大型复合板材自适应恒压砂带磨削关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着宇航工业和其他工业的迅速发展,对各类大型金属复合板材的表面质量和性能提出了更高的要求。作为工件的大型复合板材与小型平面板材完全不同,通过爆炸结合后一般表面平面度很差,存在不同程度的翘曲变形,表面呈波浪状。采用普通的平面磨削,磨头不能较好跟随工件型面变化,磨削时易出现在工件突起处过量磨削和在工件凹谷处磨削不到的磨削不均匀现象,这样磨削出来的工件表面质量差,其性能已经满足不了实际使用要求了。同时,传统的手工打磨方式不仅劳动强度大、效率低下、环境效益差并且经常也会出现磨削不均匀现象。
     为了更好的使得磨削加工过程中磨头磨具快速有效地跟随板材型面起伏变化,控制恒压力接触被磨工件,防止出现工件部分位置磨削加工不到位或过磨的现象,以保证其磨削深度尺寸和磨削加工表面质量。结合砂带磨削和自适应的诸多优点,本论文在阅读和研究大量国内外相关领域文献和平面砂带磨削工业控制加工的背景下,开展了针对大型复合板材的自适应恒压砂带磨削关键技术研究。主要内容及研究成果如下:
     ①、分析大型板材在磨削加工中存在的问题,并根据平面砂带磨床磨削控制特点与目前一般控制系统的常用处理方法,对平面恒压砂带磨床控制系统算法策略进行研究,研究了控制系统采用自适应控制算法的必要性和可行性。
     ②、根据平面磨床控制功能的要求,进行了自适应控制系统硬件选型及结构搭建,同时系统进行抗干扰处理,保证控制系统的稳定性。
     ③、结合平面砂带磨床磨头磨削机构和控制系统,研究并建立了系统控制对象数学模型,并进行简化和工程化处理。
     ④、研究了广义最小方差自校正控制器的设计方法及其模型参数辨识方法并进行了算法仿真,并将该算法应用到平面砂带磨床控制中,解决加工大型复合板材磨削过程中磨头不能随板材型面浮动,难以保证恒压磨削的难题。
     ⑤、在平面砂带磨削试验机床上进行了磨削试验研究。试验证明,本课题控制系统采用的自适应自校正控制算法的可行性和有效性。
With the rapid development of aerospace industry and other industries, higher requirements of surface quality and performance for large-scale composite plants are put forward. However, unlike small plates, parallelism of larger composite plate after rolling is very poor and different degrees of warpage are existed. Most of composite plates are of difficult-machine materials, so it is extremely difficult to grind oxide made after rolling. As the grinding uneven, quality of the work piece surface is very poor after conventional grinding, which has failed to meet the actual requirements. While the traditional manual grinding is inefficient and uneven grinding phenomena often occur. To effectively solve the problems of abrasive tools change with plate surface, constant pressure contact with workpiece to control grinding depth and grinding not enough or grinding too depth in some position, raising the surface grinding quality. In the paper, key technologies of adaptive constant pressure abrasive belt grinding for large-scale composite plates were studied on the basis of referencing a lot of related literatures home and abroad and combined with the many advantages of abrasive belt grinding and adaptive control.
     Main research contents and conclusions are as follows:
     ①、Problems of the large-scale composite plants by the grinding have been analyzed. Algorithm strategy of flat belt grinding machine control system has been studied in accordance with abrasive belt grinding machine control characteristics and the present treatment methods commonly used. The necessity and feasibility of adaptive control algorithm system was given.
     ②、According to the requirements of flat grinding machine control functions, construct architecture of adaptive control system hardware selection is established, and at the same time, interference of the system is treated, which ensure the stability of control system.
     ③、The mathematic model of system control object was established and engineering processed combined with the grinding bodies of plat abrasive belt grinding machine and its control system.
     ④、The generalized minimum variance self-tuning controller design method and model parameter identification methods for algorithm simulation were researched. The algorithm is applied to the flat abrasive belt grinder to solve the problem of grinding head can not float with planes surface, difficult to ensure constant grinding in the process grinding.
