柴油喷嘴中的不稳定空化过程及其影响射流雾化的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高压的液相柴油经由微细喷孔而形成的射流雾化对柴油机缸内的油气混合速率以及燃烧发展的路径有着决定性的影响。最近,一系列的实验研究和现象学分析已经证实喷孔中的空化现象是造成柴油射流雾化的主导因素之一。出于深入探讨柴油在高压真实喷射条件下的雾化机理及特性并为柴油机最优低温燃烧路径的开发提供理论基础的目的,本课题借助于改进的模型实验和三维数值模拟方法对柴油高压喷射过程中的压力波动、空化、湍流、射流雾化等典型的物理现象以及它们相互之间的作用机理进行细致的分析和研究。
     首先设计一套合理的实验方案对柴油喷嘴内部的压力波动进行测量。其结果显示,随着喷射压力的提高喷嘴内部压力波动的幅度逐步增加,并且高频的子波动逐渐增多,最大的波幅可达到平均压力的10%左右,最大的频率可达到40 khz左右。
     基于流动相似原理的分析显示,由空化气泡初始数密度决定的空化尺度必须与流动条件决定的流场特征尺度匹配起来,以前的空化流模型(包括单流体模型和双流体模型)将空化气泡初始数密度设为定值的做法是不合理的。本研究结合空化流发生的机理与喷嘴内流的特征提出一套对空化气泡初始数密度进行修正的方法,并推导出一个新的气泡初始数密度的计算式。实验验证的结果显示,气泡初始数密度的新计算式与双流体模型的结合能够较好的预报高喷射压力条件下的喷孔空化流特性。
     在压力波动存在的条件下,喷孔内部的空化过程是不稳定的,进而证明前人针对喷孔空化的稳态分析很难反映真实的喷孔空化特性。数值分析的结果还显示,无论压力波的形态及喷孔的几何形态如何,喷孔内部空化过程的演变与压力波对应的压力变化率( Dpin / Dt)密切关联着。Dpin /Dt的波动幅度越大,喷孔内的空化过程越不稳定。对于位于喷孔入口回流区附近的空化气泡而言,当地流场的液相张力条件能够保证它们的稳定成长,其平均动力特性几乎不受上游压力波动的影响。但是对于位于回流区尾流中的空化气泡而言,它们越靠近喷孔出口时,其平均动力特性对上游压力的变动越敏感。另外,由于几何影响的存在,相同量级的上游压力波动对非对称喷孔中的空化过程的影响程度明显低于其对对称喷孔中的空化过程的影响程度。
     不稳定的的空化过程对应着瞬变的喷孔出流流态。对于喷孔出口截面上的液相湍动能分布而言,最大的液相湍动能分布在近壁区,且当地流场的空化程度越高其值也越大。对于喷孔出口处的液相质量流量而言,其最大值和最小值的量级随着喷孔内部的总空化程度而改变,这是因为喷孔内部的总空化程度越高液相流体的有效流通面积也越小。
     为了考察压力波动和不稳定空化共存条件下的喷孔内流对柴油高压射流雾化的影响,本研究采用“两阶段方案”来进行数值分析,并在雾化模型中计入了空化气泡在喷孔近场的溃灭所造成的扰动。模型方法的验证结果显示,空化现象对喷孔近场的雾化过程起促进作用,原始的雾化模型由于没有考虑空化的影响而严重低估喷孔近场的射流破碎率。“两阶段方案”能够在喷雾初始条件和一次雾化模型中考虑空化的影响,因而基于该方案的数值结果与实验结果吻合得较好。另外,在压力波动和空化共存的条件下,喷孔出流对喷雾场有着较大的扰动,并且喷孔出流越不稳定就越有利于喷孔近场的雾化。
It is well known that the atomization process of high-pressure diesel jets issuing from micro-hole nozzles has a decisive impact on air-fuel mixing rates and combustion processes in diesel engines. More recently, a series of experiments and phenomenological analyses have also verified that cavitation phenomenon inside the nozzle holes is one of dominant factors causing diesel jet atomization. In order to further clarify the nature of diesel jet atomization under realistic fuel injection conditions and provide a solid theoretical basis for control strategy optimization of in-cylinder low temperature combustion (LTC), some key phenomena (such as injection pressure fluctuaiton, cavitation, turbulence and jet atomization) related to diesel fuel injections and the interaction mechanisms among these phenomena have been systematically investigated in this study by using improved experimental and 3D computational approaches.
