钒化合物纳米晶的制备和性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国钒的储量非常丰富,为了充分开发利用钒资源,对钒系化合物的合成、性质、反应机理及应用研究引起人们广泛的兴趣和重视。但是目前合成钒化合物的方法主要为固相反应法、气相沉积法和水热法等,尽管它们都具有自身的各种优点,但是大部分方法都存在一些明显缺点,如能耗高(高温高压)、设备昂贵、工艺复杂、产物纯度低、易粘结等。因此,探索新方法制备钒氧化物和钒复杂氧化物纳米结构并研究其光学性质,对充分开发利用钒资源、寻找新型钒基发光材料和高活性催化剂具有重要的意义。
     本文采用水热法、复合盐媒介法和复合氢氧化物媒介法制备出了不同形貌的V_3O_7·H_2O、V_3O_7、AgVO_3、Pb_5(VO_4)_3OH、Ba_3V_2O_8、NdVO_4的纳米晶和微晶,并对热性能、光电响应性能、磁性、发光性能和光催化性能等进行了研究。本文的主要研究内容包括:
     ①采用复合盐媒介法合成了钒酸钕(NdVO_4)纳米线。该钒酸钕纳米线为四方相结构,直径约100nm、长约3μm,且多根纳米线以根部为中心连接在一起。NdVO_4纳米线对紫外光和可见光都有很强的吸收,从紫外到近红外区有四个很强的吸收峰。以罗丹明B为光催化降解对象,测定了NdVO_4纳米线的光催化活性,结果表明该纳米线具有很好的光催化活性。为了研究其光吸收性能和光催化机理,我们计算钒酸钕晶体的态密度。
     ②采用复合氢氧化物媒介法(CHM)合成了钒酸铅(Pb_5(VO_4)_3OH)的微、纳米晶体。该晶体的形貌可通过反应时间和原料比调控,从相互分离的短棒转变为分支为短棒的束状晶体。紫外可见反射谱表明Pb_5(VO_4)_3OH晶体的带隙为2.92eV。本文测定了Pb_5(VO_4)_3OH晶体在10~300K温度范围内的发光性能,325nm光激发下该晶体在室温下能发出蓝光(430nm),在低温下能发出较强的红光(623nm和672nm)。本文还讨论了Pb_5(VO_4)_3OH晶体的发光机理。
     ③以V_2O_5和BaCl_2为前驱物采用复合氢氧化物媒介法在200℃下制备了钒酸钡纳米花。X射线衍射谱表明该纳米晶体由六方相的Ba_3V_2O_8和极少量四方相Ba_3VO_(4.8)共同组成。纳米花是由厚度小于20nm的纳米片组成。该纳米晶体的光学带隙有两个(3.85eV和3.12eV)。该纳米晶体在室温下能激发出可见光(492nm和525nm),其发光性能主要与晶体中VO_4对称四面体有关。本文还测定了钒酸钡纳米花的磁性,晶体的饱和磁化强度为83.50×10~(-3)emu/g,,矫顽力为18.89Oe,剩磁为4.63×10~(-3) emu/g。该晶体的磁性主要源于非钒酸盐氧化态V~(4+)(S=1/2)。同时还合成了Eu~(3+)掺杂钒酸钡纳米花,并研究了掺杂后纳米花的发光性能和磁性。
     ④采用水热法合成了V_3O_7·H_2O纳米带,该纳米带为正交相单晶体,宽度约100~500nm,长达100μm。由V_3O_7·H_2O纳米带的热重分析可知,该晶体在400℃下退火能完全热分解为V_3O_7和H_2O。因而在氮气保护下400℃退火1h得到单斜相的V_3O_7纳米带。最后分别测定了V_3O_7·H_2O纳米和V_3O_7纳米带在不同光强和偏压下的光电响应性能,在光开关过程中能观察到快速的光电流响应,纳米带对光的响应是完全可逆的,而且V_3O_7纳米带的光电流强度明显高于V_3O_7·H_2O纳米带。
     ⑤以钒片和硝酸银为前驱物经水热过程合成了Ag修饰的β-AgVO_3纳米线。该纳米线为单斜相,长度大于300μm、直径约200~700nm,表面吸附了少量的Ag纳米颗粒,β-AgVO_3纳米线的带隙为2.25eV。可见光激发下的光催化性能测定结果表明,Ag修饰的β-AgVO_3纳米线在150min内能够将罗丹明B有效降解64%以上。该纳米线具有较高的光催化活性,主要归功于纳米线中金属Ag和β-AgVO_3半导体的异质结构、高度结晶和对可见光有效的吸收。
Since vanadium and vanadium oxide resource are rich in our contry, it is very important to effectively utilize vanadium resource, and explore vanadium oxide–dependent solid luminescent materials and highly active photocatalysts. Intensive investigation has been done including the exploration of preparation methods, properties, reaction mechanism and application of the vanadium oxides and vanadates crystal. Nowadays, the synthetic methods mainly include solid reaction process, vapor deposition process, hydrothermal method, etc. Although all these methods have their own advantages, most of them involve high vacuum, a high temperature, high pressure, high cost, complex process, or low purity, and so on. Therefore, developing new methods to synthesize vanadium oxide and vanadates nanocrystals is siginifiacant for fully utilization of vanadium resource.
     In the thesis, different morphology of V_3O_7·H_2O、V_3O_7、AgVO_3、Pb_5(VO_4)_3OH、Ba_3V_2O_8、NdVO_4 micro- and nano-crystals were synthesized by hydrothermal method, composite-hydroxide-mediated method and composite-salt-mediated method. And, their thermal, photoelectric, magnetic, luminescent and photocatalytic properties have been studied. The main contents can be summarized as follows:
     ①The NdVO_4 nanowires were synthesized by a facile composite molten salt method. The XRD, SEM and HRTEM results show that NdVO_4 nanowires with tetragonal phase are connected together in bases, rooted in one center, and have typical diameter of 100 nm and length up to 3μm. The UV-vis spectrum shows that NdVO_4 nanwires have four strong absorption peaks from UV to near infrared region. The photocatalytical degradation of Rhodamine B dye and methyl orange under visible light irradiation using the NdVO_4 nanowiresis were investigated, which shows an excellent catalytic degradation activity to RhB and suggests its possible application in the organic pollutant treatment under visible light irradiation. The electron density states of the NdVO_4 were calculated with the Vienna ab initio simulation package, by which we can explain the light absorption and photodegradation properties.
