循环水鳗鲡养殖水处理技术应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是世界上最大的鳗鲡养殖国。鳗鲡作为我国主要的出口创汇养殖种类而在福建、广东和江西三省被广泛养殖,但养殖模式仍停留在池塘精养模式和土池养殖模式,池塘精养模式换水量大,占用大量淡水资源,给环境造成污染较大,而土池养殖模式占地面积大,养殖密度低,单位面积产出率低。本试验采用引进美国的室内循环水系统和自行设计的循环水养殖系统进行了循环水养殖模式的欧洲鳗鲡苗种培育和商品鳗养成试验,以期达到节水、节能、减排的目的。
     在集美大学水产试验场利用引进美国的循环水系统进行欧洲鳗鲡苗种的高密度培育,循环水系统分为大桶(1.89m3)和小桶(1.14m3)两种规格,培育密度分别为8256尾/m3和10320尾/m3,经过96d培育,结果显示,大桶和小桶出苗规格分别为5.2±2.4g/尾和5.0±2.4g/尾,共计240471尾,成活率为94.0%。红虫投喂阶段大桶和小桶的饵料转化率分别为17.0%和16.1%,成活率均为95.0%;配合饲料投喂阶段大桶和小桶的饲料转化率分别为55.3%和52.3%,成活率均高达99.0%。如培育相同数量苗种,循环水模式育苗能达到节水97.0%以上,节地88.0%以上,节约育苗成本40.0%左右。培育苗种转至福清国家循环水养殖示范基地进行商品鳗养成。
     福清国家循环水养殖示范基地的循环水养殖系统可分为养殖系统和养殖污水处理系统两个部分,养殖系统共有10口圆池,2口大池(153m2/口)和8口小池(95m2/口),总养殖水面积为1066m2;养殖污水处理系统水体面积为558m2,养殖污水经过沉淀池初步沉淀,经过水泵抽提后依次流经下行生物膜池、上行生物膜池、下行牡蛎壳滤池和上行牡蛎壳滤池进行生物净化处理,然后流入养殖池循环利用,必要时需经过紫外消毒器消毒处理。
     循环水养殖系统的曝气充氧均由鼓风机来提供。循环水养殖系统启用前,在无载鱼情况下,对鼓风机充氧效果进行测试, 1台功率为2.2kw.h-1的鼓风机分别对456m3(6口池)、532m3(7口池)、608m3(8口池)、730m3(9口池)、853m3(10口池)水体进行充氧,试验结果显示,1台鼓风机充氧532m3(7口池)水体的增氧效果最好,溶解氧可达到10.0±0.1mg.L-1,饱和率达到97.6%;在有载鱼情况下,均采用外源山溪水,对鼓风机充氧圆形水泥精养池和水车式增氧机充氧方形池塘精养池进行了欧洲鳗鲡的养殖对比试验,结果显示,鼓风机充氧圆形水泥精养池水质较差于水车式增氧机充氧方形池塘精养池,但前者的水质日稳定性好于后者,且前者的饲料转化率为49.6%,成活率为99.9%,而后者的饲料转化率仅为32.8%,成活率为91.4%。
     循环水养殖系统启动后,在养殖污水日处理量分别为240m3,480m3和672m3三种工况下对养殖污水处理系统的水处理效果进行了研究。结果显示,三种养殖污水日处理量工况下,养殖污水处理系统对TAN和NO-2-N的去除效果差异不显著,但对NO-3-N和活性磷的去除效果存在差异,其中养殖污水日处理量为480m3工况,养殖污水处理系统对NO-3-N和活性磷的去除效果最好,去除率分别为19.3±14.6%和42.7±21.2%。
     循环水养殖系统启动后,对养殖污水处理系统在仅上行生物膜池曝气,下行生物膜池和上、下行牡蛎壳滤池均曝气,仅上行牡蛎壳滤池曝气,上、下行生物膜池和下行牡蛎壳滤池均曝气四种曝气工况下的水处理效果进行了比较研究。结果显示,在仅牡蛎壳滤池上行池曝气工况下,养殖污水处理系统对养殖污水中的TAN、NO-2-N、NO-3-N、活性磷的去除效果最好,去除率分别达到76.7±7.5%、94.9±3.6%、12.2±38.7%、17.8±17.4%。
     对生物膜池中浮游生物调查发现,循环水养殖系统启用前期,生物膜池浮游植物生物量为9.76×105个/L,以硅藻门和绿藻门为主,中后期生物膜池中浮游植物生物量依次降低,分别为6.74×105个/L和3.08×105个/L,且硅藻门逐渐成为优势种群。生物膜池在循环水养殖系统运行的前中后三个时期浮游动物的种类、数量均较少。
     紫外消毒器对鳗鲡育苗养殖污水进行杀菌试验,在养殖污水流量为10m3/h,紫外消毒器灯管距离水面2cm条件下,4cm、6cm、8cm三种水层厚度的养殖污水经过紫外照射80s均能杀灭水体中的100%的细菌,30s即可杀灭100%的弧菌;紫外消毒器对循环水养殖系统商品鳗养成中的养殖污水进行了杀菌试验,在养殖污水流量为28m3/h,紫外灯管距离水面2cm条件下,水层厚度为10cm的养殖污水经过紫外消毒器77s照射后,能够杀灭97.9%的细菌和100%的弧菌。
     对欧洲鳗鲡和日本鳗鲡两种鳗鲡进行了循环水养殖模式的商品鳗养成试验,并与池塘精养模式进行对比。结果显示,在循环水养殖模式下,欧洲鳗鲡的生长率、饲料转化率和成活率分别为41.4%、77.0%和95.7%;日本鳗鲡的生长率、饲料转化率和成活率分别为67.9%、61.3%和97.2%,均优于池塘精养模式。循环水养殖模式不仅有很好的防病能力,而且与池塘精养模式相比,节约电能25.4%-37.9%,养殖污水重复利用率为88.1%,具有较好的经济效益和生态效益。
China has cultivated the most quantities of eel in the world. Eel as the main exported aquaculture specie has been widely cultivated in Fujian, Guangdong and Jiangxi provinces. And the main models were eel cultivating in intensive pond and earthern pond. The intensive pond model needed to exchange a lot of water, costs a lot of fresh water and results in serious environmental pollution, and the earthern pond model needed to take up large areas of land, stocks low density and yields low output. To save water and energy, and reduce pollution effluent, the experiments on the both imported and self-designed water circulating fish farm system cultivating eel were implemented.
