复合激光诱导荧光定量标定技术及其对柴油喷雾特性研究的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低温燃烧概念给出了实现内燃机高效、低污染的新途径,是目前国际内燃机界研究的热点。但是在柴油机上实现低温燃烧仍有许多理论和技术上的难题。全历程加速油气混合,提高喷雾和环境气体之间的混合速率是实现低温燃烧,控制燃烧速度和始点的重要技术手段之一。本文应用复合激光诱导荧光技术,以MULINBUMP-HCCI复合燃烧系统为研究对象,通过光学测量喷雾气相、液相图像、获得喷雾特性信息的方法,开展柴油喷雾基础理论及其控制技术的研究,为全历程加速油气混合提出控制方法和策略手段。
     为了研究蒸发喷雾的喷雾特性,模拟发动机中的高温、高压环境,本研究设计开发了定容燃烧弹实验装置,并建立起一套围绕定容燃烧弹开展的复合激光诱导荧光实验系统。该系统能实现柴油喷雾气相、液相浓度场的同时测量;定容燃烧弹最高爆发压力14Mpa、最高模拟温度可达1200K;还开发了一套脉动燃油喷射系统,通过大小活塞面积比为7.5:1或10.5:1的增压装置,可实现高压燃油喷射;另外还开发了实验信号控制系统,可以实现喷油、点火、激光、拍摄、充气等多项工作的信号协同处理。
     研究中应用复合激光诱导荧光技术建立起了荧光强度和荧光物质浓度间定量标定的研究方法,获得柴油喷雾气相、液相浓度量化数值,并针对影响定量标定的各种控制参数和影响因素开展了量化研究。实验中,研究了气相荧光强度和荧光物质浓度间系数Kvapor随环境条件变化的情况,并发现,系数Kvapor随环境压力升高而降低,高环境温度下这种效果更为明显,系数Kvapor下降趋势更快;环境气体成分的变化对系数Kvapor并没有明显影响;环境温度升高使得系数Kvapor呈现先上升后下降的趋势,600K左右是拐点位置。最终,根据实验结果建立了系数Kvapor的受环境温度和环境压力影响的三维Map图,并应用其获得喷雾气相当量比浓度数值和液相浓度数值的定量结果。
     在改变喷射控制参数和环境参数的喷雾特性研究中,应用定量标定的实验结果深入开展了喷油压力、喷孔孔径、环境压力、环境密度和环境温度对喷雾各个特性参数影响的实验研究。研究中发现,提高喷射压力能提高了喷雾动能,加速液相喷雾的破碎、促进液相蒸发形成气相喷雾,提高喷雾贯穿速率,有利于较均匀的喷雾的形成;小孔径的喷油嘴,由于较短的贯穿距离和喷雾锥角,减弱了喷雾和空气的混合条件、降低了扩散速率,但另一方面,小孔径喷油嘴又促进了喷雾的破碎和蒸发,使得气相喷雾分布均匀程度明显提高,高浓区域浓度值下降;环境密度高的条件下喷雾的贯穿距离明显减小,这样虽然导致喷雾的扩散速率降低,但由于单位体积内气体量的大幅增加,加快了环境气体和喷雾之间的互相作用,更容易形成气相,分布也更为均匀;环境温度对喷雾的蒸发速率起到关键作用,液相喷雾贯穿距离随温度升高而减小,喷雾锥角变大,同时,气相最大当量比出现时间提前,这些说明环境温度升高,加速了环境气体和喷雾间的热交换,提高了喷雾的蒸发速率,最终促进气相快速形成。
     在光学发动机实验中发现,BUMP燃烧室限流沿能剥离撞壁喷雾,形成空间二次射流,加速了喷雾和空气间的混合,这种效果在喷油压力提高的条件下,尤其明显。但是有使限流沿有效工作的最小高度存在,并且合适的二次撞壁距离是形成理想的二次射流的关键。另外,多切片扫描(CT)技术可以实现喷雾三维浓度场数据的获得,为分析喷雾特性提出了一个新的分析角度和可能性。
Low Temperature Combustion (LTC) engines are being paid much attention and widely investigated due to their potential of high thermal efficiency and very low emissions of NOx and particulate matter (PM). However, for the diesel-fuel LTC engines, there are still some critical problems that need to be solved. Improvement of the mixing rate between spray and air over the whole injection and ignition period is one of the most important technique to realize LTC and control the combustion rate and ignition time. In this study, both the essential characteristics and control approaches of diesel-spray were investigated by Planar Laser Induced Exciplex Fluorescence technique by measuring the images of liquid and vapor phase of spray. A constant vessel which designed to simulate the high temperature and pressure environment in diesel engine was developed and Planar Laser Induced Exciplex Fluorescence system was established for the investigation of evaporated diesel spray. Liquid and vapor phase of spray can be measured simultaneously and the highest ignition pressure of constant vessel can reach up to 14Mpa and simulated temperature up to 1200K. Also, the pulse fuel injection system was developed with the 7.5:1 and 10.5:1 pressure amplifier equipment. And the signal control system for ignition, laser, injection, imaging, gas filling is established to arrange the signal timing according to the need of experiments.
