连续升温条件下高硫煤还原磷石膏产物特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷石膏在我国已被定性为危险固体废物,其危害严重影响了环境的持续发展。用磷石膏生产硫酸联产水泥是大量消耗磷石膏的途径之一。同时又能节约经济成本,造福环境。以往的生产工艺主要是用焦炭还原磷石膏,而且产生的SO2尾气浓度较低。用高硫煤还原分解磷石膏可利用煤中S含量较高的特点,提高烟气中SO2的浓度。
     本文实验中采用连续升温的加热方式,对不同反应温度、C/S03比、高硫煤粒径、高硫煤种条件下,高硫煤还原分解磷石膏的气体产物SO2的浓度、磷石膏的分解率、脱硫率,以及固体产物品质及变化规律进行研究。并结合热重-差热分析(TG-DTA)、X射线衍射(XRD)物相分析和SEM扫描电镜分析手段,对高硫煤还原磷石膏的反应机理进行初步研究。主要研究成果如下:
     (1)利用同步热重-差热分析(TG-DTA)技术,对高硫煤还原分解磷石膏在不同条件下的热失重、热效应、热稳定性进行分析研究。实验结果表明:不同条件下的热分析曲线都有两个失重阶段。磷石膏DTA曲线在1100℃处出现吸热峰,说明此时的磷石膏已开始发生熔化与分解反应。在1230-1300℃失重率达到24.541%,为强烈分解的放热反应阶段。加入高硫煤作还原剂的磷石膏热重分析曲线,在1018-1101.5℃失重率为29.758%,吸热峰温度为1060.64℃,说明用高硫煤作为还原剂,能降低磷石膏的分解温度。对不同高硫煤粒径条件下的热分析曲线进行比较,发现高硫煤粒径较小时,吸热温度区间缩短,出现吸热峰的温度降低,但失重率差别不大。在一定升温速率范围内,失重率随升温速率的增大而增大,反应的起始温度和终止温度也相应地向高温方向移动。
     (2)高硫煤还原分解磷石膏气体产物品质研究
     对不同反应温度、C/S03比、高硫煤粒径、高硫煤种条件下所得的S02浓度、磷石膏的分解率及脱硫率进行研究。实验结果表明:用高硫煤还原磷石膏可以提高S02浓度。在700-800℃和1000-1100℃,SO2浓度出现了两个峰值。当反应温度小于800℃时,较强的还原气氛有利于SO2的生成;当反应温度大于800℃时,较弱的还原气氛有利于S02的生成。在700-800℃时,高硫煤粒径对S02浓度的影响作用最显著,S02浓度最大相差15%左右。SO2浓度随着粒径的逐渐减小,呈先减小后增大的趋势。不同高硫煤种作还原剂时产生的SO2浓度变化趋势基本一致,但出现高浓度和低浓度SO2的温度范围有所不同。磷石膏的分解率、脱硫率都是随反应温度升高先缓慢后加速增长。反应气氛对分解率的影响较明显,而对脱硫率的影响不大。高硫煤粒径对分解率、脱硫率的影响变化规律不是很明显。
     (3)对高硫煤还原分解磷石膏所得固体产物中的CaO、总F、总P含量进行测定,作为衡量是否达到水泥原料标准的主要指标。实验结果表明:CaO含量随温度的不断升高而缓慢增大。而反应温度较低时,总F、总P含量也相对较小。不同C/S03比条件下所得的CaO含量,基本达到了水泥原料的标准。在各种反应条件下所得的总F含量,均能满足制水泥熟料的要求。强还原气氛中,不同高硫煤种对总F、总P含量的变化无显著影响。不同高硫煤粒径条件下的CaO含量随分解率、脱硫率的相互影响而变化。高硫煤粒径较大时,总F、总P含量较小。
     (4)采用X射线衍射(XRD)物相分析、SEM扫描电镜分析手段,结合前述实验分析结果,对高硫煤还原分解磷石膏的固体产物进行表征和分析。结果发现,1100℃时固体产物中已有C3A存在。
Phosphogypsum is defined as a kind of dangerous solid waste, it impacts on the Environmental sustainability. Producting sulfuric acid integrated with cement by phosphogypsum, it is a good way to consume lots of phosphogypsum. At the same time, ecomomic cost savings and good for the environment. The reduction reaction of Phosphogypsum used to by coke, and the SO2 concentration was low. Now, the reduction and decomposition of phosphogypsum by high-sulphur coal can make the SO2 concentration higher, it characterizes by the high-sulphur coal in that sulphur content is higher.
