缺氧—好氧移动床生物膜处理低温城市污水
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于高纬度寒冷地区冬季漫长,废水水温过低,致使废水生物处理单元中微生物的代谢能力下降,导致设置于户外的污水生化处理设施的处理效率大幅度降低,经处理后出水水质难于达标。我国目前尚缺乏针对冬季冰封期低温废水处理的成热集成技术。为此,需要寻求合适有效的低温稳定运行强化技术,保证寒冷地区冬季污水处理达标。围绕这一目的,本文以城市污水作为处理对象,研究了采用缺氧-好氧移动床生物膜反应器(MBBR)处理低温城市污水的效能。
     实验室小试在常温(T=20℃)和低温(T=8℃)条件下,分别研究了模拟城市污水水质在不同参数组合下,经好氧MBBR处理的效能,得到在低温8℃下好氧MBBR运行的最优参数组合为:填料填充比为40%,HRT=4h,DO=7~8mg/L。在最优参数组合下,将填料填充量为50%的的缺氧MBBR与好氧MBBR连接,调整硝化液回流比为200%,得到在低温8℃的条件下,缺氧-好氧MBBR对COD和NH4+-N的去除率可分别可达90.70%和71.65%,当进水中COD和NH4+-N浓度分别在400mg/L和30mg/L左右时,出水中COD和NH4+-N含量均可达到《城镇污水处理厂污染物排放标准(GB18918-2002)》中的一级A标准,此时TN的去除率可达65.65%。
     根据小试实验结果,在大庆市东城区污水处理厂设计了中试缺氧-好氧MBBR系统,用以处理大庆市东城区实际生活污水。实验结果表明,该系统在温度为15~20℃的条件下启动时间短,即使在进水COD、氨氮浓度较低的情况,好氧MBBR依然可在较短的时间内完成生物挂膜。常温(T=20~25℃)条件下,当进水COD、NH4+-N、TN的平均浓度分别为450mg/L、45mg/L和50mg/L时,经缺氧-好氧MBBR处理后的出水中COD、NH4+-N和TN浓度可分别稳定于48.1 mg/L、3.41 mg/L和13.32mg/L以下,达到《城镇污水处理厂污染物排放标准(GB18918-2002)》中的一级A标准。
     中试实验中,从秋季进入冬季后,水温从20℃骤降至13℃,对反应器的运行带来了明显的冲击。反应器硝化、反硝化能力均明显下降,出水中COD、NH4+-N、TN含量不断升高。此时,通过搭建保暖措施控制水温在8~13℃左右,同时降进水负荷降低至0.4m3/h,稳定一段时间后,随着微生物对低温的不断适应,反应器的除污能力开始缓慢回升,此时逐渐调整进水负荷至0.5m3/h,8~13℃的低温环境运行2个月的结果表明,调整稳定后的反应器对COD、NH4+-N、TN的去除率分别可以达到90%、88%和60%以上,此时出水中COD、NH4+-N、TN含量分别在50mg/L、5mg/L和15mg/L以下,仍达到《城镇污水处理厂污染物排放标准(GB18918-2002)》中的一级A标准。
In the high-latitude cold region, metabolic capability of micro-organisms of the treatment units was decreased by the low temperature, which leads to the removal efficiency reduction of the outdoor biological sewage treatment facilities. So, steady operation of the sewage treatment plant was greatly affected and the quality of the treated water can hardly reach the related standard. China is lack of maturely integrated technology with the low temperature sewage treatment in the winter. For this reason, effective strengthening technique in low temperature is seeked to make sure the quality of the treated water reaching the standard in the cold region. Therefore, the dissertation mainly studies the treatment efficiency of low temperature wastewater by A/O process MBBR(Moving Biological Bed Reactor).
     The lab experiment was carried out in the conditions of room temperature (T=20℃) and low temperature (T=8℃) respectively. The treatment efficiency of stimulant municipal wastewater by Oxic MBBR was studied in different conditions, and the optimal parameters of Oxic MBBR were obtained in the 8℃low temperature. The optimal parameters of Oxic MBBR were the filling radio of suspended carriers 40%. HRT 4h and DO concentration 7-8mg/L.
     Under the optimal conditions, when the Anoxic MBBR, whose filling radio of suspended carriers is 50%. was connected with Oxic MBBR and the internal recycle ratio was adjusted at 200%, the removal efficiencies of COD and NH4--N in the 8℃of sewage temperature can reach 90.70% and 71.65% respectively, when the influent concentration of COD and NH4+-N was about 400mg/L and 30mg/L respectively, the content of COD and NH4--N in the effluent can both reach the first level A criteria specified in the national discharge standard while the removal efficiencies of TN can reach 65.65%.