     A reasonable experimental schmeme has been firstly designed to measure pressure fluctuations close to the inlet of diesel nozzle hole. The measured results show that the pressure close to the inlet of diesel nozzle hole fluctuates more dramatically as fuel injection pressure increases. Moreover, statistics results indicate that the maximum amplitude and frequency of pressure fluctuation can even be around 10% of the average pressure and 40 kHz, respectively.
     The result of cavitating flow analysis by similarity theory based method reveals that the cavitation bubble length scale determined by bubble number density must match well with the hydrodynamic length scale determined by different flow conditions in modeling of cavitating flows, and accordingly cavitation bubble number density being assumed to be a constant for different cavitating flows is unreasonable. A modeling idea for initial cavitation bubble number density, which is originated from combination of cavitation bubble dynamics and internal flow characteristics of nozzle hole, has been brought forward in this study. Based on this modeling idea, a novel formula of initial cavitation bubble number density has also been developed. Model validation results verify that this formula together with a two-fluid model can predict well cavitating flow behavior under high-pressure injection conditions.
     Some important conclusions can be drawn from numerical analysis of cavitating flows inside diesel nozzle holes. Firstly, cavitation processes within the nozzle hole are very unsteady due to the inet pressure fluctuations, and traditional steady analysis of nozzle cavitation is hard to reveal its realistic behavior. Secondly, Amplitude of the Dpin /Dt (time derivative of inlet pressure) wave can be regarded as an index to evaluate the unsteadiness of cavitation process inside a diesel nozzle hole. Thirdly, cavitation content in the recirculation flow region does not show an obvious change as inlet pressure fluctuates due to enough liquid tension in this region. But cavitation content within the wake of recirculation flow is very sensitive to the variation of inlet pressure because of interactions between shedding vortices and cavitation bubbles. In addition, compared to cavitation content in a symmetrical nozzle, cavitation content in an asymmetrical nozzle shows less change under the same inlet pressure fluctuation because of geometry effect.
     Unsteady cavition processes induce transient flow conditions at nozzle exit. On the exit section, the maximum turbulence kinetic energy of liquid phase appears at“boundary zone”, and its value increases as local cavitation content increases. The mass flow rate of liquid phase mainly depends on the total cavitation content in the nozzle hole, and it usually decreases as total cavitation content increases.
     An unique“two-stage simulation scheme”, together with an improved primary breakup model that can take into account cavitation effect, has been applied to numerically evaluate the impact of nozzle hole internal flow corresponding to unsteady cavitation and inlet pressure fluctuation on diesel high-pressure jet atomization. Analysis results indicate that cavitation phenomenon enhances the atomization process close to nozzle exit, and original primary breakup model seriously underestimates the breakup rate of near-field spray. Furthermore, the internal flow of nozzle hole corresponding to unsteady cavitation and inlet pressure fluctuation is a big disturbance source both for gas phase and liquid phase in the spray field, and the level of breakup rate of near-field spray closely depends on the unsteadiness of nozzle hole internal flow.
引文
[1]. Hiromichi Yanagihara. Ignition timing control at Toyota UNIBUS combustion System. Proceedings of the IFP International Congress on a New Generation of Engine Combustion Processes for the Future, pp. 34~42, 2001.
    [2]. Ryo Hasegawa and Hiromichi Yanagihara. HCCI combustion in DI diesel engine. SAE Paper 2003-01-0745, 2003.