     ⑤、Grinding tests were conducted on flat abrasive belt grinding machine. It has revealed that the adaptive self-tuning control algorithm used in the control system is feasible and effective.
引文
[1]王维朗,潘复生.砂带磨削技术及材料的研究现状和发展前景[J].材料导报,2002,106-108.
    [2]李伯民等.现代磨削技术[M].北京:机械工业出版社,2003.
    [3]陈延君,黄云等.国内外砂带技术的发展及应用[J].航空制造技术,2007.
    [4]倪德荣.谈谈大平面磨床磨削时所遇到的问题[J].机床与工具.1995,12.
    [5]徐立铣.平面磨床现场测试分析五例[J].磨床与磨削. 1996,4.
    [6]黄云.砂带磨削原理及其应用[M].重庆:重庆大学出版社.1993.
    [7]张培根,陈国宏,郑三中等.变力随形修磨原理[J].兰州铁道学院学报.1999,(6):59~64.
    [8] W.Konigt, Y.Altintast and F.Memist. Direct adaptive control of plunge grinding process using acoustic emission (AE) sensor [J]. International Journal of Machine Tools and Manufacture. 1995, 35(10):1445-1457.
    [9] S.P. Moustakidis, G.A.Rovithakis, J.B.Theocharis. An adaptive neuro-fuzzy tracking control for multi-input nonlinear dynamic systems[J]. Automatica. 2008, 44 (2):1418–1425.
    [10] Y.M.Ali and L.C.Zhang. A fuzzy model for predicting burns in surface grinding of steel [J]. International Journal of Machine Tools and Manufacture. 2004, 44(5):563-571.
    [11] Hidehiko, Takeyama,“Adaptive Control in Belt Grinding”, CIRP,Vol,21/1,1972.
    [12] Shibata,“Adaptive Control for conveyer-type belt grinding”,annuals of the CIRP Vol 29/1,1980.
    [13] Y.M.Ali and L.C.Zhang.A fuzzy model for prediction burns in surface grinding of steel.ARTICLE Internation Journal of Machine Tools and Manufacture, Volume 44, Issue 5, April 2004,pages 563-571.
    [14] W.Konigd,Y.Altintas and F.Memis.Direct adaptive control of plunge grinding processing using acoustic emission(AE)sensor. ARTICLE Internation Journal of Machine Tools and Manufacture, Volum 35, Issue 10, October 1995,pages 1445-1457.
    [15] L.Goo,A.Schone,X.Ding.Grinding force control using nonlinear adaptive strategy,pp459一462 ABSTRACT Control Engineering Practice, Volume 3,Issue 1,January 1995,Page 127.
    [16] Ulsoy, A. Galip. Applications of adaptive control to machinetool process control[J].IEEE Control Systems Magazine,1989,9(4):33-37.
    [17] Shyu KK, Lai CK, Tsai YW, Yang DI. A newly robust controller design for the position control of permanent—magent synchronous motor IEEE TRANSYCTIONS ON INDUSTRIAL EL ECTRONICS 49(3):558~565 JUN 2002.
    [18] Parks P C. Lyapunov redesign of model reference adaptive control systems. IEEE Trans.Autom. Control.1966 ,AC 11 ; 362-367
    [19] Drossber RW. An approach to model - reference adaptive control system. IEEE Trans. Autom. control ,1967.75-80.
    [20]王家忠、王龙山等.外圆纵向磨削表面粗糙度的模糊预测与控制[J].吉林大学学报.2005(7):386-390.
    [21]刘贵杰等人.基于交流异步电机驱动磨床进给位移的自学习控制[J].东北大学学报.2001,3.
    [22]郑国强.无心通磨加工的自适应控制[J].洛阳工学院学报。2001,(9):19-21
    [23]黄民双、曾励等.用IBM-PC机实现切入式磨床的自适应预报控制系统[J].现代机械.1999,(1):22-24.
    [24]董秀林.径向切入磨削加工的新程式及其自适应预测最优控制方法[J].机床与液压.1999,(4):36-40.
