前卫村高浊度水体的生态修复机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于上海市科委重大科技攻关项目《崇明岛域水环境演变规律与水质改善技术研究》(课题编号:06DZ12307),在上海市崇明前卫村进行人工湿地复合生态系统(ICW)对富营养化地表水体治理。通过试验装置研究分析、复合湿地系统的运行监测,研究人工湿地复合生态系统对污染物,特别是氮磷的去除机理。
     本研究建立了人工湿地系统试验模型,并监测中试工程的运行情况。通过试验装置研究了不同运行条件对污水净化效果的影响,并分别研究了人工湿地和氧化塘对净化水质作用的影响,对复合系统的脱氮除磷的机理进行了分析。
     采用农村生活污水直接培养的方式对氧化塘进行培养和驯化,一般情况约5d可培养成功。氧化塘内藻菌共生体系在培养过程中存在藻类、亚硝酸菌、硝酸菌依次生长过程,当亚硝酸菌和硝酸菌达到平衡时,藻菌共生系统培养成熟。藻菌共生系统的培养需要约25~30d的时间;人工湿地无需培养,接氧化塘出水直接进行启动。复合系统具有培养简单、启动快等优点,有利于在农村地区的推广应用。
     对中心湖水氮磷含量与悬浮物含量的关系进行研究。结果表明:水体中的磷主要以不溶态为主,总磷(TP)的浓度与浊度呈线性关系;总氮与浊度并无这种关系,说明地表水中存在大量不溶态的磷,而不溶态的氮含量不多。
     分析了复合系统(ICW)各部分脱氮除磷的机理。湿地基质选用的石灰石和陶粒不仅可以调节水体的pH值,还在磷的去除上起到了关键的作用。另外,陶粒多孔、比表面积大,有利于微生物附着。
     通过控制小试系统的进水量,研究了复合系统在不同水力负荷条件下对污染物的处理效率。结果表明:随着水力负荷的降低,浊度的去除率会提高,但是水力降低到0.015m~3/m~2·h以下时,浊度的去除率基本上不再提高。
     通过大量的实验数据,结合国内外有关研究,建立了针对崇明水体的数学模型,可用于该系统处理效果的预测。
     人工湿地复合生态系统工程对前卫村中心湖水进行净化处理,使水质由过去的劣Ⅴ提高到了目前的Ⅱ、Ⅲ类,并能够维持在此水平,取得了一定的实际效果。
Based on the Science and Technology Commission of Shanghai Municipality program "Research on high efficient removal of contaminants from high turbid matter and key technologies of ecological restoration for the rural river system of Chongming"(Grant No.06DZ12307), the phenomenon of eutrophic water was studied by the integrated constructed wetland ecological system at Qianwei village of Shanghai. The effect of water purification and the mechanism of nitrogen and phosphorus removal by the ICW were also studied.
     A constructed wetland system was built, and its purification efficiency was simulated under different operating conditions. The role of Stuff, Oxidation pond and algae and the mechanism of Nitrogen and phosphorus removal by the ICW were studied.
     The oxygen pond was cultivated directly in domestic sewage under appropriate weather conditions. After about 5-day cultivation, it was concluded that there was a time sequence of the growth of aerobi heterotrophic bacteria, nitrosomonas, nitrobacer in the cultivation process. The cultivation took about 25~30d. The algae cultivation in the system was simple and the startup was quick. Both were good for the application of the ICW system in rural areas.
     The study between the nitrogen, phosphorus and SS show that most of the phosphorus in Chongming surface water is insoluble, Density of TP linear with the turbidity and little insoluble nitrogen exists.
     The Contribution of each part of ICW in nitrogen & phosphorus removal was analyzed. The stuff of wetland can adjust the pH and plays an important role in phosphorus removal. Ceramic pellet have many holes and relative surface product, so it's a good habitat for microorganisms; Oxygen pond can reduce the suspension density (SS) and the load of the wastewater.
     The effect of multiplexed system under the different water load conditions on the pollutants removal rate was studied. The result indicated that turbidity removal rate decreases with the rise of water load, and it remained constant when the water load reduces to 0.015m~3 /m~2·h below,
     Through the massive experimental data and related researches at home and abroad, the Chongming water mathematical model was formed and it can be used to forecast the system processing water quality.