    [3]. Yokota H, Kudo Y, Nakajima H, et al. A new concept for low emission diesel combustion. SAE Paper 970891, 1997.
    [4]. Takeda Y, Nakagome Keiichi and Niimura Keiichi. Emission characteristics of premixed lean diesel combustion with extremely early staged fuel injection. SAE Paper 961163, 1996.
    [5]. Keiichi nakagome, Noki Shimazaki, Keiichi Niimura and Shinji Kobayashi. Combustion and emission characteristics of premixed lean diesel combustion engine. SAE Paper 970898, 1997.
    [6]. Takeshi Hashizume, Takeshi Miyamoto, Hisashi Akagawa and Kinji Tsujimura. Combustion and emission characteristics of multiple stage diesel combustion. SAE Paper 980505, 1998.
    [7]. Takeshi Hashizume, Takeshi Miyamoto, Hisashi Akagawa and Kinji Tsujimura. Emission characteristics of a MULDIC combustion diesel engine: effects of EGR. Technical Notes, JSAE Review 20, 421~438, 1999.
    [8]. Hisashi Akagawa, Takeshi Miyamoto, Akira Harada, et al. Approaches to solve problems of the premixed lean diesel combustion. SAE Paper 1999-01-0183, 1999.
    [9]. Shuji Kimura, Osamu Aoki, Hiroshi Ogawa, et al. New combustion concept for ultra-clean and high-efficiency small DI diesel engines. SAE Paper 1999-01-3681, 1999.
    [10]. Shuji Kimura, Osamu Aoki, Kitahara Y, et al. Ultra-clean combustion technology combining a low-temperature and premixed combustion concept for meeting future emission standards. SAE Paper 2001-01-0200, 2001.
    [11]. Yoshinori Iwabuchi, Kenji Kawai, Takeshi Shoji and Yoshinaka Takeda. Trial of new concept diesel combustion system– premixed compression ignition combustion. SAE Paper 1999-01-0185, 1999.
    [12]. Bruno Walter and Bertrand Gatellier. Development of the high power NADI concept using dual mode diesel combustion to achieve zero nox and particulate emissions. SAE Paper 2002-01-1744, 2002.
    [13]. Walter B and Gatellier B. Near zero nox emissions and high fuel efficiency diesel engine: the NADITM concept using dual mode combustion. Oil & Gas Science and Technology-Rev.IFP, 2003, 58(1): 101~114.
    [14]. Wanhua Su, Tiejian Lin and Yiqiang Pei. A compound technology for HCCI combustion in a di diesel engine based on the multi-pulse injection and the BUMP combustion chamber, SAE Paper 2003-01-0741, 2003.
    [15]. Wanhua Su, Xiaoyu Zhang, Tiejian Lin, Yiqiang Pei and Hua Zhao. Study of pulse spray, heat release, emissions and efficiencies in a compound diesel HCCI combustion engine. Proceedings of ASME-ICE ASME Internal Combustion Engine Division 2004 Fall Technical Conference, ICEF2004-927, 2004.
    [16]. Wanhua Su, Hui Wang, Bin Liu. Injection mode modulation for HCCI diesel combustion. SAE Paper 2005-01-0117, 2005.
    [17]. Kitamura T, Ito T, Senda J and Fujimoto H, Mechanism of smokeless diesel combust ion wi th oxygenated fuels based on the dependence of the equivalence rat io and temperature on soot particle formation, International Journal of Engine Research, 2002, Vol. 3(4): a223-247
    [18]. Chaves H and Obermeier F. Modelling the Effect of Modulations of the Injection Velocity on the Structure of Diesel Sprays. SAE Paper 961126, 1996.
    [19]. Tsunemoto H, Montajir R M and Ishitani H, et al. The Influence of Pressure in the Nozzle Sac and Needle Lift on Fuel Spray Behavior and HC Emissions in DI Diesel Engines. SAE Paper 1999-01-3491, 1999.