     The quantitative calibration method for PLIEF was developed and established to acquire the relation betweent the fluorescence and concentration of spray, i.e. to get the coefficient Kvapor. Quantitative concentration distribution of vapor and liquid-phase spray were acquired by the method. Also, the factors which had effect on the calibration were investigated during the experiments. It was found that with the increasing of ambient pressure the Kvapor decreased and at higher ambient temperature the faster rate of the decreasing. And ambient gas component had no influence on the Kvapor. The enhancement of ambient temperature promoted the K before 600K and lower the Kvapor after 600K which is the inflexion. According the results the 3-D Map about ambient temperature and pressure for Kvapor was established and the quantitative information of spray concentration can be acquired from the 3-D Map.
     In the research of evaporated spray characteristics some injection parameters such as injection pressure and nozzle diameters, and ambient parameters such as ambient pressure, density and temperature were investigated by using the quantitative calibration results. It was found that the improvement of injection pressure promoted the kinetic energy of the spray and the penetration rate of vapor-phase was enhanced. It also affected the breakup of liquid-phase so as to accerelate the form of vapor-phase and increased the homogeneity of the spray as a result. Smaller injector nozzle diameter shorten the penetration and narrow the angle of the spray. The mixing condition between fuel and air was deteriorated. But on the other hand the breakup and evaporation of liquid-phase was enhanced clearly because of smaller nozzle. The vapor-phase of spray distributed more homogeneously. The shorter penetration was got with the higher density of ambient gas so as to the diffusion rate decreased. But the mixing rate of fuel and air increased because of higher density environment bring more gas in constant space volume. Ambient temperature had a key effect on the evaporating rate of the spray. The liquid penetration was shorten and max equivalence appeared earlier with the increasing of ambient temperature. It proved that the temperature enhancement promoted the heat exchange between fuel and air. Therefore the evaporating rate was increased and the form of vapor-phase became easier and faster.
     In the experiment in optical engine it was found that the bump ring in the BUMP combustion chamber can strip off the wall jet to form secondary jet and after the impingement more homogeneous and broader distribution of vapor was formed. And this effect was significantly enhanced with the rising of injection pressure. But there was a minimal height of bump and appropriate secondary distance existing for the bump ring to work effectively. CT technique can acquire the 3-D distribution of spray with different sheet position betweent laser and spray. It provided the new way for analysis the spray characteristics and in favor of acquirement of precise information of the spray.
引文
[1]“石油及其代用能源高效率超低污染利用的基础研究科学研讨会”纪要,天津,1998.3
    [2]梁刚,2002年和2001年世界石油储量和产量,国际石油经济,2003,11(1): 54-5521世纪我国石油供给分析,中国石油学会石油炼制分会,2005
    [3]盛杨怿,我国石油供给、需求现状及战略分析,经济前沿,2005,11(5):8~11
    [4]牛建英,战略矿产资源供应安全研究:[博士学位论文],北京;中国地质大学,2007
    [5]杨妙梁,汽车发动机与环境保护,北京:中国物质出版社,2001.
