催化湿式过氧化氢氧化法处理酸性大红-3R模拟废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
染料是一类具有稳定结构的有机物,在环境中可以长期滞留。染料废水中的一些物质对人体健康有严重的危害,人们已经在偶氮染料、蒽醌染料、三苯甲烷染料中发现了具有致突变性和致癌作用的物质。染料废水成分复杂,其中还含有铅、、锰等重金属离子,其进入水体后会影响水生动植物的生长。催化湿式过氧化氢氧化(CWPO)技术以H_2O_2作氧化剂,不仅可以使反应在常温常压下进行,而且分解产生的羟基自由基具有很强的氧化性,能氧化绝大多数有机物,且氧化速度较快,是目前处理难降解物质的重要方法之一。催化剂是催化湿式氧化法的关键,因此研究新型高效催化剂,对于催化湿式氧化法在难降解物质处理中的广泛应用具有重要的意义。
     本研究以酸性大红-3R模拟废水为处理对象,采用浸渍法制备负载型催化剂,探讨了负载型催化剂在CWPO工艺中对酸性大红-3R染料废水的催化降解活性,得出如下结论:
     1、制备的单一组分负载型CuO/γ-Al_2O_3催化剂,在催化反应3h后,酸性大红-3R的降解率为78.13%,铜流失量为8.53 mg·L~(-1)。循环使用3次后,其催化活性降低了35%。
     2、改性负载型CuO/CeO_2/γ-Al_2O_3催化剂相比于CuO/γ-Al_2O_3催化剂,在催化反应3h后,酸性大红-3R的降解率从78.13%增加到98.16%,铜流失量从8.53mg·L~(-1)降至2.76mg·L~(-1)。
     3、锆改性负载型Cu-Ce-Zr-O/γ-Al_2O_3复合氧化物催化剂相比于CuO/CeO_2/γ-Al_2O_3催化剂,表现出较高的活性和稳定性。在催化反应2h后,酸性大红-3R的降解率达到93.96%,铜流失量为0.12mg·L~(-1),延长催化反应时间为3h时降解率达到96.26%,铜流失量未变。
     4、XRD表征结果说明,催化剂CuO/γ-Al_2O_3和Cu-Ce-Zr-O/γ-Al_2O_3中未出现CuO晶相和CuAl2O4尖晶石结构。对未改性催化剂CuO/γ-Al_2O_3而言,表明氧化铜物种在载体中呈高度分散状态。而催化剂Cu-Ce-Zr-O/γ-Al_2O_3相对于载体Ce-Zr-O/γ-Al_2O_3而言,随着铜元素的加入,锆固溶体的衍射峰有向大角度方向偏移的趋势,说明部分Cu进入锆固溶体形成Cu-Ce-Zr固溶体。
     5、选取Cu-Ce-Zr-O/γ-Al_2O_3催化剂,在催化湿式过氧化氢氧化(CWPO)法处理酸性大红-3R废水过程中,探讨温度、废水pH、过氧化氢和催化剂用量对降解效果的影响。研究结果表明:
     (1)温度对催化反应的影响比较明显,相同时间内温度越高其降解率越高。30℃和60℃时,催化反应0.5 h,酸性大红-3R的降解率分别为67.33%和95.52%。(2)随着pH的增加,酸性大红-3R的降解率呈现增大—基本不变—减小的变化趋势。在pH4~10范围内,催化剂表现出较高的催化活性,反映出改性催化剂Cu-Ce-Zr-O/γ-Al_2O_3有较好的酸碱适应性。
     (3)H_2O_2投加量小于10 g·L~(-1)时,酸性大红-3R的降解率随H_2O_2投加量的增大而增加。当H_2O_2投加量为6 g·L~(-1),催化反应2h条件下降解率为93.96 %,继续增加H_2O_2的投加量,降解率仅增加了1.75%。所以H_2O_2的投加量为6 g·L~(-1)时已基本满足酸性大红-3R染料完全降解的需要。
     (4)随着催化剂用量的增加,酸性大红-3R的降解率升高。当催化剂用量增加至16.0 g·L~(-1),催化反应2h条件下酸性大红-3R的降解率为93.96%;继续增加催化剂用量,酸性大红-3R的降解率基本不变。
The dye is a kind of stable organic matter, which retaining in environment for a long time. Some matirials of dye wastewater are harmful to human health. Mutagenicity and carcinogenicity substances had been discovered in azo-dyes, anthraquinone dye and triphenylmethane dye. The dye wastewater ingredients are complex, which have influence on the aquatic zoology and botany growth after entering water body. It includes lead, chromium and manganese heavy metal ions. Catalytic wet peroxide oxidation (CWPO) is an important method to treat refractory compounds. Under normal temperatures and pressures, the method mainly relies on H_2O_2 as oxidant, which produce hydroxyl radicals with strong oxidizing property. In this way, majority of organic matter are easily oxidized with a higher oxidation rate. As the key of CWPO, catalyst is definitely important. So the research on new high-efficiency catalysts to treat difficult degradation matters with CWPO is imperative.
