锡铜合金负极材料的电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锡负极是锂离子电池潜在的负极材料,理论比容量达到990 mAh/g。然而,在充放电过程中锡负极的体积膨胀率较大,长期循环后会产生粉化现象,导致循环性能较差,特别是首次循环的不可逆容量较大。为了改善锡阳极的电化学性能,本文试图通过活性/非活性复合合金的办法制备锡铜基合金,开展以下几方面的研究工作,取得具有创新性的成果。
     第一,在不同组成的碱性镀液中,于铜膜电极上电沉积金属锡膜,然后再将制备的电极在氩气气氛中,于不同温度烧结处理。采用XRD、TG-DTA、EIS、AFM、SEM及充放电循环实验等现代方法研究了制备条件对样品电化学性能的影响。实验结果显示:在本文的实验条件下,锡酸钠含量为60g/L时,制备的锡铜合金电极的电化学性能最好。在280℃烧结的锡铜合金具有单斜Cu_6Sn_5(C2/c空间群)结构,晶胞体积较大,在充放电中结构稳定。在0.03~2.0 V电压区间充放电时,首次放电容量为503 mAh/g,40循环的容量衰减率为33%。
     第二,将电沉积于铜膜电极上的金属锡膜置于空气流和氩气流的混合气氛中,首次采用混合气氛烧结法制备。当空气流速和氩气流速比为4:24时,于380℃烧结制得锡铜合金复合氧化膜。该样品的首次放电容量为1451 mAh/g,40次循环充放电后,放电容量仍保持在600 mAh/g以上。
     第三,首次在锡铜合金上进一步覆盖镍钴合金膜,采用不同温度处理合成样品。充放电实验表明,230℃为最佳烧结温度。该样品首次放电容量为408 mAh/g,首次充放电效率高达80%。掺杂降低了首次不可逆容量损失。通过优化组成,当制备样的锡和镍钴合金质量比为6:1时的样品有最佳的电化学性能。
Tin is a potential anodic material used for lithium ions batteries for its hightheoretical capacity of 990 mAh/g. However, during charge and discharge process, thevolume-expanding ratio of the tin anode is too large to produce good cycling performanceduring charge-discharge test. And the sample is to become the powdered alloy afterlong-term tested. To improve the electrochemical performance of the tin alloy, thisdissertation is planning to prepare the Cu and Sn alloys by adopting the methods of theactivity/non-activity composite alloy. The research work included the several aspectsblow.
     Firstly, by sintered the tin-copper films eleetroplated from the alkaline solutions atdifferent temperatures, several kinds of tin-copper alloys were prepared XRD, TG-DTA,Electrochemical impedance, AFM, SEM and charge-discharge test were employed tostudy the effect of preparation condition on the electrochemical performance of thesamples. The research results showed that the coating behavior is optimum when thesodium stannate concentration is 60 g/L. The as-prepared sample shows the bestelectrochemical properties in all samples. The tin-copper alloy sintered at 280℃with amonoclinic structure of Cu_6Sn_5 (Space group: C2/c) exhibits a large crystal and the stablestructure during charge-discharge cycles. The sample exhibits a discharge capacity of 503mAh/g in the 1st cycle and the capacity fading rate is 33 % in 40 cycles in the voltageregion from 0.03 to 2.0 V.
     Secondly, the tin films coated on the copper film sintered at 380℃in the mixingatmosphere of the 4:24 ratio of airflow and argon flow. The sintered product is composedof the tin-copper alloy coated with the composite oxide film. The first cycle dischargecapacity of this sample is 1451 mAh/g. After 40 cycles, its capacity is higher than 600mAh/g.
     Thirdly, a SnCuNiCo alloy sample was firstly prepared by sintered the as-preparedsample consisted of the tin-copper alloy coated with nickel-cobalt alloy. Thecharge-discharge results showed that the best-sintered temperature is 230℃. The firstcycle discharge capacity of the sample is 408 mAh/g and its charge-discharge efficiency at the 1st cycle is 80%, which result shows that the doping reduced the capacity loss. Theoptimization synthesis condition is the 6:1 mass ratio between tin and nickel-cobalt.