     The fry of Anguilla anguilla was stocked in the double big tank (1.89m3 per tank) and double small tank(1.14m3 per tank)water circulating fish farm system imported from USA, at the density of 8256 and 10320 individuals per cubic water respectively, in the Aquaculture Facilities of Jimei University. The trial period was 96 days. The results showed that the average size of fingerlings yielded was 5.2±2.4g (big tank) and 5.0±2.4g (small tank) respectively, and the total number of fingerlings yielded was 240471, and the average survival rate was 94.0%. The feed conversion efficiency was 17.0% (big tank) and 16.1% (small tank) respectively, and the average survival rate was 95.0% samely, during the period of being fed by red worms. The feed conversion efficiency was 55.3% and 52.3% respectively, and the average survival rate was 99.0% samely, during the period of being fed by formula feeds. If cultivating the same number of Anguilla anguilla fry, the water circulating fish farm system could save 97.0% water, 88.0% land and 40.0% cost than the traditional eel cultivating model. After the trial, the fingerlings yielded were moved to the national eel aquaculture demonstration base in Fuqing.
     The self-designed water circulating fish farm system in the national demonstration base in Fuqing was consisted of pool system and wastewater treatment system. The total area of the pool system was 1066m2,which had 2 large pools (153m2 per pool) and 8 small pools (95m2 per pool).The eel culture wastewater flowed into the sedimentation pool and carried out preliminary sedimentation, then water was pumped to flow through the downstream biofilm pool, upstream biofilm pool, downstream oyster shell biofilter pool and upstream oyster shell biofilter pool, which purified by microorganism , at last, flowed into the eel culture pools after disinfected by UV not necessarily.
     Aeration of the pool system was provided by air pump .one set of air pump (2.2kw.h-1) aerated the 456m3, 532m3, 608 m3, 730m3and 853m3 water volume in the case of no-load of fish . The results showed that the 532m3 water volume have the best aeration effect, where DO was 10.0±0.1mg.L-1 and the saturation rate of DO was 97.6%. In comparison with the effects between the air pump aerating water in round cement pools and the waterwheel aerators aerating water in square cement ponds, where Anguilla anguilla was cultivated using mountain stream water, the trial results showed that the water quality in round cement pools was poor than the square cement ponds, but the former daily variation of water quality was more stable than the latter. The feed conversion efficiency and the survival rate of the former were 49.56% and 99.9% respectively, but the latter’s were 32.78% and 91.4% respectively.
     After the water circulating fish farm system startup, the wastewater treatment effects were compared under three kinds of daily wastewater treatment capacity condition, which were 240m3, 480m3 and 672m3 respectively. The results showed that the wastewater treatment system had significantly different removal rates on NO-3-N and reactive phosphorus and no significantly different removal rates on TAN and NO-2-N among three kinds of daily wastewater treatment capacity conditions. On the 480m3 daily wastewater treatment capacity condition, the wastewater treatment system had the highest removal rates of NO-3-N and reactive phosphorus, which were 19.3±14.6% and 42.7±21.2% respectively.
     During the water circulating fish farm system running,the effects on wastewater treatment were studied by wastewater treatment system under four different set aeration conditions, which aerating upstream biofilm pool only, or aerating downstream biofilm pool and oyster shell biofilter pool only, or aerating upstream oyster shell biofilter pool only, or aerating biofilm pool and downstream oyster shell biofilter pool only. The results showed that the highest removal rates of TAN、NO-2-N、NO-3-N and reactive phosphorus were gotten under the condition of aerating upstream oyster shell biofilter pool, which were 76.7±7.5%, 94.9±3.6%, 12.2±38.7% and 17.8±17.4% respectively.
     During the initial stage of water circulating fish farm system running, the biomass of Phytoplankton in the biofilm pool was 9.76×105cells/L and the main populations were Bacillariophyta algae and Chlorophyta algae. Then, during the middle stage and later stage, the biomass of Phytoplankton decreased, which was 6.74×105cells/L and 3.08×105cells/L respectively, and Bacillariophyta algae was being become the main population gradually. Both species and quantities of zooplankton were few in the biofilm pool.