     The experimental take the acid scarlet-3R synthetic wastewater as the processing objects, and prepared supported catalyst by impregnation method. We discussed the degradation of supported catalyst to the acid scarlet-3R synthetic wastewater. The important results were as follow:
     1. The single component supported catalyst CuO/γ-Al_2O_3 was used to treat acid scarlet-3R. In this process, the degradation efficiency of acid scarlet-3R was 78.13%, the loss amount of copper was 8.53 mg·L~(-1) as reaction time was 3h. The degradation activity decreased by 35% after recycles use of catalyst for three times.
     2. The Ce-modified on supported Catalyst CuO/CeO_2/γ-Al_2O_3 was also used to treat acid scarlet-3R. Compared with catalyst CuO/γ-Al_2O_3, the degradation efficiency of the latter raised form 78.13% to 98.16% as reaction time was 3h, while the loss amount of copper decreased from 8.53mg·L~(-1) to 2.76 mg·L~(-1)。
     3. Composite oxide catalyst of cerium and zirconium was prepared to treat acid scarlet-3R. Compared with catalyst CuO/CeO_2/γ-Al_2O_3, Catalyst CuO/CeO_2/γ-Al_2O_3 had higher activity and stability. With the loss amount of copper was 0.12 mg·L~(-1), the degradation efficiency of acid scarlet-3R reached 93.96% in two hours, whereas the degradation efficiency was up to 96.26% in three hours.
     4. The XRD characterization results concluded that there weren’t crystalline phase of CuO and CuAl2O4 spinel structure for catalyst CuO/γ-Al_2O_3 and Cu-Ce-Zr-O/γ-Al_2O_3. This showed highly dispersed copper oxide on vector for catalyst CuO/γ-Al_2O_3. Compared Cu-Ce-Zr-O/γ-Al_2O_3 with Ce-Zr-O/γ-Al_2O_3, diffraction peak position of Ceria-Zirconia solid solution shifted a large angle with the addiction of copper, which indicated Cu-Ce-Zr solid solution has formed through entering Cu into Ce-Zr solid solution.
     5. We choose Cu-Ce-Zr-O/γ-Al_2O_3 catalyst to treat acid scarlet-3R synthetic wastewater by CWPO and investigate the effect of temperature, wastewater pH, H_2O_2 and catalyst dosage on degradation effectiveness. The results showed:
     (1) Temperature had obvious influence on catalyst reaction. Degradation rate increased as temperature increased in the same time. When the temperature was 30℃and 60℃, as well as catalyst reaction time was 0.5h, The Degradation rate of acid scarlet-3R were 67.33% and 95.52%.
     (2) Acid scarlet-3R degradation rate increased and then decreased as pH increased. Catalyst had higher catalytic activity when pH varies from 4 to 10, which showed that the modified catalyst had better acid-base suitability.
     (3) When H_2O_2 dosage less than 10 g·L~(-1), acid scarlet-3R degradation rate increased as H_2O_2 dosage increased. The degradation rate reached 93.96% as H_2O_2 dosage was 6 g·L~(-1) and reaction time was 2h. The optimal dosage of H_2O_2 was 6 g·L~(-1).
     (4) Acid scarlet-3R degradation rate increased as catalyst dosage increased. Acid scarlet-3R degradation rate reached 93.96% as catalyst dosage was 16.0 g·L~(-1) and reaction time was 2h.