     ②Lead vanadium oxide hydroxide nano- and micro-crystals have been synthesized by a simple composite-hydroxide-mediated (CHM) method. The morphology of the product could be tuned from separate rods to rod bunches by simply controlling the reaction parameters. The UV-visible spectrum shows that the band gap of the Pb_5(VO_4)_3OH is 2.92 eV. The photoluminescence have been investigated in the temperature range 10-300 K. The results indicate a blue luminescence (430 nm) at room temperature and a strong red luminescence (623 nm and 672 nm) at low temperatures under excitation of 325 nm laser. The luminescent mechanism of the Pb5(VO4)3OH was discussed.
     ③The flower-shaped barium vanadate has been obtained by the composite hydroxide mediated (CHM) method from V_2O_5 and BaCl_2 at 200℃for 13 h. XRD and XPS spectrum of the as-synthesized sample indicate it is hexagonal Ba_3V_2O_8 with small amount of Ba_3VO_(4.8) coexistence. Scan electron microscope and transmission electron microscope display that the flower-shaped crystals are composed of nanosheets with thickness of ~20 nm. The UV-visible spectrum shows that the barium vanadate sample has two optical gaps (3.85 eV and 3.12 eV). Photoluminescence spectrum of the barium vanadate flowers exhibits a visible light emission centered at 492 and 525 nm which might be attributed to VO4 tetrahedron with Td symmetry in Ba_3V_2O_8. The ferromagnetic behavior of the barium vanadate nanoflowers has been found with saturation magnetization of about 83.50×10~(-3) emu/g, coercivity of 18.89 Oe and remnant magnetization of 4.63×10~(-3) emu/g, which is mainly due to the presence of a non-orthovanadate phase with spin S=1/2. Meanwhile, Eu~(3+) doped barium vanadate nanoflowers were also synthesized by the same method, and luminescent and magnetic properties of doped barium vanadate were investigation at room temperature.
     ④V_3O_7·H_2O nanobelts have been synthesized via a hydrothermal route. The synthesized products were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The V_3O_7·H_2O nanobelts are of orthorhombic phase and single crystalline nanobelts with width of 100-500 nm and length up to 100μm. Thermogravimetry was used to determine thermal decomposition temperature of V_3O_7·H_2O nanobelts. Monoclinic V_3O_7 nanobelts could be obtained by thermal decomposition of V_3O_7·H_2O nanobelts at 400℃. Light sensitivity in exposure to a simulated sunlight in different intensity and biases have been investigated on the electrode made from the V_3O_7·H_2O and V_3O_7 nanobelts. The photocurrent responses of the V_3O_7·H_2O and V_3O_7 nanobelts are fully reversible and periodic. The results show that the photocurrent intensity of the V_3O_7 nanobelts is much larger than that of the V_3O_7·H_2O nanobelts.
     ⑤Ag decoratedβ-AgVO3 nanowires were synthesized by the hydrothermal method. The synthesis yields nanowires with a monoclinic phase structure. Typical nanowires have diameter of about 200-700 nm and length up to 300μm with some Ag nanoparticles attached on their surface. Theβ-AgVO_3 nanowires have a band gap of 2.25 eV. Photocatalytic degradation of Rhodamine B dye is investigated. Under the visible light irradiation, about 64% of RhB can be effectively photodegraded by the catalysis of the Ag decoratedβ-AgVO_3 nanowires within 150 min. It is found that the Ag decoratedβ-AgVO_3 nanowires possess excellent catalytic degradation activity owing to its effective visible light absorption, heterojunction structure and well crystallization.
引文
[1]廖世明,柏谈论,国外钒冶金[M].冶金工业出版社,北京,1985.
    [2]罗裕基,无机化学丛书第八卷钒分族[M].科学出版社,北京,1998:224-233。
    [3]许旻,氧化钒薄膜结构和性能研究[D].博士学位论文,兰州大学,2006:6-6.
    [4] S. Myun, K. Heo, M. Lee, Y.H. Choi, S.H. Hong, S. Hong,‘Focused’assembly of V_2O_5 nanowire masks for the fabrication of metallic nanowire sensors [J]. Nanotechnology, 2007, 18: 205304(4pp).
    [5] P. Liu, S.H. Lee, C.E. Tracy, J.A. Turner, J.R. Pitts, S. K. Deb, Electrochromic and chemochromic performance of mesoporous thin-film vanadium oxide [J]. Solid State Ionics, 2003, 165: 223-228.
    [6] G. Armstrong, J. Canales, A.R. Armstrong, P.G. Bruce, The synthesis and lithium intercalation electrochemistry of VO_2(B) ultra-thin nanowires [J]. J. Power Sources, 2008, 178: 723-728.
    [7] C.R. Xiong, A.E. Aliev, B. Gnade, K.J. Balkus, Jr, Fabrication of silver vanadium oxide and V_2O_5 nanowires for electrochromics [J]. Acs. Nano. 2008, 2: 293-301.
    [8]李光华,钒系杂化晶体化合物的水热合成与结构表征[D].博士学位论文,吉林大学,2005: 28-28.
    [9]罗裕基,无机化学丛书第八卷钒分族[M].科学出版社,北京,1998:226-230.
    [10]有色金属提取冶金手册编辑委员会,稀有高熔点金属(下)[M].冶金工业出版社,北京,1999:276-350.
    [11]攀枝花钒钛磁铁矿选矿烧结高炉冶炼试验资料汇编编写小组.攀枝花钒钛磁铁矿选矿烧结高炉冶炼试验资料汇编[M].北京.1978.
    [12]秦震.陆祖雄.黄振华.攀枝花式钒钛磁铁矿成矿特征.钒钛磁铁矿开发利用国际会议论文集.中国四川攀枝花.1989.攀钢.钢铁钒钛编辑部.1989年11月.78-92.
    [13]杨绍利,VO2薄膜制备及其应用性能基础研究[D].博士学位论文,重庆大学,2003:3-4.
    [14]朱训,中国矿情第二卷金属矿产[M].科学出版社,北京,1999:166-172.
    [15]赵红杰,任学佑,美国的钒工业[J].稀有金属,1994,18: 220-224.
    [16]孟柏庭,轻金属文集[M].中南工业大学出版社,长沙,1995:80- 83.
    [17]何东升,石煤型钒矿焙烧一浸出过程的理论研究[D].博士学位论文,中南大学,2009:3-4.
    [18]张中太,张俊英,无机光致发光材料及应用[M].化学工业出版社,北京,2005.