     In the test of sterilizing the effluent of cultivating eel fry by UV sterilizer, at the effluent flow rate of 10m 3 / h, UV irradiation distance 2cm, and three kinds of water layer set 4cm, 6cm and 8cm deep respectively, the results showed that total bacteria were killed at 100% by UV irradiating 80s, and Vibrio was killed at 100% by UV irradiating 30s. However,while at the effluent flow rate of 28m3/h, UV irradiation distance 2cm, water layer set 10cm deep, the results showed that total bacteria were killed at 97.9% and Vibrio was killed at 100% by UV irradiating 77s,at the stage of self-designed water circulating fish farm system running.
     In comparison with the traditional intensive pond eel culture model, the trial of cultivating Anguilla anguilla and Anguilla japonica eel in water circulating fish farm system was implemented. The results showed that the growth rate, feed conversion efficiency and survival rate of cultivating Anguilla anguilla were 41.4%, 77.0% and 95.7% respectively, and those of cultivating Anguilla japonica were 67.9%, 61.3% and 97.2% respectively in water circulating fish farm system. The eel culture effects of self-designed water circulating fish farm system model were better than those of the traditional intensive pond eel culture model. Furthermore, water circulating fish farm system model not only had better disease control capability, but also could save 25.4%-37.9% electric energy and 88.1% water quantity than the traditional model.
引文
[1] Merino G E, Piedrahita R H, Conklin D E. Settling characteristics of solids settled in a recirculating system for California halibut (Paralichthys californicus) culture[J]. Aquacultural engineering, 2007, 37(2):79-88.
    [2]刘长发,晏再生,何洁,等.牙鲆养殖循环系统中固体废物的去除研究[J].大连水产学院学报, 2006, 21(4):321-324.
    [3] SCOTT K R, ALLARD L. A four - tank water recirculation system with hydrocyclone prefilter and a single water reconditioning unit[J]. Progressive Fish-Culturist, 1984, 46(4):254-261.
    [4]张俊新,刘长发,何洁,等.工厂化养殖循环水固液分离特性及处理工艺选择分析[J].农业环境科学学报, 2008, 27(3):1173-1176.
    [5]邵林广.圆形涡流式沉砂池除砂效率的探讨[J].给水排水, 1998(12):38-40.
    [6]龚卫俊,郑燕,吴志超. ACTIFLO高效沉淀工艺用于污水处理[J].中国给水排水, 2005, 21(10):104-106.
    [7]孙成彦,张淑荣.拦截沉淀池及应用技术[J].应用科技, 2000(11):41.
    [8]刘智晓,王海山,孙大军,等.拦截沉淀技术在水厂沉淀工艺改造中的应用[J].给水排水, 2000, 26(10):22-24.
    [9]王华生,刘祖文,邬长福,等.拦截斜板沉降技术研究[J].净水技术, 2004, 23(3):12-14.
    [10]关伟平,潘东升,陈纯辉,等.给水厂斜管沉淀池的改造[J].工业用水与废水, 2000, 31(1):5-6.
    [11]罗岳平,邱振华,李宁,等.用斜管(板)沉降系统改造矩形平流沉淀池—平流斜管(板)组合沉淀池[J].净水技术, 2003, 22(5):45-47.
    [12]盛义平,张晓春.沉淀池的工作特性与数学模型[J].燕山大学学报, 2001, 25(4):309-311.
    [13]杨卫国.钟式旋流沉砂池和砂水分离器连接设计的改进[J].安徽建筑工业学院学报(自然科学版), 2003, 11(4):69-71.
    [14]刘振中.沉淀池优化设计研究[D].西安:西安理工大学, 2004.
    [15]何国建.沉淀池重要结构参数研究[D].南京:河海大学, 2004 .
    [16]郭生昌.沉淀池的计算机数值模拟[D].上海:东华大学, 2004.
    [17]姚文兵.数值模拟在辐流式沉淀池中的应用[D].大连:大连海事大学, 2003.
    [18]肖军伟.沉淀池的数值模拟与参数影响分析[D].哈尔滨:哈尔滨工业大学, 2006.
    [19] Vinci B, Summerfelt S, Bergheim A. Solids control[C]// Presentation Notebook:Aquacultural Engineering Society Workshop: Intensive Fin-fish Systems and technologies.Aquaculture 2001, International Triannual Conference and Exposition of the World Aquaculture Society. FL: SUMMERFELT S T, 2001:27-46.
    [20]冯令艳,吕岩林.内循环连续式砂滤器微絮凝过滤机理研究[J].黑龙江水利科技, 2002(2):4-6.
    [21]陈志强,吕炳南,温沁雪,等.内循环连续式砂滤器的微絮凝过滤试验[J].中国给水排水, 2002, 18(1):45-49.
    [22]陈志强,陈文兵,李绍锋,等.内循环连续式砂滤器微絮凝过滤机理研究[J].哈尔滨建筑大学学报, 2001,34(2):65-69.
    [23]倪琦,张宇雷.循环水养殖系统中的固体悬浮物去除技术[J].渔业现代化, 2007, 34(6):7-10.
    [24] Viadero R C, Noblet J A. Membrane filtration for removal of fine solids from aquaculture process water[J]. Aquacultural Engineering, 2002, 26(3):151-169.
    [25]黄宝能,周倪民,于品早,等.连续超滤技术在海水养殖水处理中的应用[J].水处理技术, 2006, 32(3):43-45.
    [26]张岩,张宇峰,王刚,等.纳滤技术处理纺织印染废水[C]//北京纺织工程学会.第六届功能性纺织品及纳米技术应用研讨会论文集.北京:北京纺织工程学会,2006:358-362.