引文
毕道毅. 1999.湿式氧化催化剂的研究.工业催化, 7(5): 24~30
    薄国柱,夏明芳,操家顺,王慧中. 2005. UBF厌氧反应器处理印染退浆废水的试验研究.水资源保护, 21(2): 21~23
    戴日成,张统,郭茜,曹健舞,蒋勇. 2000.印染废水水质特征及处理技术综述.工业给排水, 26(10): 33~37
    党亚爱,王国栋,辛宝平,杨敏,李秀珍,李斌莲. 2003.利用发光菌评价17种染料的毒性效应. 西北农林科技大学学报,31(3): 183~186
    丁友超,曹锡忠,吴丽娜,张倩. 2008.高效液相色谱-电喷雾串联质谱法快速分离鉴定纺织品中的9种致癌染料.色谱,26(5): 603~607
    董俊明. 2008.臭氧催化氧化处理活性蓝染料废水及催化剂的研究.环境工程学报, 2(11): 1524~1528
    杜鸿章,戴锡海,王斌,王小兵,杨民,王贤高,吴鸣,孙承林. 2004.催化湿式氧化法治理H-酸母液废水的研究.工业水处理, 24(9): 25~27
    樊毓新,周增炎. 2002.染料废水处理方法的现状与发展.西南给排水, 24(2): 35~38
    范娟,詹怀宇,尹覃伟. 2004.球形木质素基离子交换树脂的合成及其对阳离子染料的吸附性能.造纸科学与技术,23(5): 26~28
    方明晖,詹树林,林俊雄,吕大丰. 2007.活性染料废水的混凝处理研究.工业水处理, 27(2): 26~29
    郭建博,周集体,王栋,田存萍,王平,李晓霞. 2007.降解偶氮染料耐盐菌GTY的分离鉴定及特性研究.环境科学学报,27(2): 201~205
    国家环保局《水和废水监测分析方法》编委会. 2002.水和废水监测分析方法:第四版.北京:中国环境科学出版社: 324~326
    何莼,奚红霞,张娇,李鑫,顾星,李忠. 2003.沸石和活性炭为载体的Fe3+和Cu2+型催化剂催化氧化苯酚的比较.离子交换与吸附, 19(4): 289~296
    贺启环,方华,高蓉菁,王琼. 2003.二氧化氯催化氧化处理难降解废水技术的研究.环境污染治理技术与设备, 4(11): 39~43
    洪仲秋. 2002.纺织浆料助剂的功能及应用.棉纺织技术, 30(2): 77~80
    候毓汾,朱振华,王任之. 1994.染料化学.北京:化学工业出版社: 11~34
    黄晖,高月英. 1999.无机盐对染料与非离子表面活性剂相互作用的影响.精细化工, 16(2): 7~10
    霍宇凝,薛莉,袁虹,王静华,顾晓蔚. 2006.高分子复合絮凝剂对活性印染废水的脱色性能研究.工业水处理, 26(1): 33~35
    贾金平,王文华. 2000.含染料废水处理方法的现状与进展.上海环境科学, 19(1): 26~29
    蹇兴超, Ernst M. 1998.臭氧和好氧生物法处理污水处理厂出水的纳米过滤浓缩液.中国环境科学, 18(4): 353~355
    姜妍彦,李景刚,宁桂玲,王承遇. 2006.尖晶石型CuAl2O4纳米粉体的制备及其可见光催化性能.硅酸盐学报, 34(9):1084~1087
    蒋晓原,周仁贤,陈平,郑小明. 1997. CeO2-CuO/γ-Al2O3催化剂上CO氧化及氧物种脱附与恢复行为的研究.环境化学, 16(5): 418~422
    孔黎明,刘晓勤. 2006. CuO/γ-Al2O3催化湿式过氧化水溶液中苯酚.化工进展, 25(10): 1162~1165
    李长平,辛宝平,徐文国,张琦. 2006.疏水性离子液体萃取脱色水溶性染料实验研究.北京理工大学学报,26(7): 647~650
    李光明,王华,陈玲,赵建夫. 2004.多相催化湿式氧化法再生活性炭反应条件.同济大学学报, 32(5): 636~639
    李宁,李光明,姚贞娅,赵建夫. 2005.废水催化湿式氧化稀土金属氧化物催化剂的研制.环境污染治理技术与设备, 6(2): 40~44
    李然,唐淑娟,刘桂英. 2004.印染废水电化学脱色研究.印染, 30(14): 27~29
    李亚新,李莉. 1995.塑料孔板波纹填料厌氧生物滤池处理印染废水试验研究.中国给水排水, 11(5): 16~19
    刘德启,魏敏,张颖,周瑾. 2002.稀土催化双氧水氧化耦合处理染料中间体废水研究.环境污染与防治, 24(3): 135~137
    刘冬妮,陈健波,郑铭. 2003.半导体光催化氧化技术的研究进展.江苏大学学报, 24(3): 40~44
    陆朝阳,沈莉莉,张全兴. 2004.吸附法处理染料废水的工艺及其机理研究进展.工业水处理, 24(3): 12~16
    骆丽君. 2004.活性染料废水的混凝脱色方法研究.化工时刊, 18(1): 49~50
    马凤霞,刘坤,孟凡霞,陈亚光,徐文娟. 2009. Keggin和Dawson结构多金属氧酸盐光催化脱色偶氮染料.化学研究与应用, 21(7): 1042~1045
    毛东森,卢冠忠,陈庆龄,卢文奎. 2001.负载型氧化物固体超强酸催化剂的制备及应用.化学通报, 5: 278~284
    孟令辉. 2000.国外超临界水氧化在有机危险废物处理上的应用.化工环保, 20(5): 16~18
    彭晶,王爱杰,任南琪,马放. 2005.水解-酸化-好氧工艺处理还原性染料废水的中试研究.哈尔滨工业大学学报, 37(6): 753~755
