工业副产石膏资源化处理及用于干粉涂料制备的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工业副产石膏是指工业生产中由化学反应生成的以硫酸钙(含零到两个结晶水)为主要成分的副产品或废渣,因此也称化学石膏。工业副产石膏是很好的再生资源,对它们进行综合利用既有利于保护环境,又能节约能源和资源。建材行业是我国发展循环经济的重要行业,工业副产石膏可以作为生产建材产品的替代原料,有利于建设资源节约型、环境友好型的建材产业。
     由于工业副产石膏在生产过程中往往带有杂质,这些杂质会影响工业副产石膏的利用,并且石膏本身存在的强度不高、耐水性差等缺陷,这些都是石膏产品亟待解决的问题。本文对脱硫石膏、磷石膏的利用进行了系统的研究,力求在大量的实验基础上,获得了一些实验结果和理论,主要工作如下:
     (1)研究了煅烧温度对脱硫石膏和磷石膏的影响,实验发现当脱硫石膏低温煅烧(150℃左右)成半水石膏时,各项指标均达到国家标准中建筑石膏优等品的要求;磷石膏在高温煅烧(800℃左右)成Ⅱ型无水石膏时,具有较好的后期水化能力。
     (2)将半水石膏、无水石膏与高炉矿渣以一定比例混合后制备成石膏基复合材料,研究了氧化钙和白水泥分别作为激发剂对复合材料性能的影响。实验发现氧化钙和白水泥均能有效提高复合材料的强度和耐水性,且白水泥的激发效果要好于氧化钙。
     (3)通过对添加氧化钙和白水泥的复合材料的微观分析发现,两者均能使材料内部结构更加致密,从而提高材料的强度和耐水性,但添加过量氧化钙产生的凝胶状钙矾石(Ettringite)会产生裂纹,破坏体系;白水泥掺入后生成的长针状钙矾石是影响材料强度的主要因素,其对体系的作用要大于另一种水化产物C-S-H凝胶,适量的钙矾石会提高材料的强度,但过量白水泥会生成大量细针状钙矾石而导致材料体系膨胀,产生微裂纹,降低材料的力学性能。
     (4)将有机硅胶粉添加到石膏基复合材料体系中能提高材料的粘结强度和耐水性能,特别在养护28d后,有机硅胶粉形成的聚合物膜与材料内部晶体以及颗粒形成较致密的网络结构,能进一步填充体系中的孔隙,起到改善复合材料性能的作用。
     (5)将石膏基复合材料用于干粉涂料的制备工艺,实验发现聚乙烯醇和可再分散乳胶粉对涂料的性能改善都可起到重要作用,能增强涂膜的耐碱性、耐冻融循环、干擦性、耐洗刷性等性能,对于石膏基复合材料来说聚乙烯醇用量要小,且对涂膜性能的提升要优于可再分散乳胶粉。
     (6)通过将干粉涂料的性能与国家内墙涂料的标准进行对比,发现本实验中的干粉涂料能完全达到甚至优于国家标准,具有性能优良、价格低廉、环保节能、使用方便等优势,具有很好的市场应用潜力。
Industrial by-product gypsum is also called chemical gypsum, generated by the chemical reaction in industrial production and calcium sulfated as the main component (contains 0 to 2 hydration water). It is a good renewable resource. Its utilization is conductive to protecting the environment and saving energy and resources. Building materials industry is very important in the development of recycling economy. The industrial by-product gypsum can be used as a substitute raw material and it can be contributed to building a resource conserving and environment-friendly building materials industry.
     However, the industrial by-product gypsum always contains impurities during the production process which have bad effects, and gypsum also has the technical choke of low strength, feeblish water-resistance and so on. These disadvantages are imperative problems of by-product gypsum. In this paper, the utilization of FGD and phosphogypsum has been investigated systematically, and attains some significant results and theories on the basis of a large number of experiments; the main tasks are as follows:
     (1) has studied the sintering temperature on the impact of gypsum and phosphogypsum and found that when FGD is calcined into semi-hydrated gypsum at about 150℃, the properties can achieve the national standards of GB/T 9776-88; when phospogypsum is calcined into anhydriteⅡat about 800℃, it can get good post-hydrated gypsum ability.
     (2) the semi-hydrated gypsum, the anhydriteⅡand the slag are prepared into gypsum-slag composite cementitious material, using CaO and white cement as activator respectively. The results show that the CaO and white cement can effectively improve the strength and water resistance of cementitious material; the white cement has better impact than CaO.