    [19] H. Harada, K. Tanaka, Photoluminescence from Pr3+-doped chalcogenide glasses excited by bandgap light [J]. J. Non-Crystall. Solids, 1999, 246: 189-196
    [20] X. Wu, U. Hommerich, J.D. Mackenzie, Photoluminescence study of Er-doped AlN [J]. J. Lumin. 1997, 72:284-286.
    [21] L. Rebohle, I.E. Tyschenko, H. Froeb, et al, Blue and violet photoluminescence from high-dose Si+- and Ge+-implanted silicon dioxide layers [J]. Microelectron. Eng. 1997, 36: 107-110.
    [22]中国科学院吉林物理所与中国科学技术大学固体发光编写组,固体发光[M].科学出版社,北京,1976.
    [23]刘光华,稀土固体材料学[M].机械工业出版社,北京,1997.
    [24]莫党,固体光学[M].高等教育出版社,北京,1994.
    [25]李淑玲,荧光分光光度计及其应用[J].分析测试仪器通讯,1997,2:67-72.
    [26] T. Nakajima, M. Isobe, T. Tsuchiya, Y. Ueda, T. Manabe, Correlation between Luminescence Quantum Efficiency and Structu T ral Properties of Vanadate Phosphors with Chained, Dimerized, and Isolated VO4 Tetrahedra [J]. J. Phys. Chem. C, 2010, 144:5160-5167.
    [27] T. Nakajima, M. Isobe, T. Tsuchiya, Y. Ueda, T. Manabe, Photoluminescence property of vanadates M_2V_2O_7 (M: Ba, Sr and Ca) [J]. Opt. Mater. 2010, 32: 1618-1621.
    [28] T. Nakajima, M. Isobe, T. Tsuchiya, Y. Ueda, T. Kumagai, A revisit of photoluminescence property for vanadate oxides AVO_3 (A: K, Rb and Cs) and M3V2O8 (M: Mg and Zn) [J]. J. Lumin. 2009, 129: 1598-1601.
    [29] H. Ronde, G. Blasse, The nature of the electronic transitions of the vanadate group [J]. J. Inorg. Nucl. Chem. 1978, 40: 215-219.
    [30] K.C. Park, S. Mho, Photoluminescence properties of Ba_3V_2O_8, Ba_3(1-x)Eu_2xV_2O_8 and Ba_2Y_(2/3)V_2O_8∶Eu~(3+) [J]. J. Lumin. 2007, 122-123: 95-98.
    [31]徐叙瑢,苏勉曾,发光学与发光材料[M].化学工业出版社,北京,2004。
    [32] U. Rambabu, D.P. Amalnerkar, B.B. Kale, S. Buddhudu, Fluorescence spectra of Eu~(3+)-doped LnVO_4(Ln = La and Y) powder phosphors [J]. Mater. Res. Bull. 2000, 35: 929-936.
    [33] J.H. Kang, W.B. Im, D.C. Lee, J.Y. Kim, D.Y. Jeon, Y.C. Kang, K.Y. Jung, Correlation of photocluminescence of (Y, Ln)VO_4 :Eu~(3+)(Ln = Gd and La) phosphors with their crystal structures [J]. Solid State Commun. 2005, 133: 651-656..
    [34] H.P. Zhang, M.K. Lu, Z.L. Xiu, G.J. Zhou, S.F. Wang, Synthesis and photoluminescence of Pb_5(VO_4)_3OH nanocrystals [J]. J. Alloys Compd. 2005, 396 : 243-246.
    [35] L.H.C. Andrade, D.R. Ardila, J.P. Andreeta, M.S. Li, Optical properties of Nd~(3+)-doped Ca_3(VO_4)_2 single crystal fiber [J]. Opt. Mater. 2003, 22 : 369-375.
    [36] M. Sobczyk, R. Lisiecki, P. Solarz, W.R.Romanowski, Spectroscopic properties of new luminescent system based on vanadate(V) crystal doped with erbium ions [J]. J. Lumin. 2010,130 :567-575.
    [37] S. Benmokhtar, A. El Jazouli, J. P. Chaminade, P. Gravereau, F. Guillen, D. de Waal, Synthesis, crystal structure and optical properties of BiMgVO5 [J]. J. Solid State Chem. 2004, 177: 4175-4182.
    [38] H. Kojima, Fundamental Properties of hexagonal Ferrites with magnetoplunbite Structure [J]. Ferromagnetic Materials, 1982, 3 : 305-391.
    [39] H. Katsuki, S. Komarneni, Microwave-Hydrothermal Synthesis of Monodispersed Nanophaseα-Fe_2O_3 [J]. J. Am. Ceram. Soc. 2001, 84, 2313– 2317.
    [40]田民波,磁性材料[M].清华大学出版社,北京,2000.
    [41] P. Parhi, V. Manivannan, S. Kohli, P. Mccurdy, Synthesis and characterization of M_3V_2O_8 (M=Ca, Sr and Ba) by a solid-state metathesis approach [J]. Bull. Mater. Sci. 2008, 31: 885-890.
    [42] B.L.Chamberland, P.S.Danielson, Alkaline-earth vanadium oxides having the AVO_3 composition [J]. J. Solid State Chem. 1971, 3: 243-247.
    [43] A.C. Dhaussy, F. Abraham, O. Mentre, H. Steinfink, Crystal structure and characterization of Ba_2V_3O_9: a vanadyl (Ⅳ) vanadate containing rutile-like chains of VO6 octahedra [J]. J. Solid State Chem. 1996, 126: 328-335.
    [44] M. Chinkhota, P.S. Fodor, G.D. Khattak, L.E. Wenger, Investigation of the magnetic properties in strontium-borate-vanadate glasses [J]. J. Appl. Phys. 2002, 91: 8269-8271.
    [45] Mekki, G.D. Khatak, L.E. Wenger, Structure and magnetic properties of lead vanadate glasses [J]. J. Non-Cryst. Solids, 2003, 330: 156-167.
    [46]冯玉杰,孙晓君,刘俊峰,环境功能材料[M].化学工业出版社,北京,2010.
    [47]姚书山,新型可见光催化剂制备及评价[D].博士学位论文,山东大学,2009:7-13.
    [48] G. Liu, G.S. Li, X.Q. Qiu, L.P. Li, Synthesis of ZnO/titanate nanocomposites with highly photocatalytic activity under visible light irradiation [J]. J. Alloys Compd. 2009,48 : 492-497.