引文
[1] 唐致远,刘春燕,徐国祥.锂离子电池的产品现状及其发展前景[J].河北化工,2001,1:6-7
    [2] 周恒辉,慈云祥,刘昌炎.锂离子电池电极材料研究进展[J].化学进展,1998,10(1):85-91
    [3] 吴宇平,姜长印,万春荣等.锂离子二次电池负极材料的研究[J].化学世界,2000,(1):3-7
    [4] Nagaura T. 4th International rechargeable battery seminar, Florida, 1990
    [5] 刘宇,谢晶莹,杨军等.锂离子电池中的高容量合金/碳复合电极研究[J].无机材料学报,2003,18(1):163-163
    [6] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries [J]. Nature, 2001, 414:359-367
    [7] 李春鸿.锂离子二次电池[J].电池,1996,26(6):288-290
    [8] Nakajima K, Nishi Y. Advanced Li-ion batteries [A]. Energy stage systems for electronics [C]. Amsterdam, 2000:109
    [9] 闫俊美.新型非碳类锂离子电池负极材料的合成、结构与性能研究.厦门大学博士学位论文,2005:4-5
    [10] 徐仲榆,郑洪河.锂离子蓄电池碳负极/电解液的相容性研究进展Ⅱ电解液组成与碳负极/电解液的相容性[J].电源技术,2000,24(5):295-301
    [11] Walker C W, Cox J D, Salomon M. Conductivity and electrochemical stability of electrolytes containing organic solvent mixtures with lithium tris (trifluoromethane-sulfonyl) methide [J]. J Electrochem Soc, 1995, 142(3): 80-82
    [12] Masashi I, Hideaki K, Masayuki M, et al. Li (CF_3SO_2)_2N as an electrolytic salt for rechargeable lithium batteries with graphitized mesocarbon microbeads anodes [J]. J Power Sources, 1996, 62(2): 229-232
    [13] 黄文煌,严玉顺,万春荣等.电解液添加剂对锂离子蓄电池循环性能的影响[J].电源技术,2001,25(2):91-93
    [14] 任齐都,滕祥国,马培华.锂离子二次电池聚合物电解质的研究进展[J].盐湖研究,2005,13(1):49-54
    [15] Wright P V. Polymer electrolytes-the early day [J]. Electrochim Acta, 1998, 43(10-11): 1137-1143
    [16] 吴升晖,尤金跨,林祖赓.锂离子电池碳负极材料的研究[J].电源技术,1998,22(1):35
    [17] Takami N, Satoh A, Ohsaki T, et al. Lithium insertion and extraction for high capacity disordered carbons with large hysteresis [J]. Electrochim Acta, 1997, 42 (8): 2537-2543
    [18] Zheng T, Liu Y, Fuller E W, et al. Lithium insertion in high capacity carbonaceous materials [J]. J Electrochem Soc, 1995, 142(8): 2581-2590
    [19] Buiel E, Dahn J R. Li-insertion in hard carbon anode materials for Li-ion batteries [J]. Electrochim Acta, 1999, 45.(1-2): 121-130
    [20] Thomas P, Billaud D. Electrochemical insertion of sodium into hard carbons [J]. Electrochim Acta, 2002, 47(20): 3303-3307
    [21] Nishijima M, Kagohashi T, Imanishi M, et al. Synthesis and electrochemical studies of a new anode material: Li_3CoN [J]. Solid State Ionics, 1996, (83): 107
    [22] Shodai T, Okada S, Tobishima S, et al. Study of Li_(3-x)M_xN (M: Co, Ni or. Cu) system for use as anode material for material in lithium rechargeable cells [J]. Solid State Ionics, 1996, (86-88): 785-789
    [23] 尹鸽平,王庆,程新群等.锂离子电池新型负极材料的研究进展[J].电池,1999,29(6):270-274
    [24] Suzuki S, Shodai T. Electronic structure and electrochemical properties of electrode material Li_(7-x)MnN_4 [J]. Solid State Ionics, 1999, 116(1-2): 1-9
    [25] Ching W Y, Xu Y N, gulis P. Electronic structure of Li_3FeN_2, a nearly half-ferromagnetic metal? [J]. J Applied Physics, 2003, 93(10): 6885-6887
    [26] Houmes J D, ZurLoye H C. Microwave Synthesis of Ternary Nitride Materials [J]. Solid State Chem, 1997, 130(2): 266-271
    [27] Yang J, Wang K, Xie J Y. Ballmilling synthesis and electrochemical characterization of ternary lithium nitrides [J]. J El ectrochem Soc, 2003, 150(1): A140-A142
    [28] Nishijima M, Kagohashi T, Takeda Y, et al. Electrochemical studies of a new anode material, Li_(3-x)M_xN (M=Co, Ni, Cu) [J]. J Power Sources, 1997, 68:510-514