     To investigate the practical treatment efficiency of the domestic sewage pilot-scale models were designed and set in the east district wastewater treatment plant of Daqing city based on the lab experiment results. The Pilot-scale Research was started from summer, the experimental results showed that the starting time of this system is short in the temperature between 15℃and 20. Even in low average influent concentrations that COD, NH4(?)-N and TN was 450mg/L.45mg/L and 50mg/L. the effluent concentration of COD. NH4(?)-N and TN was below 48.1 mg/L,3.41 mg/L and 13.32mg/L respectively after treatment, which meet the first level A criteria specified in the national discharge standard.
     In the Pilot-scale reach, when the season went into winter from autumn to. the water temperature decreased from 20℃to 13℃suddenly, taking an obvious impact on the reactor operation. The ability of nitrification and denitrification was both decreased, the effluent concentration of COD, NH4(?)-N and TN was increased continuously. In this time, the water temperature was controlled at 13 C by building warmth retention measures, and meanwhile, the influent load was decreased to 0.4m3/h. After a period of tranquilization. with the continuous adaptation of microorganism, the removing ability of the reactors rose slowly, then the influent load was adjusted to 0.5m3/h. The results of two month operation in low temperature(8-13℃) showed that the removal efficiency of COD. NH4(?)-N and TN can reach 90%,88% and 60% respectively after the reactors was adjusted stably, and the effluent concentration of COD. NH4(?)-N and TN is below 50mg/L,5mg/L and 15mg/L, which meets the first level A criteria specified in the national discharge standard.
引文
[1].贲岳.陈忠林,徐贞贞.等.聚氨酯固定高效优势耐冷菌处理低温生活污水[J].哈尔滨工业大学学报,2009,41(2):76-80.
    [2].曹春艳“生物浮动床+生物滤池”,用于石化废水回用的中试研究[J].青岛科技大学学报(自然科学版),2008,29(1):22-24.
    [3].陈熹兮.净化槽低温高效微量油脂降解微生物的选育技术研究[J].上海交通大学硕士学位论文,2002:5-8.
    [4].陈洪斌,周小红,张燕,等.CEPT/移动床工艺处理低温城镇污水脱氮除磷中试[J].中国给水排水,2007,23(1):11-16.
    [5].曹积宏,马放,赵立军,等.二段法工艺在低温市政污水厂的工程应用[J].哈尔滨商业大学学报(自然科学版),2005,21(2):157-161.
    [6].郭东敏,朱文亭,潘艳艳.影响循环移动载体生物膜反应器性能的因素分析[J].工业用水与废水,2003,34(5):7-9.
    [7].高艳玲.丁日堂.吕炳南.容积负荷对悬浮载体生物流化床处理效果的影响[J].中国给水排水,2007,23(13):79-82.
    [8].候世全,水春雨.程学友.生物法处理低温生活污水实验研究[J].铁道劳动安全卫生与环保,2005.32(5):209-211.
    [9].贾磊.陈洪斌,工建翊,等.低浓度污水条件下MBBR启动及处理效果的中试[J].水处理技术,2007,33(7):57-60.
    [10].李锋,向阳,周增炎MBBR法处理桃浦工业区废水的中试研究[J].给水排水.2001,27(4):47-49.
    [11].梁建军,翟俊,何强,等.复合潜流人工湿地强化处理低温地区生活污水[J].中国给水排水.2010,26(10):54-58.
    [12].刘礼祥,章北平,颜岗,等.污水处理中物化与兼性生化低温下的协同作用[J].水处理技术,2007,33(6):41-44.
    [13].刘建广,张春阳,尹萌萌,等.低温下强化混凝去除微污染水源水中有机物的研究[J].中国农村水利水电,2008,7:52-55.
    [14].吕晓辉,胡龙兴.移动床生物膜反应器脱氮除磷技术[J].化学工程师,2004,108(9):20-23.
    [15].姜安玺,孟雪征,曹相生,等.耐冷菌的分离及在低温污水处理中的应用研究[J].哈尔滨工业大学学报,2002,34(4):563-569.
    [16].孟雪征,曹相生,姜安玺,等.利用耐冷菌处理低温污水处理中的研究[J].山东建筑工程学院学报,200,16(2):39-44.
    [17]].裴刚.高浓度制药废水处理工程实例[J].给水排水,2009,(35)8:60-61.
    [18].彭焘,徐栋,贺峰,等.人工湿地系统在寒冷地区的运行及维护[J].给水排水,2007,33(增刊):82-87.
    [19].潘碌亭,屠晓青,陆洁.接触氧化—强化混凝法处理低温城镇污水[J].给水排水,2008,34(1):34-37.