    [49] Y.H. Xu, C. Chen, X.L. Yang, X. Li, B.F. Wang, Preparation, characterization and photocatalytic activity of the neodymium-doped TiO_2 nanotubes [J]. Appl. Surf. Sci. 225 (2009) 8624-8628.
    [50] H.B. Hu, C.S. Pan, L.W. Zhang, Y.F. Zhu, Synthesis, Characterization and photocatalytic properties of nanosized Bi_2WO_6, PbWO_4 and ZnWO_4 catalysts [J]. Mater. Res. Bull. 2007, 42 : 696-706.
    [51] Z.J. Zhang, W.Z. Wang, M. Shang, W.Z. Yin, Photocatalytic degradation of rhodamine B and phenol by solution combustion synthesized BiVO_4 photocatalyst [J]. Cata. Commun. 2010, 11: 982-986.
    [52] Y. Shen, M.L. Huang, Y. Huang, J.M. Lin, J.H. Wu, The synthesis of bismuth vanadate powders and their photocatalytic properties under visible light irradation [J]. J. Alloys Compd. 2010, 496 : 287-292.
    [53] F.X. Wang, M.W. Shao, L. Cheng, J. Hua, X.W. Wei, The synthesis of monoclinic bismuth vanadate nanoribbons and studies of photoconductive, photoresponse, and photocatalytic properties [J]. Mater. Res. Bull. 2009, 44: 1687-1691.
    [54] Y.Y. Liu, Z.Y. Wang, B.B. Huang, X.Y. Zhang, X.Y. Qin, Y. Dai, Enhanced photocatalytic degradation of organic pollutants over basic bismuth (Ⅲ) nitrate/BiVO4 composite [J]. J. Colloid Interface Sci. 2010, 348: 211-215.
    [55] D. Saha, S. Mahapatra, T.N.G. Row, G. Madras, Synthesis, structure, and photocatalytic activity in orthorhombic perovskites LnVO_3 and Ln_(1-x)Ti_xVO_3 (Ln=Ce, Pr, and Nd) [J]. Ind. Eng. Chem. Res. 2009, 48: 7489-7497.
    [56] S. Mahapatra, S.K. Nayak, G. Madras, T.N.G. Row, Microwave synthesis and photocatalytic activity of nano lanthanide (Ce, Pr, and Nd) orthovanadates [J]. Ind. Eng. Chem. Res. 2008, 47: 6509-6516.
    [57] S. Mahapatra, G. Madras, T.N.G. Row, Synthesis, characterization and photocatalytic activity of lanthanide (Ce, Pr, and Nd) orthovanadates [J]. Ind. Eng. Chem. Res. 2007, 46: 1013-1017.
    [58] X.X. Hu, C. Hu, Preparation and visible-light photocatalytic activity of Ag3VO4 powders [J]. J. Solid State Chem. 2007, 180: 725-732.
    [59] X.X. Hu, C. Hu, J.H. Qu, Preparation and visible-light activity of silver vanadate for the degradation of pollutants [J]. Mater. Res. Bull. 2008, 43: 2986-2997.
    [60] J.H. Ye, Z.G. Zou, M. Oshikiri, A. Matsushita, M. Shimoda, M. Imai, T. Shishido, A nvel hydrogen-evolving photocatalyst InVO_4 active under visible light irradiation [J]. Chem. Phys. Lett. 2002, 356: 221-226.
    [61] M. Oshikiri, M. Boero, J.H. Ye, Z.G. Zou, G.Y. Kido, Electronic structures of promising photocatalysts InMO_4 (M=V, Nb, Ta) and BiVO_4 for water decomposition in tohe visible wavelength region [J]. J. Chem. Phys. 2002, 117: 7313-7318.
    [62] B.L. Chamberland, P.S. Danielson, Alkaline-earth vanadium (IV) oxides having the AVO3 composition [J]. J. Solid State Chem. 1971,3:243-247.
    [63]周振泽,张德,徐建梅,董金文,高慧娟,姜胜林,钒酸钡Ba_3(VO_4)_2合成过程的研究[J].材料工程,2009,11:20-22.
    [64] S. Choi, Y.M. Moon, H.K. Jun, Enhanced luminescence by charge compensation in red-emitting Eu~(3+)-actived Ca_3Sr(VO_4)_4 [J]. Mater. Res. Bull. 2010, 45:118-120.
    [65] X. Wu, Y.L. Huang, L. Shi, H.J. Seo, Spectroscopy characteristics of vanadate Ca9Dy(VO4)7for application of white-light-emitting diodes [J]. Mater. Chem. Phys. 2009, 116: 449-452.
    [66] Watanabe, Highly conductive oxides, CeVO_4, Ce_(1-x)M_xVO_(4-0.5x)(M=Ca, Sr, Pb)and Ce_(1-y)Bi_yVO_4, with zircon-type structure prepared by solid-state-reaction in air [J]. J. Solid State Chem. 2000, 153: 174-179.
    [67]徐时清,赵康,谷臣清,VO_2纳米粉末的无机溶胶-凝胶法合成及表征[J].稀有金属,2002,26:169-172.
    [68]吕玲,刘恒,张仰慧,王远洪,溶胶-凝胶法制备纳米氮化钒的研究[J],化学研究与应用,2010,22:596-599.
    [69]付晓燕,牛淑云,张洪武,辛勤,纳米级碱土金属钒酸盐发光材料[A_3(VO_4)_2: Eu]发光性质的研究[J],光谱学与光谱分析,2006,26:27-29.
    [70] H.P. Zhang, M.K. Lu, Z.L. Xiu, S.F. Wang, G.J. Zhou, Y.Y. Zhou, S.M. Wang, Z.F. Qiu, A.Y. Zhang, Synthesis and photoluminescence properties of a new red emitting phosphor: Ca3(VO4)2: Eu3+; Mn2+ [J]. Mater. Res. Bull. 2007, 42: 1145-1152.
    [71] H.P. Zhang, M.K. Lu, Z.S. Yang, Z.L. Xiu, G.J. Zhou, S.F. Wang, Y.Y. Zhou, S.M. Wang, Effect of processing parameters on the luminescence intersity of Sr3(VO4)2: Eu3+ nanocrystals via combustion synthesis [J]. J. Alloys Compd. 2006, 426: 384-389.
    [72]周建国,精细无机化工[M].开封,河南大学出版社1999,400-401.
    [73]徐时清,赵康,谷臣清,马红萍,液相沉淀法制备VO_2纳米粉及晶化过程研究[J],稀有金属材料与工程,2003,32:502-505.