     The central lake water quality was greatly improved by use of the ICW system project. It changed to be II, III from poor V, and the ICW had passed expert group's approval of the Science and Technology Commission of Shanghai Municipality.
引文
[1]钱易等,中国江河湖海防减灾对策[M],北京:中国水利水电出版社,2002
    [2]中华人民共和国水利部水文司等,中国水环境问题研讨会论文集,北京:中国科学技术出版社,1998
    [3]何成达,谈玲,葛丽英等,波式潜流人工湿地处理生活污水的实验研究[J],农业环境科学学报,2004,23(4):766-769
    [4]聂梅生,中国城市水与废水的科研和开发,给水与废水处理国际会议论文集[M],中国建筑工业出版社,1994
    [5]严煦世主编,水和废水技术研究[M],中建出版社,1992,3
    [6]沈劲风,氧化塘的系统研究[J],环境科学与技术,1995(2):6-10
    [7]李建华,王宝贞,氧化塘中氮和磷的去除[J],中国环境科学,1992,12(4):241-244
    [8]F.Bailey Green et al,Advanced Integrated Wastewater Pond Systems for Nitrogen Removal,Wat.Sci.Tech[J]1996,33(7),207-217
    [9]姜翠玲,崔广柏,湿地对农业非点源污染的去除效应[J],农业环境科学学报,2002,21(5):471-473,476
    [10]王宝贞,王琳,水污染治理新技术[M],科学出版社,2004:159-168
    [11]Brix H,Functions of macrophytes in constructed wetlands[J],Water Sci.Technol,1994,29(6):71-78
    [12]Hammer D.A,Constructed wetlands for wastewater treatment[M],Michigan:Lewis Publishers Inc.,1989
    [13]Hammer D.A,Constructed wetlands for wastewater treatment[M],Michigan:Lewis Publishers Inc.,1989
    [14]梁继东,周启星,孙铁衍,人工湿地污水处理系统研究及性能改进分析[J],生态学杂志,2003,22(2):49-55
    [15]W.E.Scot,Engineered Wetlands Lead the Way[J],Features Available Online.2004,5(48):13-16
    [16]张毅敏,张水春,利用人工湿地治理太湖流域小城镇生活污水可行性探讨[J],农业环境保护,1998,17(5):232-234
    [17]梁继东,周启星,孙铁衍,人工湿地污水处理系统研究及性能改进分析[J],生态学杂志,2003,22(2):49-55
    [18]陈韫真,叶纪良,深圳白泥坑、雁田人工湿地处理场[J],电力保护,1996,12(1):47-51
    [19]卢少勇,张彭义,余刚等,滇池王家庄湖滨带人工湿地农业径流中磷去除的干湿季节性规律[J],农业环境科学学报,2006,25(5):1313-1317
    [20]吴振斌,李谷,付贵萍等,基于人工湿地的循环水产养殖系统工艺设计及净化效能[J],农业工程学报,2006,22(1):129-133
    [21]向长生,祝万鹏,张彭义等,人工湿地在植物生长停滞期处理农田排灌余水的中试研究[J],农业环境科学学报,2003,22(6):281-284
    [22]尹炜,李培军,叶闽等,复合潜流人工湿地处理城市地表径流研究[J],中国给水排水,2006,22(1):5-8
    [23]Vymazal J,The use of sub-surface constructed wetlands for wastewater treatment in the Czech Republic:10 years experience[J],Ecol.Eng,2002,18(5):633-646
    [24]Brix H,Gas exchange through the soil-atmosphere and through dead culms of Phragmites australis in a constructed reed bed receiving domestic sewage[J],Water Res,1990,(24):259-266
    [25]Masuda S,Watanabe Y,Ishiguro M,Bio-film properties and simultaneous nitrification and denitrifiction in aerobic rotting biological contactors.Wat.Sci.Tech[J],1991,23:1355-1363
    [26]张荣社,周琪,自由表面流人工湿地脱氮效果中试研究[J],环境污染治理技术与设备,2002,3(12):9-11
    [27]张振世,柯强,陈英旭,SBR生物脱氮机理及其影响因素[J],中国沼气,2001,19(2):16-19
    [28]Greenway,M.Suitability of macrophytes for nutrient removal from surface flow constructed wetlands receiving secondary treated sewage effluent in Queensland,Australia.Water Science and Technology[J],2003,48(2):121-128
    [29]张鸿,陈光荣,两种人工湿地中氮、磷净化率与细菌分布关系的初步研究,华中师范大学学报[J],1999,33(4):575-578
    [30]Vymazal J,Constructed wetlands for wastewatertreatment in Europe Leiden,Backhuys Publishers[J],1998:17-66