    [6] The report of Energy Information Administration of U.S
    [7] Caterpillar Company report,“The view of bridge”Deer 2006 Detroit Michigan
    [8]姜振飞,姜恒,高油价阴影下的中国石油安全战略,现代管理科学,2005年第三期
    [9]文清,发改委:2010年石油进口依存度将突破50%,市场周刊.新物流,2005(7): 4
    [10] J. B. Heywood, Internal combustion engine fundamentals, New York: McGraw-Hill Book Company, 1998
    [11] J. Warnatz, U. Maas & R. W. Dibble., Combustion: Physical & Chemical Fundamentals, Modelling & Simulation, Experiments, Pollutant Formation (4th ed.), Berlin Heidelberg: Springer -Verlag, 2006
    [12]翁祖亮,平银生,从日益严重的能源和环境问题碳我国中小功率柴油机的发展,中国内燃机学会中小功率柴油机分会与基础件分会论文集,2002,2~3
    [13]叶代启,烟气中氮氧化物污染的治理,环境保护科学,1999.4
    [14]魏淑芬,内燃机的排放污染分析及控制,环境保护,1996,(5):6~9
    [15]张少华,欧洲柴油轿车的发展情况,汽车情报,2004(35):32~35
    [16]赵三明,从2004到2005:倪宏杰谈内燃机行业的现状与趋势,中国工业报,2004.12.31
    [17]张少华,欧洲柴油轿车的发展情况,汽车情报,2004(35):32~35
    [18] Daniel W. Dickey, Thomas W. Ryan III, NOx Control in Heavy-Duty Diesel Engines- What is the Limit?, SAE 980174,1998
    [19] F. Pischinger, The Diesel Engine for Cars– is there a Future?, ASME Fall Conference, 1995
    [20] John E Dec. A Conceptual Model of DI Diesel Combustion Based on Laser-Sheet Imaging. SAE, 970873, 1997.
    [21] Patrick F. Flynn, Russell P. Durrett, Gary L. Hunter. Diesel Combustion: An Integrated View Combining Laser Diagnostics, Chemical Kinetics, and Empirical Validation. SAE, 1999-01-0509, 1999.
    [22] Akihama, K., Takatori, Y., Inagaki, K., Mechanism of the smokeless rich Diesel combustion by reducing temperature, SAE paper 2001-01-0655, 2001
    [23] Kamimoto, T., and Bae M., High Combustion Temperature for the Reduction of Particulate in Diesel Engines, SAE paper 880423, 1988
    [24] Lutz, A.E., Kee, R.J., and Miller, J.A., Senkin: A Fortran Program For Predicting Homogenous Gas Phase Chemical Kinetics with Sensitivity Analysis, Sandia National Laboratories, SAND87-8248; 1994
    [25] Mike Potter,Russ Durrett,High-Efficiency Clean Combustion Design for Compression Ignition Engines, GM company report, 2006
    [26] Shigeru Onishi, Souk Hong Jo, Katsuji Shoda, et al. Active Thermo-Atmosphere Combustion (ATAC)– a new combustion process for internal combustion engines. SAE Paper 790501, 1979
    [27] Masaaki Noguchi, Yukiyasu Tanaka and Yukihisa Takeuchi. A study on gasoline engine combustion by observation of intermediate reactive products during combustion. SAE Paper 790840, 1979
    [28] Najt P M, Foster D E. Compression-Ignited homogeneous charge combustion. SAE Paper 830264, 1983
    [29] Thring R H. Homogeneous-charge Compression-ignition (HCCI) Engines. SAE Paper 892068, 1989
    [30] Carsten Baumgarten, Mixture Formation in Internal Combustion Engine, New York: Springer-Verlag, 2006
    [31] Rudolf H. Stanglmaier, Charles E. Roberts, Homogenous Charge Compression Ignition (HCCI): Benefits, Compromises, and Future Engine Applications, SAE Paper 1999-01-3682, 1999
    [32] Zhijun Peng, Hua Zhao, Nicos Ladommatos. Effects of air/fuel ratios and egr rates on hcci combustion of n-heptane, a diesel type fuel. SAE Paper 2003-01-0747, 2003
    [33] Peter L. Kelly-Zion and John E. Dec. A computational study of the effect of fuel-type on ignition time in HCCI engines. Proceedings of the 28th International Symposium, 2000, 1:1187-1194