    [74]余艳丽,刘恒,杨为中,掺铜五氧化二钒的制备及电化学性能研究[J],化学研究与应用,2008,20:1047-1049.
    [75] B.V. Rao, S. Buddhudu, Emission analysis of RE~(3+)(Dy~(3+) or Tb~(3+)): Ca_3Ln (=Y, Gd)(VO_4)_3 powder phosphors [J]. Mater. Chem. Phys. 2008, 111: 65-68.
    [76] M.W. Stoltzfus, P.M. Woodward, R. Seshadri, J.H. Klepeis, B. Bursten, Structure and bonding in SnWO_4, PbWO_4, and BiVO_4: lone pairs vs inert pairs [J]. Inorg. Chem. 2007, 46: 3839-3850.
    [77] S. Tokunaga, H. Kato, A. Kudo, Selective preparation of monoclinic and tetragonal BiVO_4 with scheelite structure and their photocatalytic properties [J]. Chem. Mater. 2001, 13: 4624-4628.
    [78] Gentao Zhou, Xinchen Wang, Jimmy C.Yu, Selected-control synthesis of NaV6O15 and Na_2V_6O_(163)H_2O single-crystalline nanowires [J]. Cryst. Growth Des. 2005, 5: 969-974.
    [79] Nian Wang, Wen Chen, Liqiang Mai, Ying Dai, Selected-control hydrothermal synthesis and formation mechanism of 1D ammonium vanadate [J]. J. Solid State Chem. 2008, 181: 652-657.
    [80] S.B. Ni, X.H. Wang, G. Zhou, F. Yang, J.M. Wang, D.Y. He, Crystallized Zn_3(VO_4)_2: Synthesis, characterization and optical property [J]. J. Alloys Compd. 2010, 491: 378-381.
    [81]马杰,稀土钒·硼·磷酸盐纳米材料的固相水热法构筑及其发光性能研究,同济大学博士论文,2008:3-4.
    [82] J. Ma, Q.S. Wu, Y.P. Ding, Selective synthesis of monoclinic and tetragonal phase LaVO4 nanorods via oxides-hydrothermal route [J]. J. Nanopart. Res. 2008, 10: 775-786.
    [83] J. Ma, Q.S. Wu, Y.P. Ding, Mild hydrothermal solid-phase synthesis of YVO_4 nanocrystals [J]. Mater. Lett. 2007, 61: 3616-3619.
    [84] J. Ma, Q.S. Wu, Y.P. Ding, Y. Chen, Assembled synthesis and phase transition of pseudo-vaterite NdBO_3 layer-by-layer single-crystal nanopancakes via oxides-hydrothermal route [J]. Cryst Growth Des. 2007, 7: 1553-1560.
    [85] J. Ma, Q.S. Wu, Y. Chen, Y.J. Chen, A synthesis strategy for various pseudo-vaterite LnBO_3 nanosheets via oxides-hydrothermal route [J]. Solid State Sci. 2010, 12: 503-508.
    [86] J. Ma and Q.S. Wu, A novel additive-free oxides-hydrothermal approach for monazite-type LaPO_4 nanomaterials with controllable morphologies [J], J. Appl. Cryst. 2010, 43: 990-997.
    [87] M. Yoshimura, Soft solution processing: concept and realization of direct fabrication of shaped ceramics (nano-crystals, whiskers, films, nd/or patterns) in solutions without post-firing, J. Mater. Sci. 2006, 41: 1299-1306.
    [88] Y. Xi, C.G. Hu, X.M. Zhang, Y. Zhang, Z.L. Wang, Optical switches based on Bi_2S_3 nanowires synthesized by molten salt solvent method [J]. Solid State Commun. 2009, 149: 1894-1896.
    [89] X. Wang, C.G. Hu, H. Liu, G.J. Du, X.S. He, Y. Xi, Synthesis of CuO nanostructures and their application for nonenzymatic glucose sensing [J]. Sens. Actuators B, 2010, 144 : 220-225.
    [90] H. Liu, C. G. Hu, Z. L. Wang, Composite-Hydroxide-Mediated Approach for the Synthesis of Nanostructures of Complex Functional-Oxides [J]. Nano Lett. 2006, 6: 1535-1540.
    [91] C. G. Hu, H. Liu, C. S. Lao, et al, Size-Manipulable Synthesis of Single-Crystalline BaMnO3 and BaTi_(1/2)Mn_(1/2)O_3 Nanorods/Nanowires [J]. J. Phys. Chem. B, 2006, 110: 14050-14054.
    [92] N. Wang, C. G. Hu, C. H. Xia, B. Feng, Z. W. Zhang, Y. Xi and Y. F. Xiong, Ultrasensitive gas sensitivity property of BaMnO_3 nanorods [J]. Appl. Phys. Lett., 2007, 90: 163111.
    [93] Z. W. Zhang, C. G. Hu, Y. F. Xiong, R. S. Yang and Z. L. Wang, Synthesis of Ba-doped CeO_2 nanowires and their application as humidity sensors [J]. Nanotechnology, 2007, 18: 465504.
    [94] M. C. Zhang, C. G. Hu, H. Liu, Y. Y. Xiong and Z. W. Zhang, A rapid-response humidity sensor based on BaNbO_3 nanocrystals [J]. Sens. Actuators B, 2009, 136: 128-132
    [95] C.G. Hu, Y. Xi, H. Liu, Z.L. Wang, Composite-hydroxide-mediated approach as a generalmethodology for synthesizing nanostructures [J]. J. Mater. Chem., 2009, 19: 858–868.
    [96] C. G. Hu, Z. W. Zhang, H. Liu, P. X. Gao, Z. L. Wang, Direct synthesis and structure characterization of ultrafine CeO_2 nanoparticles [J]. Nanotechnology, 2006, 17: 5983–5987.
    [97]胡陈果,奚伊.金属硫化物纳米晶体材料的复合碱金属氢氧化物溶剂合成方法[P].中国专利,公开号:CN101112974, 2007.6.21.
    [98]胡陈果,奚伊,王中林,严伟,万步勇,张密超,黎飞云,复合碱金属氢氧化物溶剂制备硒化物和碲化物纳米材料的方法[P].中国专利,公开号:CN101219779, 2008.1.14.
    [99] M. Romero, J. Blanco, B. Sanchez, A. Vidal, S. Malato, A. I. Cardona, E. Garcia, Photocatalytic degradation of water and air pollutants : challenges and perspectives [J]. Sol. Energy, 1999, 66 :169-182.