    [20]. Wang T C, Han J S, Xie X B, et al. Parametric Characterization of High-Pressure Diesel Fuel Injection System. J. Eng. Gas Turbines Power, 2003, 125(2): 421-426.
    [21]. Lecoffre Y. Cavitation Bubble Trackers. Brookfield, VT: A. A. Balkema, 1999.
    [22]. Huang Jing-chuan and Han Cheng-cai. Influences of Gas Nucleus Scale on Cavitation. Applied Mathematics and Mechanics, 1992, 13(4):359-367.
    [23]. Brennen E P. Cavitation and Bubble Dynamics. Oxford University Press, Oxford, 1995.
    [24]. Delale C F, Okita K and Matsumoto Y. Steady-State Cavitating Nozzle Flows with Nucleation. J. Fluids Eng., 2005, 127(4): 770-777.
    [25]. Schiebe F R. Measurements of the Cavitation Susceptibility of Water Using Standard Bodies. Tech. Rep., St. Anthony Falls Hydraulic Lab, U. Minnesota, 1972, Report No. 118.
    [26]. Sato K, Liu Z and Brennen C E. The Micro-Bubble Distribution in the Wake of a Cavitating Circular Cylinder. In: ASME Cavitation and Multiphase Flow Forum, 1993, New York. Fluids Engineering Division, FED-153, p. 75-80.
    [27]. Keller A P. The Influence of the Cavitation Nucleus Spectrum on Cavitation Inception, Investigated with a Scattered Light Counting Method. ASME J. Basic Eng., Dec. 1972, pp. 917-925.
    [28]. Keller A P. Investigations Concerning Scale Effects of the Inception of Cavitation. Proc. Conf. on Cavitation, Inst. Mech. Eng., 1974, pp. 109-117.
    [29]. Kuiper G. Scale Effects on Proprller Cavitation Inception. Proc. 12th ONR Symp. On Naval Hydrodynamics. , Washington DC, pp. 400-429.
    [30]. Gates E M and Billet M L. Cavitation Nuclei and Inception. Proc. IAHR Symp. , 1980, Tokyo, Japan. Vol. 1, pp. 3-26.
    [31]. Katz J and Acosta A. Observations of Nuclei in Cavitating Flows. Applied Scientific Research, 1982, 38(1): 123-132.
    [32]. Meyer R S, Billet M L and Holl J W. Freestream Nuclei and Traveling Bubble Cavitation. ASME J. Fluids Eng., 1992, Vol. 114, pp. 672-679.
    [33]. Liu Z and Brennen C E. The Relation between the Nuclei Population and the Cavitation Event Rate for Cavitation on a Schiebe Body. Proc. ASME Symp. on Cavitation and Gas Liquid Flows in Fluid Machinery,1994, pp. 261-266.
    [34]. Liu Z and Brennen C E. Cavitation Nuclei Population and Event Rates. Trans. ASME, J. Fluids Eng., 1998, vol. 120, pp. 728-737.
    [35]. Arora M, Ohl C D and Lohse D. Effect of Nuclei Concentration on Cavitation Cluster Dynamics. J. Acoust. Soc. Am., 2007, 121(6), pp. 3432-3436.
    [36].汪翔,苏万华.空化过程对柴油喷嘴内流特性的影响,内燃机机学报,2007,25(6): 481-487.
    [37]. O’Hern T J. Cavitation Inception Scale Effects:Ⅰ. Nuclei Distributions in Natural Waters.Ⅱ.Cavitation Inception in a Turbulent Shear Flow. PhD Thesis, California Institute of Technology Pasadena, California, 1987.
    [38]. Keller A P. Cavitation Scale Effects-Empirically Found Relations and the Correlation of Cavitation Number and Hydrodynamic Coefficients. Proceedings, CAV 2001, 4th International Symposium on Cavitation, California Institute of Technology, Pasadena, California, USA, 2001.