    [29] Shodai T, Okada S, Tobishima S, et al. Study of Li_(3-x)M_xN (M: Co, Ni or Cu) system for use as anode material in lithium rechargeable cells [J]. Solid State Ionics, 1996, 86-88:785-789
    [30] Shodai T, Okada S, Tobishima S. Anode performance of a new layered nitride Li_(3-x)Co_xN (x=0.2-0.6) [J].J Power Sources, 1997, 68:515-518
    [31] Amezawa K, Yamamoto N, Tomii Y, et al. Single-electrode peltier heats of Li-Si alloy electrodes in LiCl-KCl eutectic melt [J]. J Electrochem Soc, 1998, 145(6): 1986-1994
    [32] Bourderau S, Brousse T, Schleich D M. Amorphous silicon as a possible anode material for Li-ion batteries [J]. J Power Sources, 1999, 81-82:233-236
    [33] Li H, Huang X, Chen L, et al. The crystal structural evolution of nano Si anode caused by lithium insertion and extraction at room temperature [J]. Solid State Ionics, 2000, 135(1-4): 181-191
    [34] Wen Z S, Yang J, Wang B F, et al. High capacity silicon/carbon composite anode materials for lithium ion batteries [J]. Electrochem Commun, 2003, 5(2): 165-168
    [35] Dimov N, Fukuda K, Umeno T, et al. Characterization of carboncoated silicon: structural evolution and possible limitations [J]. J Power Sources, 2003, 114(1): 88-95
    [36] Kim H, Choi J. The insertion mechanism of lithium into Mg_2Si anode materials for Li-ion batteries [J]. J Electrochem Soc, 1999, 146(12): 4401
    [37] 井户口义雄,峰尾泰,松藤明博,复合酸化物负极[J].电气化学工业物理化学,1997,65:717~720
    [38] 吴宇平,万春荣,姜长印等.锂离子二次电池锡的氧化物负极材料的研究[J].化学通报,1998,(10):24
    [39] Li H, Huang X J, Chert L Q. Direct imaging of passivating film and microstructure of nanometer SnO anode in lithium rechargeable batteries [J]. Electrochem and Solid-state Lett. 1998, 1:241-249
    [40] Hightower A, Delaroix P, Le C G, et al. Sn mossbauer spectrometry study of Li-SnO anode materials for Li-ion cells [J]. J Electrochem Soc. 2000, (147): 1-8
    [41] Li H, Huang X J, Chen L Q. Electrochemical impedance spectroscopy study of SnO and nano-SnO anodes in lithium rechargeable batteries [J]. J Power Sources, 1999, 81-82:340-345
    [42] Ding F, Fu Z W, Zhou M, et al. Tin-based composite oxide thin-film electrodes prepared by pulsed laser deposition [J]. J Electrochem Soc. 1999, 146(10): 3554
    [43] Brouse T, Retoux R, Herterich U, et al. Thin film crystalline SnO_2 lithium electrodes [J]. Electrochem Soc. 1998, 145(1): 1-4
    [44] Courtney I A, Dahn J R. Electrochemical and in situ X-ray diffraction studies of the reaction of lithium with tin oxide composites [J]. J Elecrochem Soc., 1997, 144(6): 2045-2052
    [45] Nagayama M, Morita T, Ikuta H, et al. New anode material SnSO_4 for lithium secondary battery [J]. Solid State Ionics, 1998, 106(1): 33-38
    [46] Idota Y, Kubota T, Matsufuji A, et al. Tin-based amorphous oxide:a high-capacity Li-ion-storage material [J]. Science, 1997, 276(5137): 1395-1397
    [47] Bensenhard J O, Yang J, Winter M. Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? [J]. J Power Sources, 1997, 68(1): 87-90
    [48] Huggins R. A. Lithium alloy negative electrodes formed from convertible oxides [J]. Solid State Ionics, 1998, 113-115:57-67
    [49] Jose L, Tirade. Inorganic materials for the negative electrode of Lithium-ion batteries: state of the art and future prospects [J]. Materials science and engineering R, 2003, 40:103-136
    [50] Winter M, Besenhard J O. Electrochemical lithiation of tin and tin-based intermetallics and composites [J]. Electrochim Acta, 1999, 45:31-50