    [27]朱安娜,吴卓,荆一凤,等.纳滤膜分离洁霉素生产废水的试验研究[J].膜科学与技术, 2000, 20(4):47-51.
    [28]王玉红,苏保卫,徐佳,等.纳滤膜脱盐性能及其在海水软化中应用的研究[J].工业水处理, 2006, 26(2):46-49.
    [29]张显球,侯小刚,张林生,等.面向软化水处理的纳滤膜分离技术[J].膜科学与技术, 2006, 26(2):64-67.
    [30]苏保卫,王志,王世昌.采用纳滤预处理的海水淡化集成技术[J].膜科学与技术, 2003, 23(6):54-58.
    [31]吴遵义,黄德便,胡齐福,等.反渗透技术在铝氧化废水处理和回用中的应用[J].水处理技术, 2007, 33(4):69-71.
    [32]王琪,潘巧明,阮慧敏.反渗透技术在电子工业废水处理和回用中的应用[J].水处理技术, 2005, 31(8):76-77.
    [33]王越,苏保卫,徐世昌,等.反渗透海水淡化技术最新研究动态[J].膜科学与技术, 2004, 24(2):49-52.
    [34]解利昕,阮国岭,张耀江.反渗透海水淡化技术现状与展望[J].中国给水排水, 2000, 16(3):24-27.
    [35]卜庆杰,文湘华,黄霞.新型膜生物反应器在不同通量下的膜污染特性研究[J].环境污染治理技术与设备, 2005, 6(3):85-90.
    [36]刘昌胜,邬行彦,潘德维,等.膜的污染及其清洗[J].膜科学与技术, 1996, 16(2):25-30.
    [37]傅金祥,徐微,安娜,等.温度对IMBR膜过滤能量损失与膜污染的影响研究[J].沈阳建筑大学学报(自然科学版), 2005, 21(2):142-145.
    [38]罗欢,刘广立,刘杰,等.不同超滤膜过滤天然有机物的膜污染特性研究[J].环境污染治理技术与设备, 2005, 6(5):46-50.
    [39]万金保,伍海辉.降低膜生物反应器中膜污染的研究[J].工业用水与废水, 2003, 34(3):5-8.
    [40]王志敏,于学权.工厂化内循环海水鱼类养殖水质净化技术[J].渔业现代化, 2006(4):14-16.
    [41] Timmons M B. Use of foam fractionators in aquaculture[J]. Engineering Design and Management, 1994(27):247-279.
    [42] Chen S, Timmons M B, Bisogni J J, et al. Suspended solids removed by foam fractionation[J]. Prog Fish Cult, 1992, 55(2):69-75.
    [43]罗国芝,谭洪新,朱学宝.闭合循环水产养殖车间水处理核心单元的处理效率[J].大连水产学院学报, 2008, 23(1):68-72.
    [44]牟晨晓,李俐俐,李秀辰,等.加压溶气气浮技术用于净化养殖水体的研究[J].水产科学, 2008, 27(4):167-170.
    [45]熊彦权,张希梅,胡炳双.煤泥磁化浮选机理的研究[J].应用能源技术, 2004(4):12-14.
    [46] Quintelas C, Sousa E, Silva, et a1. Competitive biosorption of ortho-cresol, phenol, chlorophenol and chromium (VI) from aqueous solution by a bacterial biofilm supported on granular activated carbon[J]. Process Biochemistry, 2006, 41(9):2087-2091.
    [47]郭春梅,陈进富.离子交换树脂再生废水回用处理模拟试验研究[J].环境工程学报, 2008, 2(1):50-53.
    [48]方瑾,孙培德,张轶,等. NanoChem分子筛对高氨氮废水去除效果的研究[J].环境科学, 2010, 31(1):111-116.
    [49] Rodrlguez J, Cast rillon L, Maranon E, et al. Removal of non- biodegradable organic matter from landfill leachates by adsorption[J ] . Wat Res, 2004, 38(14-15):3297-3303.
    [50]邵红,肖宏康,李辉,等.壳聚糖负载膨润土处理高浊度废水的效果[J].生态环境学报, 2009, 18(5): 1698-1702.
    [51]马勇,王恩德,邵红.膨润土负载壳聚糖对Cu~(2+)的吸附作用[J].安全与环境学报, 2005, 5(1):41-43.
    [52]邵红,孙伶,李辉,等.改性膨润土预处理垃圾渗滤液试验研究[J].环境科学与技术, 2008, 31(12):157-159.
    [53]李英杰,纪智玲,候凤,等.活性炭吸附法处理含铬废水的研究[J].沈阳化工学院学报, 2005, 19(3):184-187
    [54] Rivas F J, Belt ran F, Carvalho F, et al. Study of Different Integrated Physical-Chemical+Adsorption Processes for Landfill Leachate Remediation[J]. Ind Eng Chem Res., 2005, 44(8):2871–2878.
    [55]朱晓君,鲁骎,周恭明,等.改性硅藻土处理垃圾渗滤液的中试研究[J].中国给水排水, 2005, 21(6):1-3.
    [56]王萍,李国昌. Keggin离子改性凹凸棒石对废水中六价铬的吸附研究[J].非金属矿, 2006, 29(6):46-49.
    [57]余少英.交联淀粉对Cr~(3+)离子的吸附研究[J].云南化工, 2006, 33(4):11-12,25 .