    [34] Ryan III T W, Callahan T J. Homogeneous charge compression ignition of diesel fuel. SAE Paper 961160, 1996
    [35] Hisakazu Suzuki, Noriyuki Koike and Matsuo Odaka. Combustion control method of homogeneous charge diesel engines. SAE paper 980509, 1998
    [36] Shawn Midlam-Mohler, Yann Guezennec, Giorgio Rizzoni, et al. Mixed-mode diesel hcci with external mixture formation: preliminary results. 8th Diesel Engine Emissions Reduction (DDER) Workshop, Aug. 25-29, 2002
    [37] Yann Guezennec, Shawn Midlam-Mohler and Giorgio Rizzoni. A mixed mode hcci/di engine based on a novel heavy fuel atomizer. 9th Diesel Engine Emissions Reduction (DDER) Workshop, Aug. 24-28, 2003
    [38] Shawn Midlam-Mohler. Diesel hcci with external mixture preparation. 10th Diesel Engine Emissions Reduction (DDER) Workshop, Aug29-Spet.2, 2004
    [39]阪田一郎,最新发动机技术,丰田汽车技术讲座,天津大学,2003,12
    [40] H. Yanagihara, Y. Sato, J. Mizuta. A Study of DI Diesel Combustion under Uniform Higher-Dispersed Mixture Formation. JSAE Review 18(1997), pp. 247~254, 1997
    [41] R. Hasegawa,H. Yanagihara. HCCI Combustion in DI Diesel Engine. SAE Paper 2003-01-0745, 2003
    [42] H. Yokota, H. Nakajima, T. Kakegawa. A New Concept for Low Emission Diesel Comustion (2nd Rep.: Reduction of HC and CO Emission, and Improvement of Fuel Consumption by EGR and MTBE Blended Fuel). SAE Paper 981933, 1998
    [43] S. Kook, C. Bae, Combustion Control Using Two-Stage Diesel Fuel Injection in a Single-Cylinder PCCI Engine. SAE Paper 2004-01-0-38, 2004
    [44] Y. Iwabuchi, K. Kawai, T. Shoji et al. Trial of New Concept Diesel Combustion System - Premixed Compression-Ignition Combustion. SAE Paper 1999-01-0185, 1999
    [45] B. Walter, B.Gatellier. Near Zero NOx Emissions and High Fuel Efficiency Diesel Engine: the NADITM Concept Using Dual Mode Combustion. Oil & Gas Science and Technology-Rev.IFP, Vol.58 (2003), NO.1, pp. 101~114. 2003
    [46] B. Walter, B. Gatellier. Development of the High Power NADI Concept Using Dual Mode Diesel Combustion to Achieve Zero NOx and Particulate Emissions”, SAE Paper 2002-01-1744, 2002
    [47] Y. Takeda, K. Nakagome. Emission Characteristics of Premixed Lean Diesel Combustion with Extremely Early Staged Fuel Injection. SAE Paper 961163, 1996
    [48] K. Nakagome, K. Niimura. Combustion and Emission Characteristics of Premixed Lean Diesel Combustion Engine. SAE Paper 970898, 1997
    [49] T. Hashizume, T. Miyamoto, H. Akagawa, et al. Combustion and Emission Characteristics of Multiple Stage Diesel Combustion. SAE Paper 980505, 1998
    [50] T. Hashizume, T. Miyamoto, H. Akagawa, et al. Emission Characteristics of a MULDIC Combustion Diesel Engine: Effects of EGR. Technical Notes, JSAE Review 20, 421~438, 1999
    [51] Y. Nishijima, Y. Asaumi, Y. Aoyagi. Premixed Lean Diesel Combustion (PREDIC) Using Impingement Spray System. SAE Paper 2001-01-1892, 2001
    [52] H. Akagawa, T. Miyamoto, A. Harada, et al. Approaches to Solve Problems of the Premixed Lean Diesel Combustion. SAE Paper 1999-01-0183, 1999
    [53]苏万华,林铁坚,张晓宇等, MULINBUMP-HCCI复合燃烧放热特征及其对排放和放热率的影响,内燃机学报,2004,22(3):193~200
    [54] W. H. Su, T. J. Lin, Y. Q. Pei. A Compound Technology for HCCI Combustion in a DI Diesel Engine Based on the Multi-pulse Injection and the BUMP Combustion Chamber, SAE Paper 2003-01-0741, 2003