    彭新林,龙志奇,崔梅生,崔大立,张顺利,李红卫,张国成. 2002.共沉淀法合成复合氧化物及表征.中国稀土学报, 20: 104~107
    邱祖民,刘小成. 2003. H2O2处理酸性大红废水催化剂的研究.安全与环境学报, 3(5): 50~53
    苏晓丽,刘汉湖,鲁璐,秦伟伟. 2008.序批式活性污泥法处理染料废水.工业水处理, 28(3): 39~42
    孙德智,于秀娟,冯玉杰. 2002.环境工程中的高级氧化技术.北京:化学工业出版社: 99~105
    汤皎宁,靳喜海,高濂. 2003.以NH4HCO3为沉淀剂通过共沉淀法制备2Y-TZP纳米粉体.无机材料学报, 18(6): 1367~1371
    唐文伟,新平,赵建夫,顾国维. 2007.负载型催化剂在乳化液废水处理中的应用.水处理技术, 33(9): 62-64
    王爱民,杨立红,张素娟,姜桂兰. 2001.电化学方法治理含染料废水的现状与进展.工业水处理, 21(8): 4~7
    王滨松,黄君礼,张杰. 2005. Fenton试剂氧化活性染料废水的研究.哈尔滨工业大学学报, 37(9): 1280~1282
    王喜全,胡筱敏,李佳,陈雪. 2008. Fenton法处理染料废水的研究.染料与染色, 45(5): 52~53
    吴世华,杨树军,黄维平,林晓波,王序昆. 1990.溶剂化金属原子浸渍法制备高分散负载型催化剂.催化学报, 11(4): 290~297
    徐颖,赵菊香. 2001.染料中间体废水处理的试验研究.河海大学学报, 29(4): 99~103
    严莲荷,董岳刚,周申范,赵晓蕾. 2000.湿式催化氧化法在处理分散染料废水中催化剂的选择和实验条件的优化.工业水处理,20(11):22~24
    杨婥,邱祖民,罗美. 2004.多相催化氧化处理染料废水铜系催化剂的研究.南昌大学学报, 26(1): 66~68
    杨少霞,冯玉杰,万家峰,蔡伟民. 2002.湿式催化氧化技术的研究与发展概况.哈尔滨工业大学学报, 34(4): 540~544
    杨阳,陈爱平,古宏晨,戴智铭,古政荣,陶咏. 2001.以膨胀珍珠岩为载体的漂浮型TiO2光催化剂降解水面浮油.催化学报, 22(2): 177~180
    尹志刚,赵德丰. 2001.偶氮染料分子致癌机理探讨.染料工业, 38(6): 9~12
    于敏,崔进发. 2003.超滤膜处理分散染料废水.工业用水与废水,34(5): 36~38
    于文敦,刘晓东,孙秀云,王连军. 2002.内电解-混凝-SBR-生物炭组合工艺处理染料废水.污染防治技术,15(1): 18~19
    张磊,刘源,白雪. 2002.大比表面积锆氧化物固溶体的制备.中国稀土学报, 20: 99~103
    张丽,贺启环. 2002.高效菌活性污泥法处理分散染料废水实验研究.环境工程,20(1): 77~79
    张林生,蒋岚岚. 2000.染料废水的脱色方法.化工环保, 20(1): 14~18
    张鑫,曹映文. 2008.印染废水反渗透膜处理及回用技术.印染, 34(14): 36~38
    张亚文,李昂. 2002.灼烧时间对稀土氧化物粒度、比表面积和形貌的影响(Ⅲ).中国稀土学报, 20(2):170~172
    张宇峰,滕洁,张雪英,王晓军,徐炎华. 2003.印染废水处理技术的研究进展.工业水处理, 23(4): 23~27
    郑振晖,高宝玉,王红梅. 2006.有机高分子絮凝剂PDMDAAC对活性染料印染废水混凝脱色研究.能源环境保护,20(1): 31~33
    周琪,赵由才. 2005.染料对人体健康和生态环境的危害.环境与健康杂志, 22(3): 229~231
    Barrault J, Abdellaoui M, Bouchoule C, Majeste A, Tatibouet J M. Louloudi A, Papayannakos N, Gangas N H. 2000. Catalytic wet peroxide oxidation over mixed (Al-Fe) pillared clays. Applied Catalysis B: Environmental, 27(4): L225~L230
    Barrault J, Bouchoule C, Echachoui K, Srasra N F, Trabelsi M, Bergaya F. 1998. Catalytic wet peroxide oxidation (CWPO) of phenol over mixed (Al-Cu)-pillared clays. Applied Catalysis B: Environmental, 15(3-4): 269~274
    Blumel S, Stolz A. 2003. Cloning and characterization of the gene coding for the aerobic azoreductase from Pigmentiphaga kullae K24. Applied Microbiology and Biotechnology, 62(2-3): 186~190
    Chang D J , Chen I P,Chen M T, Lin S S. 2003. Wet air oxidation of a reactive dye solution using CoAIPO4-5 and CeO2 catalysts. Chemosphere, 52(6): 943~949