    [51] Winter M, Besenhard J O. Spahr M E, et al. Insertion electrode materials for rechargeable lithium batteries [J]. Advanced Materials, 1998, 10(10): 725-763
    [52] Winter M, Besenhard J O. Electrochemical lithiation of tin and tin-based intermetallies and composites [J]. Electrochim Acta. 1999, 45:3150
    [53] Amezawa K, Yamamoto N, Tomii Y, et al. Single-electrode peltier heats of Li-Si alloy electrodes in LiCl-KCl eutectic melt [J]. J Electrochem Soc, 1998, 145(6): 1986-1994
    [54] 闫俊美,黄惠贞,张静等.锂离子电池硅化物及其复合负极材料的研究[J].电化学,2005,11(4):416
    [55] Wang G X, Sun L, Brandhurst D H, et al, Nanoerystalline NiSi alloy as an anode material for lithium-ion batteries [J]. J Alloys and Compounds, 2000, 306:249-252
    [56] Jung H, Park M, Yoon Y G, et al. Amorphous silicon anode for lithium-ion rechargeable batteries [J]. J Power Sources, 2003, 115:346-351
    [57] Huggins Robert A. Lithium alloy negative electrodes [J]. J Power Sources, 1999, 81-82:13-19
    [58] Yang J, Winter M, Besenhard J O. Small particle size multiphase Li-alloy anodes for lithium-ion batteries [J]. Solid State Ionics, 1996, 90:281-287
    [59] Besenhard J O, Yang J, Winter M. Will advanced Li-alloy anodes have a chance in lithium-ion batteries? [J]. J Power Sources, 1997, 68:87-90
    [60] Yang J, Wachtler M, Winter M, et al. Sub-microcrystalline Sn and Sn-SnSb powders as lithium storage materials for lithium-ion batteries [J]. Electrochem and Solid-State Lett, 1999, 2(4): 161-163
    [61] Yang J, Takeda Y, Imanishi N, et al. Ultrafine Sn and SnSb_(0.14) powders for lithium storage matrices in lithium-ion batteries [J]. J Electrochem Soc, 1999, 146:4009-4013
    [62] Ahn J H, Kim Y J, Wang G, et al. Lithium storage properties of ball milled Ni-57mass%Sn alloy [J]. Materials Transactions, 2002, 43(1): 63-66
    [63] Fang L, Chowdari B V R. Sn-Ca amorphous alloy as anode for lithium ion battery [J]. J Power Sources, 2001, 97/98:181-184
    [64] Kim H, Kim Y J, Kim D G. Mechanochemical synthesis and electrochemical characteristics of Mg: Sn as an anode material for Li-ion batteries [J]. Solid State Ionics, 2001, 144:41-49
    [65] Tamura N, Fujimoto M, Kamino M, et al. Mechanical stability of Sn-Co alloy anodes for lithium secondary batteries [J]. Electrochim Acta, 2004, 49:1949-1956
    [66] Beaulieu L Y, Dahn J R. The reaction of lithium with Sn-Mn-C intermetallics prepared by mechanical alloying [J]. J Electrochem Soc, 2000, 147(9): 3237-3241
    [67] Kepler K D, Vaughey J T, Thackeray M M, Copper-tin anodes for rechargeable lithium batteries: an example of the matrix effect in an intermetallic system [J]. J Power Sources, 1999, 81-82: 383-387
    [68] Mao O, Dahn J R. Mechanically alloyed Sn-Fe(-C) powders as anode materials for Li-ion batteries [J]. J Electrochem Soc, 1999, 146:414-422
    [69] Yin J T, Wada M, Yoshida S, et al. New Ag-Sn alloy anode materials for lithium-ion batteries [J]. J Electrochem Soc, 2003, 150(8): A1129-A1135
    [70] Wada M, Yin J T, Tanabe E, et al. Nanocomposite anode materials for Li-ion batteries electrochemistry [J]. Electrochem, 2003, 71 (12): 1064-1066
    [71] Mukaibo H, Yoshizawa A, Momma T, et al. Particle size and performance of SnS_2 anodes for rechargeable lithium batteries [J]. J Power Sources, 2003, 119:60-63