    [25]王家忠、周桂红等.外圆纵向磨削自适应控制器[J].机床与液压.2008,(4):244-246.
    [26]王家忠.外圆纵向智能磨削关键技术研究[D].吉林大学, 200616: 109-123.
    [27]魏伟,张军善,郑书谦.自适应预报控制系统在磨床上的应用[J].机床与液压.2004,(9):43-47.
    [28]叶毕成.自适应控制在磨床上的应用研究[D].兰州理工大学,硕士学位论文. 2006.
    [29]许庆顺.钛合金板材砂带恒压抛磨过程型面自适应控制技术研究[D].重庆大学,硕士学位论文.2008,3.
    [30]卫民军.自适应控制拉弯机开发系统工程研究[D].西北工业大学,硕士学位论文.2004.
    [31]荣大龙,顾启民.工控机IPC-PLC-电器控制技术.南京:东南大学出版社.2003.
    [32]刘恩沧.计算机控制系统分析与设计[M].武汉:华中科技大学出版社.1997.
    [33]现代实用气动技术.SMC(中国)有限公司.北京:机械工业出版社.2004.
    [34]曲波,圣兵等.常用传感器选型指南[M].北京:清华大学出版社.2002.01
    [35]常健生.检测与转换技术[M].北京:机械工业出版社.1999.12
    [36]何金田,张斌.传感器原理与应用课程设计指南[M].哈尔滨:哈尔滨工业大学出版社,2009,1.
    [37]张忠贤等.变频器产生的电磁噪声及其抑制技术[J].机床电器,2003(4):23-27.
    [38]葛长虹.工业测控系统的抗干扰技术[M]北京:冶金工业出版社,2006.04.
    [39]黄云,黄智.现代砂带磨削技术及工程应用[M].重庆:重庆大学出版社.2009,6.
    [40]孔祥臻.气动比例系统的动态特性与控制研究.山东大学,博士学位论文.2007.
    [41]徐炳辉等.气动手册[M].上海:上海科学技术出版社2005,5.
    [42]钟圣国,彭光正.利用电/气比例阀的容腔压力控制系统的建模与仿真[J].机床与液压.2004,(10)90-93.
    [43]柏艳红,李小宁.比例阀控摆动气缸位置伺服系统及其控制策略研究[J].液压与气动2005,(2):10-12.
    [44]孙国强.压电式气动比例阀及气缸精密驱动研究[D]吉林大学,硕士学位论文.2005.
    [45]赵建海,谢友宝.电气比例阀气压控制系统数学模型的建立及研究[J].机械与电子.2008,(2)82-83.
    [46]闵为.气动比例伺服系统控制算法及实验研究.重庆大学,硕士学位论文.2006.
    [47]周鹏.砂带磨削参数采集实验装置的研制[D].重庆大学,硕士学位论文.2003.
    [48]杨承志,孙棣华,张长胜.系统辨识与自适应控制[M].重庆:重庆大学出版社.2003.
    [49]谢新民,丁锋.自适应控制系统[M].北京:清华大学出版社.2002.
    [50]王志贤,最优状态估计与系统辨识[M].西安:西北工业大学出版社.2004
    [51]庞中华,崔红.系统辨识与自适应控制MATLAB仿真[M].北京:北京航空航天大学出版社.2009.
    [52]言俊等.系统辨识理论及应用.北京:国防工业出版社.2003 .
    [53]徐湘元.自适应控制理论与应用[M].北京:电子工业出版社.2007.
    [54]李清泉.自适应控制系统理论、设计与应用[M].北京:科学出版社.1990.
    [55]熊光楞等编著.连续系统仿真与离散事件系统仿真.北京:清华大学出版社.1991.
    [56]陈在平,杜太行.控制系统计算机仿真与CAD—MATLAB语言应用[M].天津:天津大学出版社.2001
    [57]楼顺天,于卫编著.基于MATLAB的系统分析与设计.西安:西安电子科技大学出版社,1998
    [58]韩德厚,郑三中,高溥等.变力随形磨削的实物模拟实验.兰州铁道学院学报. 1999,(12):72~77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700