    [58]贾陈忠,秦巧燕,樊生才.活性炭对含铬废水的吸附处理研究[J].应用化工, 2006, 35(5):369-372.
    [59]罗国芝,谭洪新,朱学宝.闭合循环水产养殖系统中生物过滤器的水处理效果研究[J]中国海洋大学学报, 2004, 34 (2):203-208.
    [60]李清禄,陈强,王寿昆.絮凝剂与复合菌综合处理养殖水体污染研究[J].应用生态学报, 2002, 13(2):194-198.
    [61]蔡秀萍,王芳,吴启堂.一种同步化学脱氮除磷的碱性活性污泥法废水处理工艺[J].农业环境科学学报, 2008, 27(5):2002-2007.
    [62]熊小京,黄智贤,景有海,等.牡蛎壳填料浸没式生物滤池的除磷特性[J].环境污染与防治, 2003, 25(6):329-331.
    [63]熊小京,黄智贤,洪华生,等.淹没式贝壳填料生物滤池的除磷效应[J].中国给水排水, 2003, 19(8):44-45.
    [64]杨凤,马燕武,张东升,等.孔石莼和臭氧对养鲍水质的调控比较[J].大连水产学院学报, 2003, 18(2):79-83.
    [65]张东升,杨凤,赵晓红.闭路养鲍水中细菌数量的变化[J].中国水产科学, 2001, 8(2):32-35.
    [66]王成刚,汤晓华,郑波,等.臭氧处理海水对小球藻的生理效应[J].水产学报, 2001, 25(2):151-155.
    [67] He S B, Xue G, Wang B Z. Activated sludge ozonation to reduce sludge production in membrane bioreactor (MBR)[J]. Journal of Hazardous Material, 2006, 135(1-3):406-411.
    [68]吴金玲,汪诚文,黄霞.臭氧作用改善膜-生物反应器混合液膜过滤性[J].中国环境科学, 2006, 26(4):427-431.
    [69] Zhu H T, Wen X H, Huang X. Pre-ozonation for Dead-end Microfiltration of Secondary Effluent : Suspended Particles and Membrane Fouling[J]. Desalination, 2008, 231(1-3):166-174.
    [70] Lee S, Lee K, Wan W M, et al. Comparison of membrane permeability and a fouling mechanism by pre-ozonation followed by membrane filtration and residual ozone in membrane cells[J]. Desalination, 2005, 178(1-3):287-294.
    [71]汪晓军,麦均生. Fenton氧化-好氧接触工艺处理高浓度硫酸盐的LAS废水[J].日用化学工业, 2008, 38(1):12-15.
    [72]黄健,张华,王健.气浮-催化氧化-水解酸化-两段接触氧化工艺处理双氧水废水[J].水处理技术, 2009, 35(6):116-119.
    [73]余永东,童茜炜.地表漫流-地表流湿地工艺处理废纸造纸废水[J].工业水处理, 2003, 23(12):59-61.
    [74]谭洪新,刘艳红,周琪,等.新建组合填料潜流湿地脱氮除磷研究[J].上海水产大学学报, 2007, 16(1):73-78.
    [75]柯凡,王磊,李海英,等.微曝气垂直流湿地处理城郊低浓度生活污水模拟实验[J].湖泊科学, 2008, 20(2):257-262.
    [76]付贵萍,吴振斌,任明迅,等.复合垂直流湿地反应动力学及水流流态的研究[J].中国环境科学, 2001, 21(6):535-539.
    [77]尹炜,李培军,叶闽,等.复合潜流人工湿地处理城市地表径流研究[J].中国给水排水, 2006, 22(1):5-8.
    [78]成水平,况琪军,夏宜琤.香蒲、灯心草人工湿地的研究──Ⅰ.净化污水的效果[J].湖泊科学, 1997, 9(4):351-358.
    [79] Gersberg R M, Elkins B V, Lyon S R, et al. Role of aquatic plants in wastewater treatment by artificial wetlands[J]. Wat Res, 1986, 20(3):363-368.
    [80] Adcock P W, Ganf G G. Growth-characteristics of three macrophyte species growing in a natural and constructed wetland system[J]. Wat Sci Tech, 1994, 29(4):95–102.
    [81]吴振斌,陈辉蓉,贺锋,等.人工湿地系统对污水磷的净化效果[J].水生生物学报, 2001, 25(1):28-35.
    [82]郭亚平,吴晓芙,胡曰利.湿地植物在城镇污水处理系统中的作用特性研究[J].环境科学与技术, 2009, 32(2):141-146.
    [83]申玉春,熊邦喜,叶富良,等.虾-鱼-贝-藻生态优化养殖及其水质生物调控技术研究[J].生态学杂志,2005, 24(6):613-618.
    [84]张士良,刘鹰.水培番茄对甲鱼养殖废水的净化和滤清[J].农业环境保护, 2002, 21(2):171-172,182.
    [85]邵志鹏,苗香雯,崔绍荣.水产养殖系统中多花黑麦草生物过滤效果研究[J].上海交通大学学报(农业科学版), 2002, 20(4):317-321.
    [86] Brix H. Use of constructed wetland in water pollution control: Historical development present status and future perspectives[J]. Wat Sci Tech, 1994, 30(8):209-223.