    [55] W. H. Su, X. Y. Zhang, T. J. Lin et al. Study of Pulse Spray, Heat Release, Emissions and Efficiencies in A Compound Diesel HCCI Combustion Engine, Proceedings of ASME-ICE ASME Internal Combustion Engine Division 2004 Fall Technical Conference, ICEF2004-927, 2004
    [56] W. H. Su, X. Y. Zhang, T. J. Lin et al. Effects of Heat Release Mode on Emissions and Efficiencies of a Compound Diesel Homogeneous Charge Compression Ignition Combustion Engine. Journal of Engineering for Gas Turbines and Power. APRIL 2006, Vol. 128:446~454
    [57] A. Helmantel, I. Denbratt. HCCI Operation of a Passenger Car Common Rail DI Diesel Engine With Early Injection of Conventional Diesel Fuel. SAE Paper 2004-01-0935, 2004
    [58] Y. Mase, J. I. Kawashina, T. Sato, et al. Nissan’s New Multivalve DI Diesel Engine Series. SAE Paper 981039, 1998
    [59] S. Kimura, O. Aoki, H. Ogawa, et al. New Combustion Concept for Ultra-clean and High-efficiency Small DI Diesel Engines. SAE Paper 1999-01-3681, 1999
    [60] S. Kimura, O. Aoki, Y. Kitahara, et al. Ultra-clean Combustion Technology Combining a Low-temperature and Premixed Combustion Concept for Meeting Future Emission Standards. SAE Paper 2001-01-0200, 2001
    [61] Shuji Kimura, Osamu Aoki, Hiroshi Ogawa, Shigeo Muranaka and Yoshiteru Enomoto, New Combustion Concept for Ultra-clean and High-efficiency Small DI Diesel Engines, SAE Paper 1999-01-3681, 1999
    [62] Shuji Kimura, An experimental analysis and future trend of Low-temperature and premixed combustion for Ultra-Clean Diesel, SAE Homogeneous Charge Compression Ignition system, 2005
    [63] Fredrik Wahlin, Experimental Investigation of Impinging Diesel Sprays for HCCI Combustion, Doctoral Dissertation of Royal Institute of Technology
    [64]蒋德明,内燃机燃烧与排放学,西安交通大学出版社,2001
    [65] G.J.Smallwood and ?.L.Gülder“Views on the Structure of transient diesel sprays”, Atomization and Sprays, vol.10,pp.355-386,2000
    [66] Hiroyasu, H. and Arai,M.“Structures of Fuel Sprays in Diesel Engines”, SAE Paper No.900475
    [67] Naber, J.D. and Siebers, D.L.“Effects of Gas Density and Vaporization on Penetration and Dispersion of Diesel Sprays”, SAE Paper No.960034
    [68] Soterious, C., Andrews,R. and Smith,M.“Further Studies of Cavitation and Atomization in Diesel Injection”,SAE Paper No.1999-01-1486
    [69] H.Hiroyasu“Spray Breakup Mechanism from the Hole-type Nozzle and Its Applications”, Atomization and Sprays, vol.10,pp.511-527,2000
    [70] Wakuri,Y., Fuji,M., Amitani, T. and Tsuneya, R.,“Studies on the Penetration of Fuel Spray in a Diesel Engine,”Bulletin of JSME ,Vol.3,No.9,pp123-130,1960
    [71] Dent, J.,“A Basis for the Comparison of Various Experimental Methods for Studying Spray Penetration,”SAE Paper 710571,1971.
    [72] Hiroyasu, H. and Arai, M.,“Structures of Fuel Sprays in Diesel Engines,”SAE Paper 900475,1990
    [73] Naber,J. and Siebers, D.,“Effects of Gas Density and Vaporization on Penetration and Dispersion of Diesel Sprays,”SAE Paper 960034,1996
    [74] Siebers, D.L.“Liquid-Phase Fuel Penetration in Diesel Sprays”, SAE Paper No.980809
    [75] Siebers, D. L.,“Scaling Liquid-Phase Fuel Penetration in Diesel Sprays Based on Mixing-Limited Vaporization”, SAE Paper 1999-01-0528,1999.