    Chen J, Zhu L. 2007. Heterogeneous UV-Fenton catalytic degradation of dyestuff in water with hydroxyl-Fe pillared bentonite. Catalysis Today, 126(3-4): 463~470
    Fortuny A, Bengoa C, Font J, Fabregat A. 1999. Bimetallic catalysts for continuous catalytic wet air oxidation of phenol. Journal ofHazardous Materials, 64(2): 181~193
    Fujishima A, Honda K. 1972. Electrochemical photolysis of water at semiconductor electrode.Nature, 238(5358): 37~38
    Hu X, Lei L, Chen G, Yue P L. 2001. On the degradability of printing and dyeing wastewater by wet air oxidation. Water Research, 35(8): 2078~2080
    Huang T L, MacInnes J M, Cliffe K R. 2001. Nitrogen removal from wastewater by a catalytic oxidation method.Water Research, 35(9): 2l13~2120
    Imamura E. 2001. Wet oxidation catalyzed by ruthenium supported On ceriam(Ⅳ). Ind Eng Chem, 27: 718~721
    Joo D J, Shin W S, Choi J H. 2007. Decolorization of reactive dyes using inorganic coagulants and synthetic polymer. Dyes and Pigments, 73(1): 59~64
    Khraisheh M A M, Degs Y S A, Allen S J, Ahmad M N. 2002. Elucidation of controlling steps of reactive dye adsorption on activated carbon. Industrial and Engineering Chemistry Research, 41(6): 1651~1657
    Kim S C, Lee D K. 2004. Preparation of Al-Cu pillared clay catalysts for the catalytic wet oxidation of reactive dyes. Catalysis Today, 97(2-3): 153~158
    Knapp J S, Newby P S. 1995. The microbiological decolorization of an industrial effluent containing a diazo-linked chromophore. Water Research, 29(7): 1807~1809
    Lekhal A, Glasser B J, Khinast J G. 2001. Impact of drying on the catalyst profile in supported impregnation catalysts. Chemical Engineering Science, 56(15): 4473~4487
    Lin S H, Ho S J. 1996. Catalytic wet air oxidation of high strength industrial wasteWater. Applied Catalysis B: Environmental, 9(1-4): 133~147
    Liu Y, Sun D. 2007. Effect of CeO2 doping on catalytic activity of Fe2O3/γ-Al2O3 catalyst for catalytic wet peroxide oxidation of azo dyes. Journal of Hazardous Materials, 143(1-2): 448~454
    Nagai Y, Yamamoto T, Tanaka T, Yoshida S, Nonaka T, Okamoto T, Suda A, Sugiura M. 2002. X-ray absorption fine structure analysis of local structure of CeO2-ZrO2 mixed oxides with the same composition ratio (Ce/Zr=1). Catalysis Today, 74(3-4): 225~234