    [31]廖新第,香根草和风车草人工湿地对猪场废水氮磷处理效果的研究[J],应用生态学报,2002,13(6):719-722
    [32]贺锋,复合构建湿地运行初期理化性质及氮的变化[J],长江流域资源与环境,2002,11(3)::279-283
    [33]Cooper P.F,et al.Reed bed treatment systems for sewagetreatment in the United Kingdom-The first 10 years'expefi2ence[J],Water Sci.Tech.,1995,32(3):317-327
    [34]阳承胜,重金属在宽叶香蒲人工湿地系统中的分布与积累[J],水处理技术,2002,28(2):101-104
    [35]Kadlec R H,Overview:Surface flow constructed wetlands[J],Water Science Technology,1995,32(3):1-12
    [36]Hoppe H.G,et al,Microbial decomposition in aquatic environments:Combined processes of extra cellular activity andsubstrate uptake[J],Applied Environmental Microbiology,1988,54:784-790
    [37]Ann,Y,et al,Influence of redox potential on phosphorus solubility in chemically amended wetland organic soils[J],Ecological Engineering,2000,14:169-180
    [38]李科得等,芦苇床系统净化污水的机理[J],中国环境科学,1995,15(2):140-144
    [39]沈耀良,人工湿地系统的除污机理[J],江苏环境科技,1997,(3):1-6
    [40]Long M Nguyen,Organic matter composition,microbial biomass and microbial activity in gravel-bed constructedwetlands treating farm dairy wastewaters[J],Ecological Engineering,2000,16:199-221
    [41]梁葳,构建湿地基质微生物与净化效果及相关分析[J],中国环境科学,2002, 22(3):282-285
    [42]V.J.Shackle,Carbon supply and the regulation of enzyme activity in constructed wetlands[J],Soil Biology & Biochemistry,2000,(32):1935-1940
    [43]G Langergraber,R haberl,J Laber,et al,Evaluation of substrate clogging processes in vertical flow constructedwetlands[J],Wat.SciTech,2003,48(5):25-34
    [44]Mazierski J,Effect of chromium(Cr~(6+))on the growth rate of denitrifying bacteria[J],Water Res,1994,(28):1981-1985
    [45]Harger S,C et al,Chromium and nickel toxicity during the bio-treatment of high ammonia landfill leachate[J],Water Environ.Res,1996,(68):19-24
    [46]Focht D.D,Chang A.C,Nitrification and denitrification processes related to waste water treatment[J],Adv Appl Microbiol 1975,19:153-86
    [47]张建,邵长飞,黄霞,污水土地处理工艺中的土壤堵塞问题[J],中国给水排水,2003,19(3):17-20
    [48]Kadlec,RH,Knight,R.L,Treatment Wetlands[M],CRC Press/Lewis Publishers,Boca Raton,FL,1996,pp,893
    [49]J L Richardson,M J Vepraskas,Wetland soils:genesis,hydrology,landscapes and classification[M],Boca Raton,FL:CRC Press,2000
    [50]张荣社,周琪,自由表面流人工湿地脱氮效果中试研究,环境污染治理技术与设备,2002,3(12):9-11
    [52]Greenway M.Suitability of macrophytes for nutrient removal from surface flow constructed wetlands receiving secondary treated sewage effluent in Queensland,Australia.Water Science and Technology,2003,48(2):121-128
    [53]Stottmeister U,Wiel3ner A,Kuschk P,et al.2003.Effects of plants and microorganisms in constructed wetlands for wastewa2ter treatment[J].Biotechnol.A dv.22:93-117
    [54]Allen LH.1997.Mechanisms and rates of O2 transfer to and throughsubmerged rhizomes and roots via aerenchyma[J].Soil Crop Sci.Soc.Fla.Proc.,56:41-54
    [55]Armstrong W,Braendle R,Jackson MB.1994.Mechanisms of floodtolerance in plants[J].Acta Bot.Need.,43:307-358