    [72] Wang L, Kitamura S, Sonoda T, et al. Batteries, fuel cells, and energy conversion-electroplated Sn-Zn alloy electrode for Li secondary batteries [J]. J Electrochem Soc, 2003, 150(10): A1346-A1350
    [73] 吴宇平,万春荣,姜长印等.锂离子二次电池[M].北京:化学工业出版社,2002:124
    [74] Kepler K D, Vaughey J T, Thackeray M M. Copper-tin anodes for rechargeable lithium batteries: an example of the matrix effect in an intermetallic system [J].J Power Sources, 1999, 81: 383-387
    [75] Kepler K D, Vaughey J T, Thackeray M M. Li_xCu_6Sn_5 (0    [76] Xia Y Y, Sakai T, Yoshinaga H, et al. Flake Cu-Sn alloys as negative electrode materials fox rechargeable lithium batteries [J].J Electrochem Soc, 2001,148(5): A471-A481
    [77] Wang G X, Sun L, Bradhurst D H, et al. Lithium storage properties of nanocrystalline eta-Cu_6Sn_5 alloys prepared by ballmilling [J].J Alloys and Compounds, 2000,299: L12-L15
    [78] Kim D G, Kim H, Sohn H-J, et al. Nanosizcd Sn-Cu-B alloy anode prepared by chemical reduction for secondary lithium batteries [J].J Power Sources, 2002,104:221-225
    [79] Wolfenstine J, Campos S, Foster D. Nanoscale Cu_6Sn_5 anode [J].J Power Sources. 2002,109: 230
    [80] Tamura N, Ohshita R, Yonezu I, et al. Study on the anode behavior of Sn and Sn-Cu alloy thin-film electrodes [J].J Power Sources, 2002,107(1): 48-55
    [81] Tamura N, Ohshita R, Fujitani S, et al. Advanced structures in electrodeposited tin base negative electrodes for lithium secondary batteries [J].J Electrochem Soc, 2003,150(6): A679-A683
    [82] Ehrlich G M, Durand C, Chen X, et al. Metallic negative electrode materials for rechargeable nonaqueous batteries [J].J Electrochem Soc, 2000,147(3): 886-891
    [83] Tamura N, Ohahita R, Fujimoto M, et al. Study on the anode behavior of Sn and Sn-Cu alloy thin-film electrodes [J].J Power Sources, 2002,107:48-55
    [84] Ulus A, Rosenberg Y, Burstein L, et al. Tin alloy-graphite composite anode for lithium-ion batteries [J] J Electrochem Soc, 2002,149(5): A635-A643
    [85] Thackeray M M. Spinel electrodes for lithium batteries [J].J American Ceramic Society, 1999, 82(12): 3347-3354
    [86] Zhang W X, Wang C, Zhang X M, et al. Low temperature synthesis of nanocrystalline Mn_3O_4 by a solvothermal method [J]. Solid State Ionics, 1999,117(3-4): 331-335
    [87] Larcher D, Bonnin D, Cortes R, et al. Combined XRD, EXAFS, and Mossbauer Studies of the reduction by lithium of alpha-Fe_2O_3 with various particle sizes [J].J Electrochem Soc. 2003, 150(12): A1643-A1650
    [88] Xu J J, Jain G Nanocrystalline ferric oxide cathode for rechargeable lithium batteries [J]. Electrochem Solid-State Lett, 2003,6(9): A190-A193
    [89] Larcher D, Masquelier C, Bonnin D, et al. Effect of particle size on lithium intercalation into alpha-Fe_2O_3 [J] J Electrochem Soc, 2003,150(1): A133-A139
    [90] Natarajan C, Setoguchi K, Nogami G Preparation of a nanocrystalline titanium dioxide negative electrode for the rechargeable lithium ion battery [J]. Electrochim Acta, 1998,43:3371-3374
    [91] Laik B, Poizot P, Tarascon J M. The electrochemical quartz crystal microbalance as a means for studying the reactivity of Cu_2O toward lithium [J].J Electrochem Soc, 2002,149(3): A251-A255
    [92] Connor P A, Irvine J T S. Combined X-ray study of lithium (tin) cobalt oxide matrix negative electrode foe Li-ion batteries [J]. Electrochim Acta, 2002,47(18): 2885-2892