     In this paper, study on the trend of SO2 concentration and quality of the solid production, which in continuous heating, different reaction temperature, different C/SO3 ratio, different particle size of high-sulphur coal and kinds of high-sulphur coal condition.At the same time, TG-DTA, XRD and SEM are used for studying the reaction mechanism of the reduction reaction of phosphogypsum by high-sulphur coal. Main research conclusions are as follows:
     (1) Thermogravimetric analysis was used for the study on weight loss, enthalpy and stability of the reduction and decompositon of phosphogypsum by high-sulphur coal in different conditions. The result indicates that thermal analysis curves all have two weight loss stages. At 1100℃, there is a heat absorption peak in the DTA curves of phosphogypsum, which shows the phosphogypsum has beginning to melt and decompose. When the temperature is from 1230℃to 1300℃, it is the stage of heat releasing of phosphogypsum intensely decompose, while the weight loss is 24.541%. The thermogravimetric analysis curve of the reduction and decompositon of phosphogypsum by high-sulphur coal, at 1018-1101.5℃, the weight loss is 29.758%, and the heat absorption peak is 1060.64℃. It indicates that the high-sulphur coal can lower the reaction temperature of decomposing phosphogypsum. Comparing with the thermogravimetric analysis curves in different particle size of high-sulphur coal conditions, it can find that when the particle size of high-sulphur coal is smaller, the heat absorption temperature interval is shorten, and the temperature of heat absorption peak is lower, but the weight loss rate is not very different. In some temperature interval, the weight loss rate increases when the heating rate increases. The initial and termination temperature of the reaction are corresponding to the high-temperature direction.
     (2) Study on the concentration of SO2, decompose rate and desulphurization rate of phosphogypsum in different reaction temperature, different C/SO3 ratio, different particle size of high-sulphur coal and kinds of high-sulphur coal condition. It shows that decomposition of phosphogypsum by high-sulphur coal can increase the SO2 concentration greatly,at the 700~800℃and 1000~1100℃, there are two peaks of SO2 concentration. When the temperature less than 800℃, undering the stronger reducing atmospheres are good for produing SO2, the situation is opposite when the temperature more than 800℃. At 700~800℃, the particle size of high-sulphur coal is affected SO2 concentration most obviously, there is about 15% at most. The smaller the particle size of high-sulphur coal is, the lower the SO2 concentration is produced firstly, and then is more and more. The trends of SO2 concentration are almost as same as in different kinds of high-sulphur coal, just the temperature intervals of high SO2 concentration and low SO2 concentration are different. The decompose rate and desulphurization rate of phosphogypsum become lower firstly and then higher when the temperature is continuously rising. In different C/SO3 ratio conditions, decompose rate of phosphogypsum changes obviously, but not for the desulphurization rate. And in different the particle size of high-sulphur coal condition, the decompose rate and desulphurization rate of phosphogypsum do not change obviously.
     (3) Study on the CaO content, the total fluorine content and the total phosphor content of the solid product, and take those as the indexs of cement raw material. The experimental results show that the CaO content grows slowly with temperature rising. When the reaction temperature is low, the total fluorine and the total phosphorus content are smaller. In different C/SO3 ratio condition, the CaO content can basically meet the standard of cement raw material, while the total fluorine content can meet the requirements in any reaction conditions. At the Strong reduction atmosphere, the total fluorine and the total phosphorus content do not change significantly in different kinds of high-sulfur coal condition. In different particle size of high-sulphur coal condition, the CaO content change with the decomposition rate and the desulfurization rate. When the high-sulfur coal particle size is larger, the total fluorine and the total phosphorus content are less.
     (4) Combinating of the foregoing experimental analysis results, it characterizes and analyzes the solid products of decomposing phosphogypsum by high-sulphur coal by XRD and SEM. The result shows that, there is some C3A in the solid product at 1100℃.