     (3)the microstructure analysis shows that both CaO and white cement can make the internal structure of cementitious material to be more density, so the strength and water resistance are improved, but the excessive quantity of CaO will produce gelatious ettringite which will expand the system and produce micro-cracks. The ettringite produced by white cement is the main factor of the material's strength. It plays an important role than C-S-H gel, but excessive ettingite will also expand the system and produce micro-cracks which will reduce the mechanical properties of the cementitious material.
     (4) the organic silig glue powder can improve the bond strength and water resistance, particularly in the 28-days post-hydration process, the polymer film produced by organic silig glue powder with various crystals and particles can form dense network structure, then fill the small holes of the material's interior system, improving the properties of the material.
     (5) has studies the preparation of powder coating by using composite cementitious material. The experiment results show that the polyvinyl alcohol and re-dispersible polymer powders both play an important role of the coating properties, they can improving the alkali resistance, freezing and thawing cycle resistance, dry rub resistance, scrubbing resistance, ect. The polyvinyl alcohol has a smaller consumption and better effects than re-dispersible powder.
     (6) by comparing the properties of powder coating and national standard of interior wall coating, the results show that it can be fully achieved the national standards or even better. The industrial by-product gypsum composite cementitious material based powder coating have many advantages, like excellent propeties, low price, environmental friendly, saving energy and using convenient, it's application has great market potential.
引文
[1]陈燕,岳文海,董若兰.石膏建筑材料.北京:中国建材工业出版社,2003
    [2]苏素芹.工业副产石膏的开发和利用.山东建材,2008,(2):43-45
    [3]谢红波.外加剂对氟石膏性能的影响及其复合材料研究:[济南大学硕士学位论文].济南:济南大学,2007
    [4]周富涛.工业副产石膏资源化处理及其应用研究:[湖南大学硕士学位论文].长沙:湖南大学,2007
    [5]张君,阎培渝,覃维祖.建筑材料.北京:清华大学出版社,2008
    [6]赵云龙.利用工业副产石膏生产石膏保温材料及其应用技术.砖瓦,2007(3):52-55
    [7]H.-J.Engert et al. The new gypsum binder alpha 2000-production technology and products, ZKG international,1998(4):229-237
    [8]林方辉等.以粉煤灰为改性组分的石膏粉煤灰胶结材研究.粉煤综合利用,1997(3):27-32
    [9]T Mallon. FGD gypsum technicala spectso fasecondaryraw material, part 1, ZKG international,1998(4):220-228
    [10]丛钢.脱硫石膏性能研究.新型建筑材料,1997(12):10-12
    [11]庚晋,周洁,白木.论墙体材料绿色化发展趋势.建材研究,2002.4:7-11
    [12]彭志辉,季建新,林芳辉等.烟气脱硫石膏及其建材资源化研究.重庆环境科学,2000.22(6):26-32
    [13]黄孙恺.用烟气脱硫石膏制备建筑石膏的工艺技术.新型建筑材料,2005,(1):27-28
    [14]关晓东.简易湿式脱硫石膏作水泥缓凝剂.有色金属.2004,56(3):134-137
    [15]董风芝,刘家弟.脱硫石膏粉煤灰胶结材研究.非金属矿.2005,28,(4):34-35
    [16]丛钢,邢世健,张沪.脱硫石膏性能研究.建筑石膏与胶凝材料.1997(12):10-12
    [17]尹维新,洪彩霞.烟气脱硫石膏的基本性能分析及应用发展.应用技术.2006,(11):64-66