    [56]Grosse W,Frick HJ,1999.Gas transfer in wetland plants con2trolled by Graham'S law of diffusion[J].Hydrobiologia,415:55-58
    [58]ArmstrongJ,Armstrong W,1990,Light enhanced connective throughflow increases oxygenation in rhizomes and rhizospheresof Phragmites aust ralis.Tfin.Ex.Steud.[J].New Phy2tol,114:121-128
    [59]Stottmeister U,WieβnerA,Kuschk P,et al.2003.Effects of plants and microorganisms in constructed wetlands for wastewater treatment[J].Biotechnol.A dv,22:93-117
    [60]Kludze HK,Delaune RD.1996.Soil redox intensity effects onoxygen exchange and growth of Cattail and Sawgrass[J].SoilSci.Soc A m.J.60:616-621
    [61]武维华,2003,植物生理学[M],北京:科学出版社
    [62]种云霄,胡洪营,钱易,大型水生植物在水污染治理中的应用研究进展[J],环境污染治理技术与设备,2003,4(2):36-40
    [63]U.S.EPA.2000.Constructed Wetland Treatment of Municipal Wastewaters Manual[M].Ohio,Office of Research and Development,Cincinnati
    [64]McJannet CL,Keddy PA,Pick FR.1995.Nitrogen and phospho2 rus tissue concentration in 41 wetland plants:A comparison across habitats and functional groups[J],Funct.Ecol,:231-238
    [65]Brix H,1997.Do macrophytes play a role in constructed treat2ment wetlands[J],Wat Sci.Technol,35(5):11-17
    [66]Stottmeister U,WieβnerA,Kuschk P,et al,2003.Effects of plants and microorganisms in constructed wetlands for wastewater treatment[J],Biotechnol,A dv,22:93-117
    [67]Ab bas Al-Omari,Manar Fayyad.Treatment of domestic wastewater by subsurface flow constructed wetland sin Jordan[J],Desalination,2003,155:27-39
    [68]Vymazal J,Brix H,Cooper P F,et al.Removal mechanisms and types of constructed wetlands[C]//Vymazal J,Brix H,Cooper P F,et al.,Eds.Constructed wetlands for wastewatertreatment in Europe.Leiden:Backhuys Publishers,1998:17-66
    [69]Kadlec R H.Overview,Surface flow constructed wetlands[J],WaterScience Technology,1995,32(3):1-12
    [70]Long M Nguyen,Organic matter composition,microbial biomass and microbial activity in gravel-bed constructed wetlands treating farm dairy wastewaters[J],Ecologica Engineering,2000,16:199-221
    [71]F.Balley Green et al,Advanced Integrated Wastewater Pond Systems for Nitrogen Removal,Wat.Sci.Tech,1996,33(7):207-217
    [72]李炜,环境水力学进展[M],武汉:武汉水利电力大学出版社,1999
    [73]Vollenweider R A.Input-Output Models with Special Reference to Phosphorus Loading Concept in Limnology[J],Schweizerische Zeitschrift Hydrol,1972,37:53-84
    [74]刘元波,陈伟民,湖泊藻类动态模拟[J],湖泊科学,2000,12(2):171-176
    [75]Monod,J.Recherches,Sur La Croissance Des Cultures Bacteriennes[M].,Paris:Hermann,1942.210
    [76]Rober W Sterner,James P Grover.Algal,Growth in Warm Temperate Rwservoirs:Kinetic Examination of Nitrogen,Temperate,Light,and Other Nutrients[J],Water Research,1998,32:3539-3548
    [77]刘凌,李大勇,崔广柏等,有机污染物湿地生物降解实验规律研究[J],环境污染治理技术与设备,2002,3(2):2-6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700