    [39].夏维洪,水质和空化比尺效应,水动力学研究与进展,1993,8(1): 9-16.
    [40].杨庆,张建民,戴光清等,气核对空化比尺效应的影响,水力发电学报,2005,24(3): 75-77.
    [41]. Keller A and Yang Z. Final Report Chinese-German Comparative Cavitation Test in Different Test Facilities on Models of Interest for Hydraulic Civil Engineering, Wuhan, China,1991: 17-28.
    [42]. Parkin B R and Kermeen R W. Incipient Cavitation and Boundary Layer Interaction on a Stream Line Body. Calif. Inst. Tech. Hydrogyn. Lab. Rep., E-35, 1953.
    [43].杨庆,张建民,戴光清等,脉动压力对空化的影响,四川大学学报(工程科学版),2004,36(4): 1-3.
    [44]. Tullis J P. Cavitation Scale Effects for Valves. Journal of the Hydraulics Division, Trans. ASME., proc.9874, 1973, pp. 1109-1128.
    [45]. Hsiao C T, Chahine G L and Liu H L. Scaling Effect on Prediction of Cavitation Inception in a Line Vortex Flow. Trans. ASME, J. Fluids Eng., 2003, vol.125, pp. 53-60.
    [46]. Arcoumanis C, Badami M, Flora H and Gavaises M. Cavitation in Real Size Multi-Hole Diesel Injector Nozzles. SAE Paper 2000-01-1249, 2000.
    [47]. Bergwerk W. Flow Pattern in Diesel Nozzle Spray Holes. Proc. Inst. Mech. Engrs., 1959, vol. 173, pp. 655-660.
    [48]. Soteriou C, Andrews R and Smith M. Direct Injection Diesel Sprays and the Effect of Cavitation and Hydraulic Flip on Atomization. SAE Paper 950080, 1995.
    [49]. Soteriou C, Andrews R, Torres N, Smith M and Kunkulagunta R. Through the Diesel Nozzle Hole-A Journey of Discovery. ILASS-Europe, Zurich, 2-6 September, 2001.
    [50]. Laoonual Y, Yule A J and Walmsley S J. Internal Fluid Flow and Spray Visualizaiton for a Large-Scale VCO Orifice Injector Nozzle. ILASS-Europe, Zurich, 2-6 September, 2001.
    [51]. Chaves H, Knapp M, Kubitzek A, et al. Experimental Study of Cavitation in the Nozzle Hole of Diesel Injectors Using Transparent Nozzles. SAE Paper No. 950290.
    [52]. Badock C, Wirth R, Fath A and Leipertz A. Investigation of Cavitation in Real Size Diesel Injection Nozzles. Int. J. Heat Fluid Flow, 1999, vol. 20, pp. 538-544.
    [53]. Afzal H, Arcoumanis C, Gavaises M and Kampanis N. Internal Flow in Diesel Injector Nozzles: Modelling and Experiments. IMechE Paper S492/S2/99, 1999.
    [54]. Roth H, Gavaises M and Arcoumanis C. Cavitation Initiation, Its Development and Link with Flow Turbulence in Diesel Injector Nozzles. SAE Trans. J. Engines, 2002-01-0214 111-3, pp. 561-580.
    [55]. Gavaises M and Andriotis A. Cavitation inside Multi-Hole Injectors for Large Diesel Engines and Its Effect on the Near-Nozzle Spray Structure. SAE Trans. J. Engines 2006-01-1114 115-3, pp.634-647.
    [56]. Andriotis A, Gavaises M and Arcoumanis C. Vortex Flow and Cavitation in Diesel Injector Nozzles. J. Fluid Mech., 2008, vol. 610, pp. 195-215.
    [57]. Soteriou C, Andrews R and Smith M. Further Studies of Cavitation and Atomization in Diesel Injection. SAE Paper 1999-01-1486, 1999.