    [87] Drizo A, Forst C A, Grace J, et al. Physical - chemical screening of phosphate- removing substrates for use in constructed wetland systems[J]. Wat Res, 1999, 33(17):3595-3602.
    [88]李怀正,叶建锋,徐祖信.几种经济型人工湿地基质的除污效能分析[J].中国给水排水, 2007, 23(19):27-30.
    [89]郭本华,宋志文,韩潇源.碎石、沸石和页岩陶粒构建人工湿地的除磷效果[J].工业用水与废水, 2005, 36(2):46-47.
    [90]施跃锦,吴革,孙培德.厌氧-好氧法污水处理厂优化运行数值模拟研究[J].水处理技术, 2010, 36(3):49-54.
    [91]董滨,周增炎,高廷耀.投料A~2/O工艺的硝化特性[J].给水排水, 2004, 30(9):50-52.
    [92]张自杰.排水工程(第4版)下册[M].北京:中国建筑工业出版社, 2000.
    [93]牛克胜,魏伟,蒋延梅. A-B工艺处理以高浓度有机废水为主的城市污水[J].环境工程, 2004,22(4):20-22.
    [94]马小丽,王增长,侯安清. SBR工艺的发展与应用[J].山西建筑, 2006, 32(1):188-189.
    [95] Sung S W, Dague R. Laboratory studies on the anaerobic sequencing batch reactor[J]. Wat Environ Res, 1995, 67(3):294-301.
    [96]石瑾. MSBR污水脱氮除磷工艺试验研究及工程应用[D].上海:同济大学, 2007.
    [97]沈桂芬. CASS法处理氨氮废水的研究[D].武汉:武汉大学, 2005.
    [98]张毅,步德新,潘勇伟. UASB-CASS-接触氧化工艺处理玉米酒精废水[J].环境工程, 2005, 23(5):10-12.
    [99] Jules B. Anaerobic Treatment of Partly Acidified Wastewater in a Two-Stage Expanded Granular Sludge Bed (EGSB) System at 8℃[J]. Wat Sci Tech, 1997, 36 (6-7):317-324.
    [100]邱立平,杜茂安,冯琦.二段曝气生物滤池处理生活污水的试验研究[J].环境工程, 2001, 19(2):22-24.
    [101]黄健盛,谷晋川,王永强,等.曝气生物滤池处理生活污水试验研究[J].西华大学学报(自然科学版) , 2006, 25 (4):47-49.
    [102]李晓莉,付永忠,石太宏.曝气生物滤池应用于封闭循环海水养殖系统的试验研究[J].环境科技, 2009, 22(2):9-12.
    [103]朱正齐,姜佩华,陈季华.曝气生物滤池(BAF)的研究进展[J].净水技术, 2005, 24(1):57-59,62.
    [104] Chen J J, McCarty D, Slack D, et al. Full scale studies of a simplified aerated filter (BAF) for organic and a nitrogen removal[J]. Wat Sci Tech, 2000, 41(4-5):1-4.
    [105] Cromphout J. Design of an upflow biofilm reactor for the elimination of high ammonia conentration in eutrophic surface water[J]. Water Supply, 1992, 10(3):145-150.
    [106]李汝琪,孔波,钱易.曝气生物滤池处理生活污水试验[J].环境科学, 1999, 20(5):69-71.
    [107] Mann A T, Mendoza-Espinos L, Stephen-son T. Performance of floation and sunken media biological aerated filters under unsteady conditions[J]. Wat Res, 1999, 33(4):1108-1113.
    [108]齐兵强,王占生.曝气生物滤池在污水处理中的应用[J].给水排水, 2000, 26(10):4-8.
    [109]江萍,胡九成.国产轻质球形陶粒应用于曝气生物滤池的研究[J].环境科学学报, 2002, 22(4):459-464.
    [110]余莹,黄江南,林波,等.新型水处理滤料—纳米改性陶粒的研制[J].给水排水, 2004, 30(12):95-99.
    [111]曾正中,王厚成,李勃,等.曝气生物滤池两种填料挂膜的对比试验[J].环境工程, 2008, 26(1):21-23 .
    [112]何洁,刘长发,王海,等. 3种载体生物滤器对养殖废水的处理效果[J]中国水产科学, 2003, 10(3):242-245.
    [113]丁国际,杨开亮,沈成媛.多孔弹性滤料对饮用水中有机物的去除[J].水处理技术, 2009, 35(1):91-93.
    [114] Moore R, Quarmby J, Stephenson T. The effects of media size on the performance of biological aerated filters[J]. Wat Res, 2001, 35(10):2514-2522
    [115] Mann A, Mendoza-Espinosa L, Stephenson T. A comparison of floating and sunken media biological aerated filters for nitrification[J]. J Chem Technol Biotechnol, 1998, 72(3):273-279.
    [116] Guo J. Treatment of odor and wastewater with complex biofilm reactor[J]. ChinaWater&Wastewater, 2000, 17(9):10-13.
    [117] Xu B, Xia S Q, Gao T Y, et al. Study on bio-pretreatment of the Huangpu River raw water in afluidized-bed bioreactor in pilot-plant-scale [J]. Industrial Water Treatment, 2003, 23(2):19-22.
    [118] Xu B, Xia S Q, Gao T Y, et al. Study on nitrification of the micro-polluted raw water in a sus-pended packing bioreactor[J]. Acta Sci Circumst, 2003, 23(6):743-747.