    [76] Scheid, E., Pischinger, F., Knoche, K., Daams, H., Hassel, E. and Ruter, U.,“Spray Combustion Chamber with Optical Access, Ignition Zone Visualization and First Raman Measurements of Local Air-Fuel Ration,”SAE Paper 861121,1986
    [77] Kosaka, H. and Kamimoto, T.,“Quantitative Measurement of Fuel Vapor Concentration in an Unsteady Evaporation Spray via a 2-D Mie-scattering Imaging Technique,”SAE Paper 932653,1993
    [78] Espey,C., Dec, J., Litzinger, T. and Santavicca, D.,“Quantitative 2-D Fuel Vapor Concentration Imaging in a Firing D.I. Diesel Engine Using Planar Laser-Induced Rayleigh Scattering,”SAE Paper 940682,1994
    [79] Espey,C., Dec, J., Litzinger, T. and Santavicca, D.,“Planar Laser Rayleigh Scattering for Quantitative Vapor-Fuel Imaging in a Diesel Jet,”Combustion and Plame, Vol 109,pp65-86,1997
    [80] Anderson,O., Collin, R., Alder, M. and Egnell,R.,“Quantitative Imaging of Equivalence Ratio in DME Sprays Using a Chemically Preheated Combustion Vessel”,SAE Paper,2000.
    [81] Melton,L.,“Spectrally Separated Fluorescence Emissions for Diesel Fuel Droplets and Vapor”, Applied Optics, vol.22, No.14,pp.2224-2226,1983
    [82] Felton,P., Bracco,F. and Bardsley,M.,“On the Quantitative Application of Exciplex Fluorescence to Engine Sprays,”SAE Paper 930870,1993
    [83] Yeh,C.–N., Kamimoto, T., Kobori, S., and Kosaka, H.,“Quantitative Measurement of 2-D Fuel Vapor Concentration in a Transient Spray via Laser-Induced Fluorescence Technique”, SAE Paper 941953,1994
    [84] Senda J. and Kanda, T.,“Quantitative Analysis of Fuel Vapor Concentration in Diesel Spray by Exciplex Fluorescence Method”, SAE Paper 970796,1997
    [85] Kim, T., and Ghandhi, J.B.,“Quantitative 2-D Fuel Vapor Concentration Measurements in an Evaporating Diesel Spray using Exciplex Fluorescence”, SAE Paper 2001-01-3495,2001
    [86]陈国珍,荧光分析法,科学出版社,1975
    [87]汪洋,苏万华,史绍熙,用激光诱导荧光法(LIF)研究燃油喷雾的撞壁混合过程,燃烧科学与技术,1996,2(4)
    [88] Hua Zhao , Nicos Ladommatos,Engine Combustion Instrumentation and Diagnostics,Society of Automotive Engineers,Inc.2001
    [89] T.Kim , M.S.Beckman , P.V.Farrell and J.B.Ghandhi , Evaporating Spray Concentration Measurements from Small and Medium Bore Diesel Injectors,SAE Paper 2002-01-0219
    [90]雷卫,“一种新的HCCI柴油机喷雾特性的PLIF测试系统”,天津大学硕士毕业论文,2003
    [91] COMPex 102准分子激光器使用手册
    [92] Andor公司DH712-18F-03型号ICCD用户手册
    [93]苏万华,余皎,赵昌普,汪洋,林铁坚,一种研究现代柴油机喷雾混合过程的实验装置,中国工程热物理学会燃烧学学术会议论文集,2000
    [94]王余良,微机接口技术,电子工业出版社,2003
    [95]林铁坚,汪洋,苏万华,高压共轨喷油器设计参数对性能影响的研究,内燃机学报,2001,19(4)
    [96] Jose V.Pastor, Jose J.Lopez, J.Enrique Julia,“Planar Laser-Induced Fluorescence Fuel Concentration Measurement in isothermal Diesel Sprays”Optics Express, Vol.10,No,7, 2002
    [97] M. D. Barnes, W. B. Whitten and J. M. Ramsey,“Enhanced fluorescence yields through cavity quantum-electrodinamics effects in micro droplets,”J. Opt. Soc. Am. B 11, 1297-1924 (1994).