    Okitsu K. Higallenbrand K. Nagata D T. 1995. Treatment of wastewater. Nippon Kagaku karshi, 3: 208~216
    Orfao J J M, Silva A I M, Pereira J C V, Barata S A, Fonseca I M, Faria P C C, Pereira M F R. 2006. Adsorption of a reactive dye on chemically modified activated carbons-influence of pH. Journal of Colloid and Interface Science, 296(2): 480~489
    Parra S, Guasaquillo I, Enea O, Mielczarski E, Mielczarki J, Albers P, Minsker L K, Kiwi J. 2003. Abatement of an azo dye on structured C-Nafion/Fe-Ion Surfaces by Photo-Fenton Reactions Leading to Carboxylate Intermediates with a Remarkable Biodegradability Increase of the Treated Solution. J.Phys.Chem.B, 107(29): 7026~7035
    Quici N, Morgada M E, Piperata G, Babay P, Gettar R T, Litter M I. 2005. Oxalic acid destruction at high concentrations by combined heterogeneous photocatalysis and photo-Fenton processes. Catalysis Today, 101(3-4): 253~260
    Quintanilla A, Casas J A, Zazo J A, Mohedano A F, Rodríguez J J. 2006. Wet air oxidation of phenol at mild conditions with a Fe/activated carbon catalyst.Applied Catalysis B: Environmental, 62(1-2): l15~120
    Rau J, Stolz A. 2003. Oxygen-insensitive nitroreductases NfsA and NfsB of Escherichia coli function under anaerobic conditions as lawsone-dependent azo reductases. Applied and Environmental Microbiology, 69(8): 3448~3455
    Sauer T, Neto G C, Jose H J, Moreira R F P M. 2002. Kinetics of photocatalytic degradation ofreactive dyes in a TiO2 slurry reactor. Journal of Photochemistry and Photobiology A: Chemistry, 149(1-3): 147~154
    Trovarelli A, Leitenburg C D, Boaro M, Dolcetti G. 1999. The utilization of ceria in industrial catalysis. Catalysis Today, 50(2): 353~367
    Yang M, Sun Y, Xu A H, Lu X Y, Du H Z, Sun C L, Li C. 2007. Catalytic wet air oxidation of coke-plant wastewater on ruthenium-based eggshell catalysts in a bubbling bed reactor. Bulletin of Environmental Contamination and Toxicology, 79(1): 66~70
    Zee F P, Bouwman R H M, Strik D P B T B, Lettinga G, Field J A. 2001. Application of redox mediators to accelerate the transformation of reactive azo dyes in anaerobic bioreactors. Biotechnology and Bioengineering, 75(6): 691~701
    Zhu W, Bin Y, Li Z, Jiang Zg, Yin T. 2002. Application of catalytic wet air oxidation for the treatment of H-acid manufacturing process wastewater. Water Research, 36(8): 1947~1954

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700