    [18]彭志辉,季建新,林芳辉等.烟气脱硫石膏及其建材资源化研究.重庆环境科学.2006,22(6):26-32
    [19]M.Hulusi Ozkul. Utilization of citro-and desulphogypsum as set retarders in Portland cement. Cement and Concrete Research,2000,30(11):1755-1758
    [20]Baohong Guan, Liuchun Yang, Zhongbiao Wu, et al. Preparation of a-calcium sulfate hemihydrate from FGD gypsum in K, Mg-containing concentrated CaCl2 solution under mild conditions.Fuel,2009(88):1286-1269
    [21]Mingjie Hua, Baotian Wang, Liming Chen,et al. Verification of lime and water glass stabilized FGD gypsum as road sub-base.Fuel,2009,11(29)
    [22]桂苗苗,丛钢.利用磷石膏制造建筑石膏的研究.重庆建筑大学学报.2000,22(4):33-36
    [23]韩敏芳,王军伟,刘泽.世界性的研究课题:磷石膏特性及其开发前景.国外建材科技.2003(6):15-17
    [24]张克华.化工磷石膏制备石膏胶凝材料研究及应用:[南京理工大学硕士论文].南京:南京理工大学,2008
    [25]付兴华,高天广,李国忠.磷石膏转化为建筑石膏可能性研究.山东建材学院学报,2000.14.(3):1999-202
    [26]彭家惠等.磷石膏预处理工艺研究.重庆建筑大学学报,2000,22(5):74-77
    [27]沈卫国,周明凯,赵林青.粉煤灰磷石膏高早强路面基层材料的研究.粉煤灰综合利用,2001(2):31-32
    [28]M.Singh, M. Garg. Making of anhydrite cement from waste gypsum.Cemment Concrete. Research,2000(30):571-577
    [29]Manjit Singh, Mridul Garg. Phosphogypsum-fly ash cementitious binders-its hydration and strength development. Cement and Concrete Research.1995,25(4): 752-758
    [30]Manjit Singh,Mridui Garg. Activation of gypsum anhydrite-slag mixtures. Cem Coner Res.1994(25):332-338
    [31]Shen Weiguo, Zhou Mingkai, et al. Stduy on lime-fly ash-phosphogypsum binder. Constrution and Building Materials.2007,21(7):1480-1485
    [32]Mariana Moreira Cavalcanti Canut. Vanusa Maria Feliciano Jacomin et al. Microstructural analyses of phosphogypsum generated byBrazilian fertilizer industries. M aterials Characterization.2008(59):365-373
    [33]Nurhayat Degirmenci. Utilization of phosphogypsum as raw and calcined materialin manufacturing of building products. Construction and Building Materials.2008(8):1857-1862
    [34]丁铁福,苏利红,贺爱国.氟石膏的综合利用.有机氟工业.2006(1):35-39
    [35]杨新亚,牟善彬,王锦华.氟石膏改性及作水泥缓凝剂的研究.中国水泥.2006(6):52-54
    [36]祁景玉,肖淑敏等.用氟石膏制备QH-Ⅱ型复合水泥的研究.房材与应用.1999(2):5-7
    [37]李汝奕,王佩建,成晓光,刘春英.氟石膏废渣改性生产粉刷石膏研究.环境科学与技术.2007,30(7):79-8
    [38]李汝奕,李丽,曹作刚等.氟石膏基自流平地面材料的研制.建筑科学.2007,23(6):84-87
    [39]杨新亚.无水氟石膏胶凝料及砌块的研究.新型建筑材料,1998(12):38-39
    [40]高英力,周士琼,尹健等.超细粉煤灰-氟石膏在道路修补工程中的综合利用研究.环境污染治理技术与设备.2006,7(6):90-84
    [41]Peiyu Yan, Wenyan Yang, Xiao Qin, Yi You. Microstructure and properties of the binder of fly ash-fluorogypsum-Portland cement. Cement and Concrete Research.1999(29):349-354
    [42]P.E. Fraire-Luna, J.I. Escalante-Garcia, A. Gorokhovsky. Composite systems fluorgypsum-blastfurnance slag-metakaolin, strength and microstructures. Cement and Concrete Research.2006(36):1048-1055
    [43]P.Yan,Y.You. Studies on the binder of fly ash-fluorgpysum-cement.Cement and Concrete Research.1998,28(1):135-140
    [44]徐风广,李玉华.利用锰石膏做水泥缓凝剂的研究.新型建筑材料,2001,(8):23-25
    [45]刘长春李荣军,刘磊.钛石膏作水泥缓凝剂的试验研究.水泥.2006(16):4-6