    [93] Wang G X, Chen Y, Konstantinov k, et al. Investigation of cobalt oxide as anode materials for Li-ion batteries [J] J Power Sources, 2002,109(1): 142-147
    [94] Yuan Z Y, Huang F, Feng C Q, et al. Synthesis and electrochemical performance of nanosized Co_3O_4[J]. Materials Chem & Physics, 2003,79(1): 1-4
    [95] Wang Y, Qin Q Z. A nanocrystalline NiO thin-film electrode prepared by pulsed laser ablation for Li-ion batteries [J].J Electrochem Soc. 2002,149(7): A873-A878
    [96] Natarajan C, Setoguchi K, Nogami G Preparation of a Nanocrystalline titanium dioxide negative electrode for the rechargeable lithium ion battery [J]. Electrochim Acta, 1998, 43: 3371-3374
    [97] Badway F, Plitz I, Grugeon S, et al. Metal oxides as negative electrode materials in Li-ion cells [J]. Electrochem Solid-State Lett, 2002,5(6): A115-A118
    [98] Larcher D, Sudant G, Leriche J B, et al. The electrochemical reduction of Co_3O_4 in a lithium cell. [J]. J Electrochem Soc, 2002,149(3): A234-A241
    [99] Debart A, Dupont L, Poizot P, et al. A transmission electron microscopy study of the reactivity mechanism of tailor-made CuO particles toward lithium [J].J Electrochem Soc, 2001, 148(11): A1266-A1274
    [100] Liu Y, Horikawa K, Fujiyosi M, et al. Layered lithium transition metal nitrides as noval anodes for lithium secondary batteries [J]. Electrochim Acta, 2004,49(21): 3487-3496
    [101] Kang Y M, Kim K T, Kim J H, et al. Electrochemical properties of Co_3O_4, Ni-Co_3O_4 mixture and Ni-Co_3O_4 composite as anode materials for Li-ion secondary batteries [J].J Power Sources, 2004, 133(2): 252-259
    [102] Poizot P, Laruelle S, Grugeon S, et al. Nano-sized transition-metal oxides as negative electrode materials for lithium-ion batteries [J]. Nature, 2000,407:496-499
    [103] Dolle M, Poizot P, Dupont L, et al. Experimental evidence for electrolyte involvement in the reversible reactivity of CoO toward compounds at low potentiall [J]. Electrochem Solid-State Lett.2002,5(1):A18-A21
    [104] Todd A D, Mar R E, Dahn J R, Combinatorial study of tin-transition metal alloys as negative electrodes for lithium-ion batteries [J].J Electrochem Soc, 2006,153(10): A1998-A2005
    [105] Hassoun J, Panero S, Scrosati B. Electrodeposited Ni-Sn intermetallic electrodes for advanced lithium-ion batteries [J].J Power Sources, 2006,160(2): 1336-1341
    [106] Alcantara R, Ortiz G F, Lavela P, et al. Electrochemical and 119 Sn Mossbauer studies of the reaction of Co_2SnO_4 with lithium [J]. Electrochem Commun, 2006, 8 (5): 731-736
    [1] Todd A D W, Mar R E, Dahn J R, Combinatorial study of tin-transition metal alloys as negative electrodes for lithium-ion batteries [J]. J Electrochem Soc, 2006, 153 (10): A 1998-A2005
    [2] Hassoun J, Panero S, Scrosati B. Electrodeposited Ni-Sn intermetallie electrodes for advanced lithium ion batteries [J]. J Power Sources, 2006, 160(2): 1336-1341
    [3] Alcantara R, Ortiz G F, Lavela P, et al. Electrochemical and 119 Sn mossbauer studies of the reaction of Co_2SnO_4 with lithium [J]. Electrochem Commun, 2006, 8 (5): 731-736
    [4] 唐致远,庄新国,翟玉梅等.锂离子电池酚醛树脂裂解碳负极材料的研究[J].电化学,2000,6(2):218-221
    [5] Kepler K D, Vaughey J T, Thackeray M M. Copper-tin anodes for rechargeable lithium batteries: an example of the matrix effect in an intermetallie system [J]. J Power Sources, 1999, 81: 383-387