引文
[1]谢超凌,高惠民,朱芳.磷石膏预处理及利用[J].云南化工,2006,33(2):64-67
    [2]常格非.磷石膏的改性及其应用[J].水泥工程,2008(3):78-79
    [3]李滢.磷石膏的综合利用[J].云南化工,2007,34(6):74-80
    [4]陈燕,岳文海,董若兰.石膏建筑材料.北京:中国建材工业出版社,2003
    [5]席美云.磷石膏的综合利用[J].环境科学与技术,2001(3):10-13
    [6]杨兆娟,向兰.磷石膏综合利用现关评述[J].无机盐工业,2007,39(1):8-10
    [7]林乐.我国磷复肥工业发展现状和展望[J].磷肥与复肥,2004,19(1):1-5
    [8]Akin Altun, Yesim Sert.Utilization of weathered phosphogypsum as set retarder in portland cement[J]. Cement and Concrete Research,2004,34(4):667-680
    [9]Singh M, Mohan R. Autoclaved gypsum plaster from selenite and by-product phosphogypsum[J]. Chem.Tech.Biotech-NO1.(UK),1988,43:1-12
    [10]陶俊法.云南硫酸磷肥工业的发展方向[J].磷肥与复肥,2007,22(2):8-10
    [11]胡旭东,赵志曼.磷石膏的预处理工艺综述[J].建材发展导向,2006(1):48-51
    [12]余映宏.云南省磷石膏利用的一点思考[J].建材发展导向,2005(6):68-70
    [13]Sheng Weiguo, Zhou Mingkai, Zhao Qinglin.Study on lime-fly ash-phosphogypsum binder[J]. Construction and Building Materials,2007,21 (7):1480-1485
    [14]杨敏,钱觉时,王智等.杂质对磷石膏应用性能的影响[J].材料导报,2007,21(6):104-106
    [15]卓蓉晖.磷石膏的特性和开发应用途径[J].山东建材,2005(1):46-49
    [16]彭家惠,张建新,彭志辉等.磷石膏颗粒级配、结构与性能研究[J].武汉理工大学学报,2001,23(1):7-11
    [17]Verbeek C J R, du Plessis B J G W.Density and flexural strength of phosphogyp- sum-polymer composites. Constru Build Mater,2005,19:265
    [18]Reijnders L.Disposal, uses and treatments of combustion ashes:a review. Resources, Conservation and Recycling,2005,43:313
    [19]Shukla V K, et al. Radiological impact of utilization of phosphogypsum and fly ash in building construction in India. Int Congress Series,2005,1276:339
    [20]Pbtgieter J H, et al. A comparison of the performance of varlous synthetic gypsums in plant trials during the manufacturing of OPC clinker. Cem Concr Res,2004,34:2245
    [21]李东旭.低钙粉煤灰在不同环境中的活化研究[J].材料导报,2000,14(11):59
    [22]Singh M, Garg M. Study on anhydrite plaster from waste phosphogypsum for use in po-lymerized flooring composition. Constr Build Mater,2005,19:25
    [23]Radwana M M, Heikalb M. Hydration characteristics of tricalcium aluminate phase in mixes containing h-hemihydate and phosphogypsum. Cem Conc Res,2005,35:1601
    [24]段付岗,王少婷.提高磷石膏洗涤率的措施[J].磷肥与复肥,1996(3):34-38
    [25]Manjit Singh. Treating waste phosphogypsum for cement and plaster manufacture.Cem Coner Res,2002,32:1033
    [26]Samia Azabou, Tahar M echichi, Sami Sayadi.Sulfate reduction from phosphogyp sum using a mixed culture of sulfate-reducing bacteria. Int Biodeterior Biodegrad,2005,56:236