    [46]施惠生,赵玉静,李纹纹.钛石膏与粉煤灰复合胶凝材料力学性能及耐久性研究.非金属矿.2001,24(5):26-28
    [47]Recep Boncukcuolu, M.Tolga Ylmaz, M. Muhtar Kocakerimb et al. Utilization of borogypsum as set retarder in Portland cement production. Cement and Concrete Research,2002,32(3):471-475
    [48]Iffect Yakar Elbeyli, Sabriye pikin. Kinetic study of the thermal dehydration of borogypsum. Journal of Hazardous Materials,2004,116(1-2):111-117
    [49]Iffect Yakar Elbeyli, Jale Gulen, Sabriye Pikin et al. Thermal analysis of borogypsum andits effects on the physical properties of Portland cement. Cement and Concrete Research,2003,33(11):1729-1735
    [50]王立明,董文亮.柠檬酸废渣粉刷石膏的研制.新型建筑材料,2000,(2):42-43
    [51]王胜春,周会珠,田永淑等.盐石膏作硅酸盐水泥添加剂的研究.无机盐工业.2007,39(6):44-46
    [52]郑波.新型高性能单组分建筑外墙腻子粉的研究:[河海大学硕士学位论文].南京:河海大学,2004
    [53]徐峰,刘兰,薛黎明.粉状建筑涂料与胶黏剂.北京:化学工业出版社,2006
    [54]毕学振.粉末涂料在工程项目上的应用及发展前景.管道技术与设 备.2003,(2):30-32
    [55]熊清,陈素平,吴晓天.水性干粉建筑涂料.建筑涂料与涂装.2006(8):20-25
    [56]科博尔.Vvinnapas(?)可再分散乳胶粉对石膏基灰泥的改性作用.化学建材.1999(6):41-43
    [57]周如金,李德豪等.新型建筑内墙干粉涂料.中国专利.发明专利,200510033410.7.2005-9-14
    [58]张心亚,谢德龙,黄洪等.一种环保型干粉涂料及其制备方法.中国专利.发明专利,200610036625.9.2007-1-3
    [59]李凯琦,刘宇,袁小会.一种干粉涂料及其制备方法.中国专利.发明专利,200710300047.X.2007-12-11
    [60]张心亚,黄洪,蓝仁华等.建筑涂料的技术现状及发展趋势.材料开发与应用.2004,19(4):32-38
    [61]苑金生.我国建筑涂料的技术水平及发展方向.建筑涂料与涂装.2004(01):18-23
    [62]薛黎明.粉状建筑涂料产品的开发与应用.新型建筑材料.2006(6):43-46
    [63]曹文聪,杨树森.普通硅酸盐工艺学.武汉:武汉理工大学出版社,2004
    [64]彭志辉.磷石膏中杂质影响机理及其资源化研究:[重庆建筑大学博士学位论文].重庆:重庆建筑大学,2000
    [65]吴世龙.石灰改性磷石膏及其混合料工程性质研究:[河海大学硕士学位论文].南京:河海大学,2008
    [66]杨久俊,海然,吴科如.钙矾石的结构变异对水泥膨胀性的影响.无机材料学报,2003,18(1):136-142
    [67]Manjit Singh, Mridul Garg. Calcium sulfate hemihydrate activated low heat sulfateresistantcement.Construcion and building materials,2002(16):181-186
    [68]P.K. Mehta, S. Wang. Expansion of ettringite by water adsorption. Cement and Concrete Research.1982 (12):121-122
    [69]M. Deng, M. Tang. Formation and expansion of ettringite crystals, Cement and Concrete Research.1994,24 (1):119-126
    [70]Cecilie Evjua, Staffan Hansen. The kinetics of ettringite formation and dilatation in a blended cement with h-hemihydrate and anhydrite as calcium sulfate. Cement and Concrete Research,35(2005):2310-2321
    [71]Jianquan Li, Guozhong Li. The influences of gypsum water-proofing additive on gypsum crystal growth. Materials letters,2007(61):872-876
    [72]T. Sievert, A. Wolter, N. B. Singh. Hydration of anhydrite of gypsum (CaSO4Ⅱ) in a ball mill. Cement and Concrete Research.2005(35):623-630
    [73]王军,孙友军,殷宪霞.有机硅耐高温涂料的研制[J].特种涂料和涂装专刊,2007,10(9):22-28
    [74]王新民,薛国龙,俞锡贤等.干粉砂浆添加剂选用.北京:中国建筑工业出版社,2007
    [75]程丽,曹洪吉.聚合物在混凝土中的应用现状及机理分析.徐州建筑职业技术.学院学报,2009,9(3):23-25
    [76]谈慧,常自奋,邢永东.新型粉刷石膏改性剂的研制.建筑石膏与胶凝材料,2001(7):45-46
    [77]谢德龙,张心亚,裴勇兵等.水泥基腻子面漆二合一内墙涂料的制备.涂料工业,2009,39(2):41-45

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700