    [98] G. Chen, M. M. Mazumder, R. K. Chang, J. C. Swindal and W. P. Acker,“Laser diagnostics for droplets characterization: application of morphology dependent resonances,”Prog. Energy Combust. Sci. 22, 163-188 (1996).
    [99] C. Nan Yeh, T. Kamimoto, H. Kosaka and S. Kobori,“Quantitative measurements of 2D Fuel vapor concentration in a Transient Spray via Laser Induced Fluorescence Technique,”SAE Paper 941953 (Society of Automotive Engineers, Warrendale, Pa., 1994).
    [100] A.A. Rotunno, M. Winter, G. M. Dobbs and L. A. Melton“Direct Calibration Procedures for Exciplex-Based Vapor/Liquid Visualization of Fuel Sprays,”Combust. Sci. and Tech. 71, 247-261 (1990).
    [101] Jong-Uk Kim, Byungyou Hong, Quantitative Vapour–liquid Visualization Using Laser-induced Exciplex Fluorescence[J]. Opt A: Pure Appl Opt, 2001,3(5):338–345
    [102]蒋德明著.内燃机燃烧与排放学。西安交通大学出版社,2002 ,640
    [103]苏万华,林荣文,谢辉等.燃烧室壁面形状对撞壁射流气体混合过程的影响.燃烧科学与技术,1996,第二卷,第四期,377-386
    [104] Wanhua Su,Rongwen Lin,Hui Xie and et al. Enhancement of Neat Wall Mixing of an Impinging Jet by means of a Bump on the Wall. SAE paper,971616,1997
    [105]林荣文,苏万华,谢辉等.限流沿对撞壁射流近壁区混合过程的影响实验研究(一).工程热物理学报,1997,18(4)
    [106]林荣文,苏万华,谢辉等.限流沿对撞壁射流近壁区混合过程的影响实验研究(二).工程热物理学报,1998,19(1)
    [107] SU Wan-hua, WANG Yang, YU Jiao and et al. Mixture Preparation in a BUMP Combustion Chasmber for the Purpose of Realization of HCCI Combustion. Journal of Combustion Science and Technology, 2002, 8(4): 364-368
    [108]赵昌普,苏万华,汪洋,“BUMP”燃烧室内混合气形成的多维数值模拟,内燃机学报,2003,21(6):389~393
    [109]赵昌普,BUMP对柴油机混合气形成及缸内流动影响的研究:[博士学位论文],天津;天津大学内燃机国家重点实验室,2003,1
    [110]汪洋,谢辉,苏万华等,激光诱导荧光法研究柴油机新概念燃烧中的喷雾混合过程.燃烧科学与技术,2002,8(4):338~341
    [111]汪洋,用荧光法和散射光法研究柴油机的喷雾撞壁混合过程及喷雾特性:[博士学位论文],天津;天津大学内燃机国家重点实验室,1995
    [112] Su Wanhua, and Lin Rongwen, (1997). Enhancement of Near Wall Mixing of an Impinging Jet by Means Bump on the Wall. SAE Paper No.971616.
    [113] Su Wanhua, Lin Tiejian, and Pei Yiqiang, (2003). A Compound Technology for HCCI Combustion in a DI Diesel Engine Based on the Multi-Pulse Injection and the BUMP Combustion Chamber. SAE Paper No.2003-01-0741.
    [114] Su Wanhua, and Zhang Xiaoyu, (2005). Mixing Enhancement by a Bump Ring in a Combustion Chamber for Compound Combustion. SAE Paper No.2005-01-3761.
    [115]裴毅强,苏万华,林铁坚,一种基于稀扩散燃烧的BUMP燃烧室及其对柴油机碳烟和NOx排放影响的实验研究[J].内燃机学报,2002,20(5):381~386。
    [116]苏万华,林铁坚,张晓宇,裴毅强,赵华,MULINBUMP-HCCI复合燃烧放热特征及其对排放和热效率的影响[J].内燃机学报,2004,22(3):193-202。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700