    [27]Haridasana P P, Paulb A C, Desaib M V M. Natural radio-nuclides in the aquatic environment of a phosphogypsum disposal area. Environmental Radioactivity,2001,53:155
    [28]Altun I A, et al. Utilization of weathered phosphogypsnm as set retarder in Portland cement.Cem Coner Res,2004,34:677
    [29]邓志拓,张春光.磷石膏滤饼再浆(酸化)水洗降磷效果及实践中再认识[J].磷肥与复肥,2004,3(19):24-26
    [30]Manjit Singh.Treating waste phosphogypsum for cement and plaster manufactur[J].Chemical and Concrete Research,2002(32):1033-1038
    [31]Manjit S, Ivlrldul G, Verma CL, etal. An improved process for the purification of phosphogypsum [J].Construction and Building Materials,1996,10(8):597-600
    [32]段庆奎,王立明.闪烧法—磷石膏的无害化处理新工艺.宁夏石油化工,2004(3):13-16
    [33]王兆利,高倩,赵铁军.建筑石膏和磷石膏的改性[J].粉煤灰综合利用,2001(4):42-43
    [34]邵建华,王传利.磷石膏综合利用途径的探讨[J].中国资源综合利用,2007,25(8):14-15
    [35]厉伟光,徐玲玲,戴俊.柠檬酸废渣制备硫酸钙晶须的研究[J].人工晶体学报,2005,34(2):323-327
    [36]毛常明,陈学玺.石膏晶须制备的研究进展[J].化工矿物与加工,2005(12):34-36
    [37]崔小明.无机晶须的研究和应用进展[J].精细化工原料及中间体,2007(5):25-27
    [38]Zhang L Q, Yang H Y. Whisker reinforced polymer and calcium sulfate whisker/polymer composites[J].Synthetic Rubber Industry,1998,21(5):261-265
    [39]Ge T J. Study on the performance of the calcium sulfate matrix composites reinforced polypropylene [J]. Plastic Science,1997,117(1):16-19
    [40]李向清,陈强,张林鄂等.微米级硫酸钙晶须的制备[J].应用化学,2007,24(8):945-948
    [41]王泽红,乔景慧,韩跃新等.pH值对硫酸钙晶须直径的影响[J].金属矿山,2004(10):39-42
    [42]毛常明.湿法生产磷酸和磷石膏晶须新工艺[J].无机盐工业,2006,38(30):51-53
    [43]毛常明,陈学玺.高品质低成本磷石膏晶须的制备及其应用[J].化工中间体导刊,2005(18):14-19
    [44]陈学玺,崔波.磷石膏晶须与天然石膏晶须在造纸上的应用[J].西南造纸,2006,35(5):31-32
    [45]费文丽,李征芳,王珩.硫酸钙晶须的制备及应用评述[J].化工矿物与加工,2002(9):31-33
    [46]杨三可,刘代俊,胡厚美等.用磷石膏生产建筑材料的新进展[J].硫磷设计与粉体工程,2004(1):5-7
    [47]杨淑珍.磷石膏改性及其作水泥缓凝剂研究[J].武汉理工大学学报,2003,25(1):50-53
    [48]黄元太,陈栋梁.改性磷石膏代替天然石膏的试验及应用[J].四川水泥,2004(3):43-44
    [49]周丽娜,沈卫国,周明凯等.石灰粉煤灰改性磷石膏做水泥调凝剂的研究[J].新世纪水泥导报,2007(1):17-19
    [50]周明凯,查进,沈卫国.磷石膏改性二灰稳定磷渣基层材料的研究[J].武汉理工大学学报,2004,26(11):22-25
    [51]赵建茹,玛丽亚.马木提.浅谈磷石膏的综合利用[J].干旱环境监测,2004,17(2):95-97
    [52]黎力,吴芳.自流平材料的应用发展综述[J].新型建筑材料,2006(4):7-11
    [53]王新民,李颂.新型建筑干拌砂浆指南[M].北京:建筑工业出版社,2004:174-179
    [54]权刘权,李东旭.用磷石膏配制石膏基自流平材料研究[J].非金属矿,2007,30(3):19-22
    [55]张东翔,黄晓军.稻草纤维石膏板的工艺研究[J].新型建筑材料,2001,(2):6-8
    [56]凌晓晖,欧跃海,施存有等.我国纸面石膏板的发展历程及现状[J].新型建筑材料,2007(8):1-5
    [57]丁汝斌,丁广.推荐用磷石膏生产建筑石膏及其制品[J].硫磷设计与粉体工程.2002(2):30-33
    [58]张朝.浅析磷石膏的综合利用[J].化工技术与开发,2007,36(2):54-56
    [59]方贤根.磷石膏综合利用状况及对策分析[J].安徽化工,2007,33(1):54-55