    [100] V. Stengle, S. Bakardjieva, N. Murafa, Preparation and photocatalytic activity of rare earth doped TiO_2 nanoparticles [J]. Mater. Chem. Phys. 2009, 114 : 217-226.
    [101] C. Wang, Y.H. Ao, P.F. Wang, J. Hou, J. Qian, Preparation, characterization and photocatalytic activity of the neodymium-doped TiO2 hollow spheres [J]. Appl. Surf. Sci. 2010, 257: 227-231.
    [102] D.K. Lee, I.S. Cho, S.W. Lee, S.T. Bae, J.H. Noh, D.W. Kim, K.S. Hong, Effects of carbon content on the photocatalytic activity of C/BiVO_4 composites under visible light irradiation [J]. Mater. Chem. Phys. 2010, 119: 106-111.
    [103] W.Z. Yin, W.Z. Wang, and S.M. Sun, Photocatalytic degradation of phenol over cage-like Bi_2MoO_6 hollow spheres under visible-light irradiation [J]. Cata. Commun. 2010,11: 647-650.
    [104] D. Zhao, T.Y. Peng, J.R. Xiao, C.H. Yan, X.Z. Ke, reparation, characterization and photocatalytic performance of Nd~(3+)-doped titania nanoparticalse with mesostructure [J]. Mater. Lett. 2007, 61: 105–110.
    [105] C.M. Huang, G.T. Pan, Y.C.M. Li, M.H. Li, T.C.K. Yang, Crystalline phases and photocatalytic activities of hydrothermal synthesis Ag_3VO_4 and Ag_4V_2O_7 under visible light irradiation [J]. App. Cata. A 2009, 358: 164-172.
    [106] J. Ye, Z. Zou, H. Arakawa, M. Oshikiri, M. Shimoda, A. Matsushita, T. Shishido, Correlation of crystal and electronic structures with photophysical properties of water splitting photocatalysts InMO4 (M=V5+, Nb5+, Ta5+) [J]. J. Photochem. Photobiol. A 2002, 148: 79-83.
    [107] J.W. Shur, V.V. Kochurikhin, A.E. Borisova, M.A. Ivanov, D.H. Yoon, Photoluminescence properties of Nd: YVO_4 single crystals by multi-die EFG method [J]. Opt. Mater. 2004, 26: 347-350.
    [108] X.C. Wu, Y.R. Tao, L. Dong, J.J. Zhu, Z. Hu, Preparation of single-crystalline NdVO_4 nanorods, and their emissions in the ultraviolet and blue under ultraviolet excitation [J]. J.Phys. Chem. B 2005, 109: 11544-11547.
    [109] G. Kresse, J. Furtm?ller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J]. Comput. Mater. Sci. 6 (1996) 15-50.
    [110] G. Kresse, J. Furtm?ller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Rev. B 654 (1996) 11169-11186.
    [111] Riwotzki. K, Hassse. M, Wet-chemical synthesis of doped colloidal nanoparticles: YVO4 : Ln (Ln = Eu, Sm, Dy) [J]. J. Phys. Chem. B 102 (1998) 10129-10135.
    [112] M.R. Dolgos, A.M. Paraskos, M.W. Stoltzfus, S.C. Yarnell, P.M. Woodward, The electronic structures of Vanadate salts: cation subsituation as a tool for band gap manipulation [J]. J. Solid State Chem. 2009, 182 : 1964-1971.
    [113] Benayas, D. Jaque, S. J. Hettrick, J. S. Wilkinson, D. P. Shepherd, Investigation of neodymium-diffused yttrium vanadate waveguides by confocal microluminescence [J]. J. Appl. Phys. 2008, 103: 103104-1-103104-6.
    [114] L.L. Ren , Y.P. Zeng , D.L. Jiang, Preparation, characterization and photocatalytic activities of Ag-deposited porous TiO2 sheets [J]. Cata. Commun. 2009, 10: 645-649.
    [115]刘华俊,彭天右,彭正合,戴珂,Dy/WO3光催化降解罗丹明B的反应机理[J].武汉大学学报,2007,53:127-132。
    [116] W. Zhao, C. Chen, X. Li, J. Zhao, Photodegradation of sulforhodamine-B dye in platinized titania dispersions under visible light irradiation: Influence of platinum as a functional co-catalyst [J]. J. Phys. Chem. B 106 (2002) 5022-5028.
    [117] F. Amano, T. Yamaguchi, T. Tanaka, Effect of alkali-ion-doping on the local structure and the photocatalytic properties of alumina-supported vanadium oxides [J]. Catal. Today 2007, 120: 126-132.
    [118] J. Shi, S.X. Shang, L. Yang, J.C. Yan, Morphology and crystalline phase-controllable synthesis of TiO_2 and their morphology-dependent photocatalytic properties [J]. J. Alloys Compd. 2009, 479: 436–439.
    [119] R. Konta, H. Kato, H. Kobayashi, A. Kudo, Photophysical properties and photocatalytic activities under visible light irradiation of sliver vanadates [J]. Phys. Chem. Chem. Phys. 2003, 5: 3061-3065.
    [120] T. Y. Wei,C. C. Wan, Heterogeneous photocatalytic oxidation of phenol with titanium dioxide particles [J]. Ind. Eng. Chem. 1991, 30: 1293-1296.
    [121] R. W. Matthews, Photooxidation of organic impurities in water using thin films of titanium dioxide [J]. J. Phys. Chem. 1987, 91: 3328-3333.
    [122] Fasoli, A. Colli, S. Kudera, L. Manna, S. Hofmann, C. Ducati, J. Robertson, A.C. Ferrari,Catalytic and seeded shape-selective synthesis of II-VI semiconductor nanowires [J]. Physica E,37 (2007) 138.
    [123] C.H. Xia, C.G. Hu, Y.S. Tian, B. Y. Wang, J. Xu, X. S. He, Room-temperature ferromagnetic properties of Ni-doped ZnO rod arrays [J]. Physica E, 2010, 42: 2086-2090.
    [124] C.J. Jia, L.D. Sun, L.P. You, X.C. Jiang, F. Luo, Y.C. Pang, C.H. Yan, Selective synthesis of monazite- and zircon-type LaVO_4 nanocrystals [J]. J. Phys. Chem. B, 2005, 109: 3284-3290.
    [125] D.F. Wang, J.W. Tang, Z.G. Zou, J.H. Ye, Photophysical and photocatalytic properties of a new series of visible-light-driven photocatalysts M3V2O8 (M = Mg, Ni, Zn) [J]. Chem. Mater. 2005, 17: 5177-5182.
