. Barnard, S.P. Russo, I.K. Snook, Size dependent phase stability of carbon nanoparticles:Nanodiamond versus fullerenes, Journal of Chemical Physics, 2003, 118(11):5094-5097
    [130] A.M. Panich, A.I. Shames, H.M. Vieth, Nuclear magnetic resonance study of ultrananocrystalline diamonds, The European Physical Journal B, 2006, 52: 397-402
    [131] Sh. Michaelson, A. Hoffman, Hydrogen bonding, content and thermal stability in nano-diamond films, Diamond and Related Materials, 2006, 15(4-8):486-497
    [132] Sh. Michaelson, A. Hoffman, Hydrogen in nano-diamon films, Diamond and Related Materials, 2005, 14:470-475
    [133] D. Mitev, R. Dimitrova, M. Spassova, etal, Surface peculiarities of detonation nanodiamonds in dependence of fabrication and purification methods, Diamond and Related Materials, 2007, 16(4-7):776-780
    [134] O. Shenderova, I. Petrov, J. Walch, Modification of detonation nanodiamonds by heat treatment in air, Diamond and Related Materials, 2006, 15(11-12):1799-1803
    [135] Yu Liu, Zhenning Gu, John L. etal, Functionalization of Nanoscale Diamond Powder: Fluoro-, Alkyl-, Amino-, and Amino Acid-Nanodiamond Derivatives, Chemistry of Materials, 2004, 16:3924-3930
    [136] 文潮,金志浩,刘晓新等,炸药爆轰合成纳米金刚石的拉曼光谱和红外光谱研究,光谱学与光谱分析,2005,25(5):681-684
    [137] 朱永法,纳米材料的表征与测试技术,北京,化学工业出版社,238
    [138] Matthias Ramm, Masafumi Ata, Klaus-Werner Brzezinka, Studies of amorphous carbon using X-ray photoelectron spectroscopy, near-edge X-ray-absorption fine structure and Raman spectroscopy, Thin Solid Filmms, 1999, 354:106-110
    [139] Namwoong Paik, Raman and XPS studies of DLC films prepared by a magnetron sputter-type negative ion source, Surface and Coatings Technology, 2005, 200:2170-2174
    [140] Xiangyang Xu, Zhiming Yu, Yongwei Zhu, etal, Influence of surface modification adopting thermal treatments on dispersion of detonation nanodiamond, Journal of Solid State Chemistry, 2005, 178:688-693
    [141] 丁红燕,周广宏,章跃等,混粉工艺对纳米 Al2O3 弥散强化铜基复合材料摩擦学性能的影响,润滑与密封,2006,1:69-71
    [142] 黄培云,粉末冶金原理,北京,冶金工业出版社,1982,81
    [143] 刘军,粉末冶金与陶瓷成型技术,北京,化学工业出版社,2005,16
    [144] V. Livramento, J.B. Correia, N. Shohoji, etal, Nanodiamond as an effective reinforcing component for nano-copper, Diamond and Related Materials, 2007, 16(2):202-204
    [145] 周作平,申小平,粉末冶金机械零件实用技术,北京,化学工业出版社,2006,288
    [146] 李荣久,陶瓷-金属复合材料,北京,冶金工业出版社, 2004,133
    [147] D.V. Kudashov, H. Baum, U. Martin, etal, Microstructure and room temperature hardening of ultra-fine-grained oxide- dispersion strengthened copper prepared by cryomilling, Materials Science and Engineering A, 2004, 387-389:768-771
    [148] 王盘鑫,粉末冶金学,北京,冶金工业出版社,190
    [149] Liu YB, Li SC, Lu L, etal, Recent development in the fabrication of metal matrix-particulate composites using powder metallurgy techniques, Journal of Materials Science, 1994, 29(8):1999-2007
    [150] K. Hanada, M. Mayuzumi, N. Nakayama, etal, Processing and characterization of cluster diamond dispersed Al-Si-Cu-Mg composite, Journal of Materials Processing Technology, 2001, 119:216-221
    [151] S.C. Tjong, K.C. Lau, Tribological behaviour of SiC particle-reinforced copper matrix composites, Materials Letters, 2000, 43:274-280
    [152] 徐滨士,纳米表面工程,北京,化学工业出版社,237
    [153] 张家玺,纳米金刚石在缸套-活塞环磨合期摩擦学改性研究[博士学位论文],西安:西安交通大学,1998
    [154] Yinwei Xiang, Jinyuan Zhang, Chenghai Jin, etal, Anti-friction properties of Cu10Sn-based composite containing nanometer diamond particles, Wear, 2000, 242:202-206
    [155] 王艳辉,臧建兵,王明智,纳米金刚石在摩擦副界面的减摩耐磨机理探讨,金刚石与磨料磨具工程,2001,4(124):4-6
    [156] Sebastian Osswald, Gleb Yushin, Vadym Mochalin, etal, Control of sp2/sp3carbon ratio and surface chemistry of nanodiamond powder by selective oxidation in air, JACS, 2006, 128:11635-11642
    [157] Jeong-Yeong Lee, Dong-Phill Lim, Dae-Soon Lim, Tribological behavior of PTFE nanocomposite films reinforced with carbon nanoparticles, Composites: Part B, 2007, Inpress
    [158] B. Palosz, C. Pantea, E. Grzanka, etal, Investigation of relaxation of nanodiamond surface in real and reciprocal spaces, Diamond and related materials, 2006, 15(11-12):1813-1817
    [159] Xiangyang Xu, Yongwei Zhu, Baichun Wang, Mechanochemical dispersion of nanodiamond aggregates in aqueous media, Journal of Materials Science and Technology, 2005, 21:109-112
    [160] P.K. Deshpande, R.Y. Lin, Wear resistance of WC particle reinforced copper matrix composites and the effect of porosity, Materials Science and Engineering A, 2006, 418(1-2):137-145
    [161] S.C. Tjong, K.C. Lau, Tribological behaviour of SiC particle-reinforced copper matrix composites, Materials Letters, 2000, 43:274-280
    [162] S.C. Tjong, K.C. Lau, Abrasive wear behavior of TiB2 particle-reinforced copper matrix composites, Materials Science and Engineering A, 2000, 282:183-186
    [163] 梁淑华,范志康,时惠英等,超细 Al2O3 颗粒增强铜基复合材料的研究,复合材料学报,1998,15(3):44-48
    [164] Atsushi Hirata, Masaki Igarashi, Takahiro Kaito, Study on solid lubricant properties of carbon onions produced by heat treatment of diamond clusters or particles, Tribology International, 2004, 37:899-905
    [165] P. Agrawal, C.T. Sun, Fracture in metal-ceramic composites, Composite Science and Technology, 2004, 64:1167-1178
    [166] D.L. Zhang, S. Raynova, C.C. Koch, Consolidation of a Cu-2.5%vol.%Al2O3 powder using high energy mechanical milling, Materials Science and Engineering A, 2005, 410-411:375-380
    [167] 胡保全、牛晋川,先进复合材料,北京,国防工业出版社,2006,168
    [168] V. Gerold, Dislocations in solid, Northholland, Amsterdam, 1979, 4:219
    [169] A.V. Nadkarni, Dispersion strengthened copper properties and applications, Metall. Soc. AIME, Warrendale, 1984, 77-101
    [170] Holzwarth U, Stamm H, The precipitation behaviour of ITER-grade Cu-Cr-Zr alloy after simulating the thermal cycle of hot isostatic pressing, Journal of Nuclear Materials, 2000, 279(1):31-45

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700