    [60]向才旺.建筑石膏及其制品.北京:中国建材工业出版社,1998
    [61]马雷,刘力,杨林等.磷石膏资源化利用[J].贵州化工,2004,29(2):4-17
    [62]杨启山,杜凤毅,高丽娟等.浅析磷石膏综合利用与提取稀土[J].稀土,2007,28(1):99-101
    [63]胡振玉,王健,张先等.磷石膏的综合利用[J].中国矿山工程,2004,33(4):41-44
    [64]房修刚.磷石膏制硫酸联产水泥工艺浅析[J],硫酸工业,1999(5):27-29
    [65]Malcolm E. Sumner. Literature Review on Gypsum as a Calcium and Sulfur Source for Crops and Soils in the Southeastern United States. Florida Institute of Phosphate Research. August 1995(1):118-118
    [66]冯玉清.试论磷铵配套磷石膏制硫酸联产水泥装置规模[J],磷肥与复肥,1999(2):12-14
    [67]戴兆贵.磷石膏在建材工业上的应用[J].中外技术情报,1991(8):3-4
    [68]储仁志.磷石膏制硫酸联产水泥技术进展[J].磷肥与复肥,1993(1):79-81
    [69]周玉昆.磷石膏综合利用技术进展[J].现代化工,1992(1):33-36
    [70]冯金煌.磷石膏及其综合利用的探讨[J].无机盐工业,2001,33(4):34-36
    [71]董太一.磷石膏综合利用的国内外情况介绍.氮肥设计,1992(2):21-25
    [72]闫久智.磷石膏制硫酸联产水泥工艺[J].磷肥与复肥,2004,19(3):53-55
    [73]黄新,王海帆.我国磷石膏制硫酸联产水泥的现状[J].硫酸工业,2000(3):10-14
    [74]许志希.磷石膏制硫酸和水泥的特点及其技术对策[J].硫酸工业,1992(2):18
    [75]张学丽,韩利华.磷石膏制硫酸联产水泥工艺条件的研究[J].山东化工,2007,36:26-27
    [76]路向前.磷石膏在水泥工业中的应用[J].国外建材科技,2003,24(5):8-10
    [77]翟洪轩等.磷石膏废渣制硫酸联产水泥技术[J].粉煤灰,1999,3:16-17
    [78]郝继武,庞仁杰.磷石膏制酸联产水泥的生产与操作[J].磷肥与复肥,1998,(6):57
    [79]沈卫国,聂纪强,周明凯.磷石膏水泥缓凝剂的研究[J].磷肥与复肥,2005,20(5):21-23
    [80]汤桂华.磷石膏制硫酸的工艺特点[J].硫酸工业,1992,(2):31
    [81]宁平,马林转.高硫煤还原分解磷石膏的技术基础[M].北京:冶金工业出版社,2007:82-86
    [82]张嬿妮.热重分析在研究煤氧复合过程中的应用[D].西安:西安科技大学,2004-04
    [83]Potgietera J H, etal. An investigation into the effect of various chemical and physical treatments of a South African phosphogypsum to render it suitable as a set retarder for cement. Cem Conc Res,2003,33:1223
    [84]林木森,蒋剑春.杨木屑热解过程及动力学研究[J].太阳能学报,2008,29(9):1135-1138
    [85]Taha Ramzi etc. Environmental characteristics of by-product gypsum[J]. Transportation Research Record,1995,12(7):50-61
    [86]周松林,肖国先.磷石膏分解反应机理及影响因素浅析[J].新世纪水泥导报,1998,4(5):16-18
    [87]E.M. van der Merwe etal. Thermogravimetric analysis of the reaction between carbon and CaSO4·2H2O, gypsum and phosphogypsum in an inert atmosphere[J]. Thermochimica Acta,1999,340-341:431-437
    [88]胡振玉.磷石膏制硫酸联产水泥机理与应用研究[博士学位论文],北京,北京科技大学,2004
    [89]李斌,张建民,王洋等.原煤低温空气氧化法预脱硫影响因素的实验研究[J].燃烧科学与技术,2002,8(6):507-511
    [90]Lutz R. Preprara of Phosphate Acid Wastes Gypsum for Further Processing[J].cement Kalk-Gips,1995(2):98-102
    [91]陶文宏,付兴华,孙凤金等.改性磷石膏复合水泥性能及水化机理影响的研究[J].水泥技术,2007(4):27-31
    [92]姜洪义,刘涛.磷石膏颗粒级配_杂质分布对其性能影响的研究[J].武汉理工大学学报,2004,26(1):91-93
    [93]彭志辉.磷石膏中杂质影响机理及共建材资源化研究[博士学位论文],重庆,重庆建筑大学,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700