    [119] Jin D X, Tian G, Shi H C. Experimental study on suspended medium and its performance[J]. Acta Sci Circumst, 2002, 22(3):333-337.
    [120] Jean P B. Development in recirculation systems for Mediterranean fish species[J]. Aqauacultural Enginerring, 2000, 22(1-2):17-31.
    [121]罗国芝,朱泽闻.我国循环水养殖模式发展的前景分析[J].中国水产, 2008(2):75-77.
    [122]杨红生.试论我国“蓝色农业”的第二次飞跃[J].世界科技研究与发展, 1999, 21(4):77-80.
    [123]刘鹰,杨红生,张福绥.我国海水工程化养殖现状与发展[J].中国水产(专刊), 2004:278-281.
    [124]王志敏,于学权.工厂化内循环海水鱼类养殖水质净化技术[J].渔业现代化, 2006(4):14-16.
    [125]战培荣,刘伟,曹广斌,等.流化床生物滤器净化循环水养鱼系统的工艺与特性研究[J].农业工程学报, 2004, 20(2):226-230.
    [126]江伟,江远清.生物转盘处理水产养殖废水的氨氮研究[J].北京水产, 2002(3):12-13.
    [127]孙大川,罗国芝,谭洪新,等.循环水工厂化养殖系统中浮球式生物滤器在不同工况下的水处理效果[J].上海水产大学学报, 2005, 14(4):390-396.
    [128]吴嘉敏,孙大川.循环水养殖系统中浸没式生物滤器的水处理效果[J].上海水产大学学报, 2007, 16(6):542-548.
    [129]倪琦,管崇武,王剑锋.利用循环水和人工湿地技术改建鳗鲡精养池试验[J].渔业现代化, 2009, 36(5):4-9.
    [130]郭恩彦,谭洪新,罗国芝,等.臭氧/生物活性炭深度处理循环养殖废水[J].环境污染与防治, 2009, 31(10):6-9.
    [131] Pozos N, Scow K, Wuertz S, et al. UV disinfection in a model distribution system: biofilm growth and microbial community[J]. Wat Res, 2004, 38(13):3083-3091.
    [132]姜国良,刘云,杨栋,等.用臭氧处理海水对鱼虾的急性毒性效应研究[J].海洋科学, 2001, 25(3):11-13.
    [133]刘鹰.欧洲循环水养殖技术综述[J].渔业现代化,2006(6):47-49.
    [134]刘鹰,杨红生,张涛,等.封闭循环流水培育贝类苗种的初步实验[J].动物学杂志, 2003, 38(4):80-83.
    [135]冯志华,俞志明,刘鹰,等.封闭循环海水育苗系统生物滤池的应用研究[J].中国环境科学, 2004, 24(3):350-354.
    [136]刘鹰,杨红生,张福绥.封闭循环水工厂化养鱼系统的基础设计[J].水产科学, 2004, 23(12):36-38.
    [137]吴成业,刘兆钧.中国鳗业面临的问题与对策[J].福建水产, 2004, 12(4):16-19.
    [138]张蕉霖.欧鳗苗优化培育技术[J].内陆水产, 2002, 27(10):11-12.
    [139]林家兴.欧洲鳗鲡白苗培育技术[J].内陆水产, 2002,32(2):19-20.
    [140]樊海平,余培建,曾占壮,等.吡喹酮和克螨特对寄生欧洲鳗鲡的拟指环虫的效果[J ] .浙江农业学报, 2005, 17(1):23-26.
    [141] Lwashita M, Hirata J, Ogawa K. Pseudodactylogyrus kamegaii.sp.n(Monogenea: Pseudodactylogyridae) from wild Japanese eel, Anguilla joponica[J]. Parasitol Int, 2002, 51(4):337-342.
    [142]夏晓勤,王伟俊.单殖吸虫生物学及生态学[J].水生生物学报, 1997, 21(l):75-84.
    [143] Craig J, Makoto L, John S, et al. First report of the invasive eel Pest Pseudodactylgyrus bini in NorthAmerica and in wild America eels[J]. Dis Aquat Organ, 2001, 44(1):53-60.
    [144]张硕,董双林,王芳.中国对虾生物能量学研究Ⅱ温度和体重对能量收支的影响[J].青岛海洋大学学报, 1998, 28(2):228-232.
    [145]田相利,董双林,王芳.不同温度对中国对虾生长及能量收支的影响[J].应用生态学报, 2004, 15(4):678-682.
    [146]王兴强,马甡,董双林.盐度和蛋白质水平对凡纳滨对虾存活、生长和能量转换的影响[J].中国海洋大学学报, 2005, 35(1):33-37.
    [147] Fast A W, Lester L J. Marine shrimp culture: principles and practices[J]. Developments in aquaculture and fisheries science, 1992(23):515-534.
    [148]董双林,堵南山,赖伟. pH值和Ca2+浓度对日本沼虾生长和能量收支的影响[J].水产学报, 1994, 18(2):118-123.
    [149]林玉坤.欧洲鳗鲡池塘健康养殖的水质调控技术[J].中国水产, 2005(5):41-43.
    [150]胡萍华,金一春,曲学伟,等.氨氮对白斑狗鱼成鱼的急性毒性研究[J].湖南农业, 2010(3):109-111
    [151]孙国铭,汤建华,仲霞铭.氨氮和亚硝酸氮对南美白对虾的毒性研究[J].水产养殖, 2002(1):22-24.