    [20].裴保安.张慧利,易军.接触氧化低温运行研究[J].河南科学,1997,15(3):343-346.
    [21].任南琪,马放.污染控制微生物学原理与应用[J].化学工业出版社2003:64-68,280281,66.
    [22].桑义敏.尹炜.何绪文CASS工艺在处理低温生活污水中的应用的研究[J].环境工程,2002,20(2):16-18.
    [23].邵曙海,崔崇威,张爱,等.低温下两段式MBBR处理城市污水的中试研究[J].中国给水排 水.2008.24(9):93~96.
    [24].孙博,韩洪军.孙娜.新型悬浮填料处理低温生活废水的实验研究[J].哈尔滨商业大学学报(自然科学版).2005.21(1):35-38.
    [25].时彦芳·,胡翔,王建龙.移动生物膜反应器处理废水的特性研究[J].环境科学研究,2005.18(5):49-55.
    [26].王建龙,吴立波,齐星,等.用氧吸收速率(OUR)表征活性污泥硝化活性的研究[J].环境科学学报,1999,19(3):225-22.
    [27].魏琛,浅议影响污水生物除磷的因素[J].重庆环境科学,2002,24(2):85-87.
    [28].王学江,用移动床生物膜反应器处理石化废水[J].化工环保,2001,21(6):333-336.
    [29].吴云生,章北平,陆谢娟.等.低温生活污水强化混凝实验[J].水处理技术.2007.33(1):54-57.
    [30].王荣昌,童浩,郅玉声.MBR和BAF用于城市污水深度处理的工艺特性比较[J].水处理技术,2010,36(4):82-85.
    [31].王建华,陈永志,彭水臻.低碳氮比实际生活污水A2O-BAF工艺低温脱氮除磷[J].中国环境科学,2010,30(9):1195~1200.
    [32].王胜智,张平.低温污水强化处理工艺研究[J].环境科学与管理,2008.33(9):103-119.
    [33].徐亚同.废水中氮磷的处理[M].上海:华东师范大学出版社,1996:3,39,55.
    [34].余建国,周少奇,曾武,等A/A/MBBR工艺处理混合污水的脱氮除磷中试研究[J].中国给水排水.2009.25(21):26-28.
    [35].于鹏飞,张兴文.秦伟杰,等.内循环移动床生物膜反应器的研究与应用[J].环境科学与技术,2008,31(11):120-123.
    [36].杨爽.吴忠超,赵慧,等.低温下ZCS工艺和改进式ZCS工艺脱氮效率研究及微生物特性分析[J].环境工程学报,2007,1(4):12-16.
    [37].杨旭,于水利,张洪洋.等.潜流人工湿地低温下黄河原水预处理效果研究[J].生态环境,2008.17(1):70-73.
    [38].赵立军,马放,陆青海,等.低温地区市政污水厂工艺选择、设计与运行的探讨[J].环境工眦2005,23(1):27-29.
    [39].赵立军.低温污水生物强化处理技术应用研究[D].哈尔滨:哈尔滨工业大学,2007.
    [40].周健,王继欣,张拗,等.序批式人工湿地冬季低温脱氮的效能研究[J].环境科学学报2007.27(10):1652-1656.
    [41].赵丽娜.丁为民.鲁亚芳,等.几种春季湿地植物对污水中主要污染物去除效果的比较[J].污染防治技术.2007,20(1):25-27.
    [42].张兴文.杨凤林,马建勇.等.MBBR处理低质量浓度污水的工程应用[J].环境工程,2002,20(5):12-15.
    [43].周健,林明波,龙腾锐,等.一体化间歇曝气多级生物膜反应器处理低温、低浓污水[J].中国给水排水,2007,23(7):40-43.
    [44].赵庆良,任南琪.水污染控制工程[M].北京:化学工业出版社,2005:122,125.128,204.
    [45].张自杰.排水工程下册(第4版)[M].北京:中网建筑工业出版社,2002.
    [46].张旭.移动床生物膜反应器处理染料废水的研究[D].北京林业大学,2010.
    [47]. A. Mosquera-Corral. F. Gonzalez, J.L. Campos, et al. Partial Nitrification in a SHARON Reactor in the Presence of Salts and Organic Carbon Compounds[J]. Process Biochemistry.2005,40: 3109-3118.
    [48].B·Rusten. Pilot testing and preliminary design of moving bed biofilm reactors for nitrogen removal at the FREVAR WASTE WATER treat-ment plant[J]. Water Science and Technology.2000.41(4-5): 13-20.
    [49]. B. Rusten, C. H. Johnson, et al. Biological Pretreatment of a Chemical Plant Wastewater in High-rate Moving Bed Biofilm Reactors[J]. Water Science and Technology.1999.39(10-11): 257-264
    [50].B. Ericsson. Process Option for Nitrogen and Phosphorus Removal in Domestic Wastewater[J]. Desalination.1994.98:105-118.