    [6] Xia Y Y, Sakai T, Yoshinaga H, et al. Flake Cu-Sn alloys as negative electrode materials for reehargeable lithium batteries [J]. J Electrochem Soc, 2001, 148(5): A471-A481
    [7] Ren J G, Pu W H, He X M, et al. Synthesis and surface modification of tin-copper alloy anode for lithium-ion battery by electrodeposition process [J]. Rare Metal Mater & Engin, 2006, 35: 359-364
    [8] Shi L H, Li H, Wang Z X, et al. Nano-SnSb alloy deposited on MCMB as an anode material for lithium-ion batteries [J]. J Materials Chem, 2001, 11 (5): 1502-1505
    [9] Fang T, Hsiao L Y, Duh J G, et al. A novel composite negative electrode consist of multiphase Sn compounds and mesophase graphite powders for lithium-ion batteries [J]. J Power Sources, 2006, 160(1): 536-541
    [10] 童庆松,杨勇,连锦明.掺钛电解二氧化猛制掺杂LiMn_2O_4的电化学性能[J].无机化学学报,2005,(12):1784-1790
    [11] Pu W H, Ren J G, Wan C R, et al. Characteristics research of electrodeposited Sn-Cu alloy anode for lithium-ion battery [J]. J Inorg Mater, 2004, 19 (1): 86-92
    [12] Shin H C, Liu M L, Three-dimensional porous copper-tin alloy electrodes for reehargeable lithium batteries [J]. Advanced Functional Materials, 2005, 15 (4): 582-586
    [13] Larcher D, Beaulieu L Y, MacNeil D D, et al. In situ X-ray study of the electrochemical reaction of Li with η-Cu_6Sn_5 [J].J Electrochem Soc ,2000,147:1658-1662
    [14] Levi M D, Salitra G, Markovsky B, et al. Solid-state electrochemical kinetics of Li-ion intercalation into Li_(1-x)CoO_2: simultaneous application of electroanalytical techniques SSCV, PITT, and EIS [J].J Electrochem Soc, 1999,146:1279-1289
    [15] Fernandez A, Martin F, Morales J, et al. Beneficial effects of Mo on the electrochemical properties of tin as an anode material for lithium batteries [J]. Electrochim Acta, 2006, 51 (17): 3391-3398
    [16] Chen H, Li Z, Wu Z, et al. A novel route to prepare and characterize Sn-Bi nanoparticles [J].J Alloys & Comp, 2005,394(1-2): 282-285
    [1] Larcher D, Beaulieu L Y, Macneil D D, et al. In situ X-ray study of the electrochemical reaction of Li with η-Cu_6Sn_5 [J].J Electrochem Soc, 2000,147:1658-1662
    [2] Kepler K D, Vaughey J T, Thackeray M M. Copper-tin anodes for rechargeable lithium batteries: an example of the matrix effect in an intermetallic system [J].J Power Sources, 1999, 81: 383-387
    [3] Xia Y Y, Sakai T, Yoshinaga H, et al. Flake Cu-Sn alloys as negative electrode materials for rechargeable lithium batteries [J].J Electrochem Soc, 2001,148(5): A471-A481
    [4] Ren J G, Pu W H, He X M, et al. Synthesis and surface modification of tin-copper alloy anode for lithium ion battery by electrodeposition process [J]. Rare Metal Mater & Engin, 2006, 35: 359-364
    [5] Shi L H, Li H, Wang Z X, et al. Nano-SnSb alloy deposited on MCMB as an anode material for lithium ion batteries [J].J Materials Chemistry, 2001,11 (5): 1502-1505
    [6] Fang T, Hsiao L Y, Duh J G, et al. A novel composite negative electrode consist of multiphase Sn compounds and mesophase graphite powders for lithium ion batteries [J].J Power Sources, 2006, 160(1):536-541
    [7] Kawakita J, Kato T, Katayama Y, et al. Lithium insertion behaviour of Li_(1+x)V_3O_8 with different degrees of crystallinity [J] J Power Sources, 1999(81-82): 448-453

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700