    [152]夏苏东,李勇,王文琪,等.养殖自污染因子对虾蟹健康的影响及其机理与控制[J].水产科学, 2009, 28(6):355-360.
    [153] Siikavuopio S I. Effect of chronic nitrite exposure on growth in juvenile Atlantic cod, Gadus morhua[J]. Aquaculture, 2006, 255(1-4):351-356.
    [154] Kasturi R L, Lutz A, Peter C. Ammonia toxicity and its effect on the growth of the South African abalone Haliotis midae Linnaeus[J]. Aquaculture, 2006, 261(2):678-687.
    [155]国家环境保护总局.水和废水监测分析方法(第四版) [M].北京:中国环境科学出版社, 2002.
    [156]吴敏,姚念民.关于微孔曝气器比较与选择的探讨[J].环境保护, 2002(5):16-18.
    [157]冯俊生.新型管式微孔曝气器性能研究[J].环境污染治理技术与设备, 2005, 6(6):80-82.
    [158]郭瑾珑.曝气两相流中氧传质的研究[D].西安:西安理工大学, 2000.
    [159]蒋礼.养鱼池“水呼吸”耗氧速率的研究[J].西南民族学院学报(自然科学版), 1997, 23 (2):151-155.
    [160]臧维玲,戴习林,朱正国,等.中国对虾池溶解氧的收支平衡状态[J].海洋学报, 1995, 17 (4):137-141.
    [161]郭恩棉,于友庆.沙质底质与无沙底质水族箱水质因子变化的比较[J].安徽农业科学, 2009, 37(26):12689-12691, 12718.
    [162]杨明,臧维玲,戴习林,等.不同底质对罗氏沼虾幼虾生长的影响[J].水产科技情报, 2008, 35(3):105-108.
    [163]郭国军,齐子鑫.精养池塘水质调控关键技术[J].河南水产, 2009(3):25-26,30.
    [164]陈东,张丽旭,刘汉奇.长江口海域春夏季溶解氧分布特征及其相关因素分析[J].海洋环境科学(增刊), 2008, 27(1):49-53.
    [165] Nurdogan Y, William J O. Enhanced nutrient removal in high-rate ponds[J]. Wat Sci Tech, 1995, 31(12):33-43.
    [166]张薇,史开武,孔惠.曝气生物滤池(BAF)的发展与现状[J].北京石油化工学院学报, 2005, 13(3):24-30.
    [167]王劲松,胡勇有.曝气生物滤池填料的研究进展[J].工业用水与废水, 2002, 33(5):7-9.
    [168]张小东,杨波,陈季华,等.生态弹性填料及陶粒在微污染水体处理中的应用研究(英文)[J].中山大学学报(自然科学版) , 2007, 46(B6):125-127.
    [169]肖羽堂,吴鸣,刘辉,等.弹性填料微孔曝气生物膜法修复污染水源除NH4+-N[J].环境科学, 2001, 22(3):40-43.
    [170]齐雨藻.中国淡水藻志[M] .北京:科学出版社, 1995 .
    [171]梁象秋,方纪祖,杨和荃.水生生物学[M].北京:中国农业出版社, 1996.
    [172]胡鸿钧,李尧英,魏印心,等.中国淡水藻类[M] .上海:上海科技出版社, 1979.
    [173]李绍峰,崔崇威,黄君礼,等. DO和HRT对MBR同步硝化反硝化影响研究[J].哈尔滨工业大学学报, 2007, 36(6):887-890.
    [174]张超,吕锡武. SBR工艺中反硝化除磷特性研究[J].环境科学, 2007, 28(10):2259-2263.
    [175]高大文,李强,梁红,等. NO3-和NO2-作为电子受体时的反硝化除磷实时控制[J].环境科学, 2009, 30(4):1073-1078.
    [176]蒋轶锋,郑建军,王宝贞,等.O2、NO3-、NO2-为电子受体的生物除磷比较[J].环境科学, 2009, 30(2):421-426.
    [177] Hu J Y, Ong S L, Ng W J, et al. A new method for characterizing denitrifying phosphorus removal bacteria by using three different types of electron acceptors[J]. Wat Res, 2003, 37(14):3463-3471.
    [178] Pochana K, Keller J. Study of factors affecting simultaneous nitrification and denitrefition (SND)[J]. Wat Sci Tech, 1999, 39(6):61-68.
    [179]苟莎,黄钧.异养硝化细菌脱氮特性及研究进展[J].微生物学通报, 2009, 36(2):255-260.
    [180]曹文平,张永明,钱鲁泓.两段曝气生物滤池废水处理的研究[J].水处理技术, 2006, 32(3):62-65
    [181]郭春艳,王淑莹,李夕耀,等.聚磷菌和聚糖菌的竞争影响因素研究进展[J].微生物学通报, 2009, 36(2):267-275.
    [182]支崇远.硅藻与环境—东海南部陆缘硅藻与古环境[M].北京:海洋出版社, 2005:1-8.
    [183]董旭辉,羊向东,潘红喜,等.长江中下游地区湖泊现代沉积硅藻分布基本特征[J].湖泊科学, 2004, 12(4):298-304.
    [184]梁彦娟,李捷,张乐.高浓度硅藻对桡足类繁殖的影响[J].海洋湖沼通报, 2009(4):83-92.
    [185]李捷.高浓度硅藻对桡足类繁殖、生长的影响[D].北京:中国科学院研究生院, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700