    [126] Kumar, N.J. Podraza, S. Denev, J. Li, L.W. Martin, Y.H. Chu, R. Ramesh, R.W. Collins, V. Gopalan, Linear and nonlinear optical properties of multifunctional PbVO3 thin films [J]. Appl. Phys. Lett. 2008, 92 : 231915-1-231915-4.
    [127] J. Ordan, B.D.Calvo, Crystal structure of leda meta vanadate, PbV_2O_6 [J]. Can. J. Chem. 1974, 52: 2701-2704.
    [128] Annenkoff, P. Garnier, P. Gregoire, Polymorphism of lead vanadate oxide Pb_8V_2O_(13) [J]. Comptes Rendus Hebdomadaires des Seances de. I'Academie de Sciences, Serie C (Sciences Chimiques), 1979, 288 : 347-350.
    [129] S.I. Lopatin, I.Y. Mittova, F.S. Gerasimov, S.M. Shugurov, V.F. Kostryukov, S.M. Skorokhodova, Vaporization and thermodynamic properties of the PbO-V2O5 system [J]. Russ. J. Inorg. Chem. 2006, 51: 1646-1652.
    [130] J. Li, Z. Chen, X.X. Wang, D.M. Proserpio, A novel two-dimensional mercury antimony telluride: low temperature synthesis and characterization of RbHgSbTe3 [J]. J. Alloys Compd. 1997, 262: 28 -263.
    [131] M.R. Dolgos, A.M. Paraskos, M.W. Stoltzfus, S.C. Yarnell, P.M. Woodward, The electronic structures of Vanadate salts: cation subsituation as a tool for band gap manipulation [J]. J. Solid State Chem. 2009, 182 : 1964-1971.
    [132] S.W.S. Mckeever, Thermoluminescence of Solids, Cambridge university press, London, 1985.
    [133] V. V. Laguta, M. Martini, A. Vedda, E. Rosetta, M.Nikl, E. Miho′kova′, J. Rosa, Y. Usuki, Electron traps related to oxygen vacancies in PbWO4 [J]. Phys. Rev. B 67 (2003) 205102-1-8.
    [134] F. Sediri, F. Touati, and N. Gharbi, A one-step hydrothermal way for the synthesis of vanadium oxide nanotubes containing the phenylpropylamine as template obtained via non-alkoxide route [J]. Mate. Lett. 2007, 61: 1946-1950.
    [135] X.L. Li, X.J. Chen, X.Y. Chen, C.L. Han, C.W. Shi, Hydrothermal synthesis and characterization of VO_2(B) nanorods array [J]. J. Cryst. Growth 309 (2007) 43-47.
    [136] G.Z. Shen, D. Chen, Self-coiling of Ag_2V_4O_(11) nanobelts into perfect nanoring and microloops [J]. J. AM. Chem. Soc. 128 (2006) 11762-11763.
    [137] V. Likodimos, N. Guskos, S. Glenis, R. Szymczak, A. Bezkrovnyi, M. Wabia, J. Typek, G. Gasiorek, M. Kurzawa, I. R. Himmel, A. B. Tabero, Magnetic properties of the antiferromagnetic site-disordered vanadate Zn2FeV3O11 [J]. Eur. Phys. J. B, 2004, 38: 13-18.
    [138] G. Liu, J.E. Greedan, Syntheses, structures, and characterization of 5-layer BaVO_(3-x) [J]. J. Solid State Chem. 1994, 110: 274-289.
    [139] W. Yan, C.G. Hu, Y. Xi, B.Y. Wan, X.S. He, M.C. Zhang, Y. Zhang, ZnSe nanorods prepared in hydroxide-metls and their application as a humidity sensor [J]. Mater. Res. Bull. 2009, 44: 1205-1208.
    [140] B.Y. Wan, C.G. Hu, H.Liu, Y.F. Xiong, F.Y. Li, Y. Xi, X.S. He, Growth of PbTe nanorods controlled by polymerized tellurium anions and metal (Ⅱ) amids via composite-hydroxide-mediated approach [J]. Mater. Res. Bull. 2009, 44: 1846-1849.
    [141]苗静,胡陈果,熊玉峰,韩向宇,奚伊,SrTiO_3纳米四方片状晶体的自组装行为及向立方晶体的转变,物理化学学报,2007,23:1599-1602.
    [142] M.Sorescu, R.A. Brand, D.M. Taravasanu, L. Diamandescu, The crucial role of particle morphology in the magnetic properties of haematite [J]. J. Appl. Phys. 1999, 85: 5546-5548.
    [143] C.H. Xia, C.G. Hu, Y.F. Xiong, N. Wang, Synthesis ofα-Fe_2O_3 hexagons and their magnetic properties [J]. J. Alloys. Compd. 2009, 480: 970-973.
    [144] C.J. Cong, J.H. Hong, Q.Y. Liu, L. Liao, K.L. Zhang, Synthesis, structure and ferromagnetic properties of Ni-doped ZnO nanoparticles [J]. Solid State Commun. 2006, 138: 511-515.
    [145] F. Mercier, C. Alliot, L. Bion, N. Thromat, P. Toulhoat, XPS study of Eu (Ⅲ) coordination compounds: core levels binding energies in solid mixed-oxo-compounds EumXxOy [J]. J. Electron Spectrosc. Relat. Phenom. 2006, 150: 21-26.
    [146] S.Y. Zhang, W.Y. Li, C.S. Li, J. Chen, Synthesis, characterization, and electrochemical properties of Ag_2V_4O_(11) and AgVO_3 1-D nano/microstructures [J]. J. Phys. Chem. B 2006, 110: 24855-24863.
    [147] Huignard, V. Buissette, A.C. Franville, et al. Emission processes in YVO_4 : Eu nanoparticles [J]. J. Phys. Chem. B, 2003, 107 :6754-6759.
    [148] S. F. Shi, M. H. Cao, X. Y. He, and H. M. Xie, Surfactant-assisted hydrothermal growth of single-crystalline ultrahigh-aspect-ratio vanadium oxide nanobelts [J]. Cryst. Growth Des. 2007, 7: 1893-1897.
    [149] G. Armstrong, J. Canales, A. R. Armstrong, and P. G. Bruce, The synthesis and lithium intercalation electrochemistry of VO_2(B) ultra-thin nanowires [J]. J. Power Sources, 2008,178: 723-728.