    [51].C. Hellinga, A. A. J. C. Schellen, J. W. Mulder, et al. The SHARON Process:an Innovative Method for Nitrogen Removal from Ammonium Rich Wastewater[J]. Water Science and Technology.1998, 37(9):135-142.
    [52].O. P. Claudiane. Florent C, Yves C, et al. Artificial aera-tion to increase pollutant removal efficiency of constructed wet-lands in cold climate[J]. Ecological Engineering.2006.27:258-264.
    [53]. H. Degaard, B. Rusten, T. Westrum. A new moving bed biofilm reactor applications and results[J]. Water Science and Technology.1994.29(10/11):157-165.
    [54]. E. Choi. D. Rhu. Z. Yun and E. Lee. Temperature Effects on Biological Nutrient Removal System with Weak Municipal Wastewater[J]. Water Science and Technology,1998.37(9):219-216.
    [55].E. Silva. A. M. Fialho. I. Sa-Correia, et al. Combined Biouagmentation and Biostimulation to Clean UP Soil Contaminated with High Concentrations of Atrazine[J]. Environmental Science Technology,2004,(38):632-637.
    [56].G. pastorelli. Organic carbon and nitrogen removal in moving-bed biofilm reactors[J]. Water Science and Technology.1997.35(6):91-99.
    [57].G. Andreottola. Upgrading of a small wastewater treatment plant in a cold climate region using a moving bed biofilm reactor system [J]. Water Science and Technology.2000.41(1):177-185.
    [58].H. Odegaard, B. Rusten. A New Moving Bed Biofilm Reactor:Application and Results[J]. Water Science and Technology.1994.29(10-11):157-165.
    [59]. I. Comett-Ambriz, S. Gonzalez-Martinez. P. Wilderer. Comparison of the Performance of MBBR and SBR Systems for the Treatment of Anaerobic Reactor Biowaste Effluent[J]. Water Scienc and Technology,2003.47(12):155-161
    [60]. J. Suvilampi, A. Lehtomaki,J. Rintala. Comparison of Laboratory-scale ThermopHilic Biofilm and Activated Sludge Processes Integrated with A MesopHili Activated Sludge Process[J]. Bioresource Technology.2003,88(3):207-214.
    [61].Lars Hem. Nitrification in a moving bed biofilmreactor[J]. Water Research,1994,28(6): 1425-1433.
    [62].M. Maurer. Modelling denitriflcation in a moving bed of porous carriers from a low-loaded wastewater treatment plant[J]. Water Science and Technology.1999,39(7):251-259.
    [63].M. S. M. Jetten, S. J Horn. Vanloosdrecht M.C.M [J]. Water Science and Technology,1997,35(9): 171-180.
    [64].M. K. de Kreuk. M. Pronk. M. C. M. van Loosdrecht. Formation of Aerobic Granules and Conversion Processes in an Aerobic Granular Sludge Reactor at Moderate and Temperatures[J]. Water Research.2005,39:4476-4484.
    [65].N.Hanner. Upgrading the sj lunda WWTP according to a novel process concept[J]. Water Science and Technology.2003,47(12):1-7.
    [66]. H. Odegarrd. Moving bed biofilm reactor [J]. Water environmental engineering and reuse of water. eds. Hokkaido Press. Japan.1999:250-305.
    [67].P. Chevalier. Nitrogen and Phosphorus Removal by High Latitude Matforming Cyanobaeteria for Potential Use in Tertiary Wastewater Treatment. Applied Phycology[J].2000.12(2):39-44.
    [68]. W. G. Pitt. S. A. Ross. Ultrasound increases the rate of bacterial cell growth[J]. Biotechnology Progress.2003.19(3):1038-1044.
    [69].R. Pujo. S. Tarallo. Total nitrogen removal in two-step bio-filtration[J]. Water Science and Technology.2000.41(4-5):65-68.
    [70]. A. Rusten. L. J. Hem. H. Odegarrd. Nitrogen removal from dilute wastewater in cold climate using moving-bed bio-film reactor[J]. Water Environment Reseach,1995,67(1):65-74.
    [71].S. Wallace, G. Parkin, C. Cross. Design and Operation on Man-made Wet Land for Sewage Water Treatment in Cold Regions[J]. Foreign Science and Technology,2003,6:40-42.
    [72].U. Van Dongen, M.S. Jetten. M.C.M. van Loosdrecht. The SHARON-ANAMMOX Proces for Treatment of Ammonium Rich Wastewater[J]. Water Science and Technology.2001,44(1): 153-160.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700