    [150] F. Zhou, X. M. Zhao, C. G. Yuan, and L. Li, Vanadium pentoxide nanowires: hydrothermal synthesis, formation mechanism, and phase control parameters [J]. Cryst. Growth Des. 2008, 8: 723-727.
    [151] S. Myung, K. Heo, M. Lee, Y. H. Choi, S. H. Hong, and S. Hong,’Focused’assembly of V_2O_5 nanowire masks for the fabrication of metallic nanowire sensors [J]. Nanotechnology, 2007, 18: 205304-205307.
    [152] G. Gu, M. Schmid, P. W. Chiu, A. Minett, J. Fraysse, G. T. Kim, S. Roth, M. Kozlov, E. Munoz, and R. H. Baughman, V_2O_5 nanofibre sheet actuators [J]. Nat. Mater. 2003, 2: 316-319.
    [153] P. Liu, S. H. Lee, C. E. Tracy, J. A. Turner, J. R. Pitts, and S. K. Deb, Electrochromic and chemochromic performance of mesoporous thin-film vanadium oxide [J]. Solid State Ionics. 2003, 165: 223-228.
    [154] Christian Hess, Nanostructured vanadium oxide model catalysts for selective oxidation reaction [J]. Chem. Phys. Chem. 2009. 10: 319-326.
    [155] X. C. Wu, F. C. Lai, L. M. Lin, Y. Z. Li, L. H. Lin, Y. Qu, and Z. G. Huang, Influence of thermal cycling on structural, optical and electrical properties of vanadium oxide thin films [J]. Appl. Surf. Sci. 2009, 255: 2840-2844.
    [156] X. L. Li, X. J. Chen, X. Y. Chen, C. L. Han, and C.W. Shi, Hydrothermal synthesis and characterization of VO_2(B) nanorods array [J]. J. Cryst. Growth. 2007, 309: 43-47.
    [157] L. J. Mao, and C. Y. Li, A new route for synthesizing VO_2(B) nanoribbons and 1D vanadium-based nanostructures [J]. Mater. Res. Bull. 2008, 43: 1384-1392.
    [158] Y. Oka, T. Yao, and N. Yamamoto, Structure determination of H2V3O8 by powder X-ray diffraction [J]. Solid State Chem. 1990, 89: 372-377.
    [159] T. Chirayil, P. Y. Zavalij, and M. S. Whittingham, Hydrothermal synthesis of vanadium oxides [J]. Chem. Mater. 1998, 10: 2629-2640.
    [160] G. C. Li, S. P. Pang, Z. B. Wang, H. R. Peng, and Z. K. Zhang, Synthesis of H2V3O8 single-crystal nanobelts [J]. Eur. J. Inorg. Chem. 2005: 2060-2063.
    [161] H. Qiao, X. J. Zhi, Z. Zhu, L. Liu, and L. Z. Zhang, Synthesis of V_3O_7·H_2O nanobelts as cathode materials for lithium-ion batteries [J]. Electrochem. Commun. 2006, 8: 21-26.
    [162] J. Ma, Q. S. Wu, and Y. J. Chen, An oxide-hydrothermal approach from bulky V2O5 powder to nanoribbons or V_3O_7 nanoflowers in various ethanol/water mixed solvent [J]. Mater. Res. Bull. 2009, 44: 1142-1147.
    [163] L. Cheng, Q. Shao, M. W. Shao, X. W. Wei, and Z. C. Wu, Photoswitches ofOne-Dimensional Ag2MO4 (M = Cr, Mo, and W) [J]. J. Phys. Chem. C 113, 1764-1768 (2009).
    [164] H. F. Bao, X. Q. Cui, C. M. Li, Y. Gan, J. Zhang, and J. Guo, Single-crystalline Bi_2S_3 nanowire network film and its optical switches [J]. Nanotechnology 19, 335302 (2008).
    [165] J. H. Anderson and G.A. Parks, Electrical conductivity of silica in presence of adsorbed water [J]. J. Phys. Chem. 72, 3662-3668 (1968).
    [166] Alem, H. Sarpoolaky, The effect of silver doping on photocatalytic properties of titania multilayer membranes [J]. Solid State Sci. 2010, 12: 1469-1472.
    [167] J. Xie, Q. Wu, One-pot synthesis of ZnO/Ag nanospheres with enhanced photocatalytic activity [J]. Mater. Lett. 2010, 64: 389-392.
    [168] H.B. Fu, C.S. Pan, L.W. Zhang, Y.F. Zhu, Synthesis, characterization and photocatalytic properties of nanosized Bi_2WO_6, PbWO_4 and ZnWO_4 catalysts [J]. Mater. Res. Bull. 2007, 42: 696-706.
    [169] W.Y. Dong, C.W. Lee, X.C. Lu, Y.J. Sun, W.M. Hua, G.S. Zhuang, S.C. Zhang, J.M. Chen, H.Q. Hou, D.Y. Zhao, Synchronous role of coupled adsorption and photocatalytic oxidation on ordered mesoporous anatase TiO2-SiO2 nanocomposites generating excellent degradation activity of RhB dye [J]. App. Cata. B 2010, 95: 197-207.
    [170] J. Zhu, X.F. Qian, From 2-D CuO nanosheets to 3-D hollow nanospheres: interface-assisted synthesis, surface photovoltage properties and photocatalytic activity [J]. J. Solid State Chem. 2010, 183: 1632-1639.
    [171] J.S Wang, H. Li, H.Y. Li, C. Zou, Mesoporous TiO_(2-x)Ay (A = N, S) as a visible-light-response photocatalyst [J]. Solid State Sci. 2010, 12: 490-497.
    [172] H. Xu, H.M. Li, G.S. Sun, J.X. Xia, C.D. Wu, Z.X. Ye, Q. Zhang, Photocatalytic activity of La_2O_3-modified silver vanadates catalyst for hodamine B dye degradation under visible light irradiation [J]. Chem. Eng. J. 2010, 160: 33-41.
    [173] J.G. Yu, J.F. Xiong, B. Cheng, S.W. Liu, Fabrication and characterization of Ag-TiO_2 multiphase nanocomposite thin films with enhanced photocatalytic activity [J]. App. Cata. B 60 (2005) 211-221.
    [174] J. Ren, W.Z. Wang, S.M. Sun, L. Zhang, J. Chang, Enhanced photocatalytic activity of Bi_2WO_6 loaded with Ag nanoparticles under visible light irradiation [J]. App. Cata. B 2009, 92: 50-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700