    [58]. Sato K and Saito Y. Unstable Cavitation Behaviour in Circular-Cylindrical Orifice Flow. Proc. of the 4th Int. Symposium on Cavitation, CAV2001, 2001.
    [59]. Schmidt D P, Rutland C J, Corradini, M L, Roosen P and Genge O. Cavitation in Two-Dimensional Asymmetric Nozzles. SAE Paper 1999-01-0518, 1999.
    [60]. Nurick W H. Orifice Cavitation and Its Effect on Spray Mixing. J. Fluids Engng., 1976, vol. 98, pp.681-689.
    [61]. Blessing M, Konig G, Kruger C, Michels U and Schwarz V. Analysis of Flow and Cavitation Phenomena in Diesel Injection Nozzles and its Effects on Spray and Mixture Formation. SAE Paper 2003-01-1358, 2003.
    [62]. Benajes J, Pastor J V, Payri R and Plazas A H. Experiments for the Different Values of K-Factor. J. Fluids Engineering, 2004, vol. 126, P.63.
    [63]. Lichtarowicz A and Pearce I D. Cavitation and Aeration Effects in Long Orifices. Cavitation Conference, Institution Mechanical Engineers, Edinburgh, Sept. 3-5, 1974, pp. 129-144.
    [64]. Ramamurthi K and Nandakumar K. Characteristics of Flow through Small Sharp-Edged Cylindrical Orifices. Flow Measurement and Instrumentation, 1999, vol. 10, pp. 133-143.
    [65]. Winklhofer E, Kull E, Kelz E and Morozov A. Comprehensive Hydraulic and Flow Field Documentation in Model Throttle Experiments under Cavitation Conditions. Proceedings of the ILASS-Europe Conference, Zurich, 2-6 September, 2001, pp. 574-579.
    [66]. Lichtarowicz A K, Duggins R K and Markland E. Discharge Coefficients for Incompressible Non-cavitating Flow through Long Orifices. J. Mech. Engng Sci., 1965, 7(2): 210-219.
    [67]. Payri F, Bermudez V, Payri R and Salvador F J. The Influence of Cavitation on the Internal Flow and the Spray Characteristics in Diesel Injection Nozzles. Fuel, 2004, vol. 83, pp. 419-431.
    [68]. Dumont N, Simonin O and Habchi C. Numerical Simulation of Cavitating Flows in Diesel Injectors by Homogeneous Equilibrium Modeling Approach. CAV 2001, 4th International Symposium on Cavitation, California Institute of Technology, Pasadena, California, USA, 2001.
    [69]. Marcer R, LeCottier P, Chaves H, et al. A Validated Numerical Simulation of Diesel Injector Flow Using a VOF Method. SAE Paper 2000-01-2932, 2000.
    [70]. Marcer R and LeGouez J M. Simulation of Unsteady Cavitating Flows in Diesel Injector with an Improved VOF-Method. Proc. of 17th ILASS-Europe Conference, September 2-6, 2001, Zurich, Switerland.
    [71]. Schmidt D P, Rutland C J and Corradini M L. A Numerical Study of Cavitating Flow through Various Nozzle Shapes. SAE Paper 971597.
    [72]. Schmidt D P, Rutland C J and Corradini M L. A Fully Compressible, Two-Dimensional Model of Small, High Speed, Cavitating Nozzles. Atomization and Sprays, 1999, vol. 6, pp. 255-276.
    [73]. Qin J R, Yu S T J, Zhang Z C and Lai M C. Transient Cavitating Flow Simulations inside a 2-D VCO Nozzle Using the Space-Time CE/SE Method. SAE Paper 2001-01-1983.
    [74]. Yuan W, Sauer J and Schnerr G H. Modeling and Computation of Unsteady Cavitation Flows in Injection Nozzles. Journal of Mechanical Industry, 2001, vol. 2, pp. 383-394.
    [75]. Singhal A K, Athavale M M, Li H and Yu J. Mathematical Basis and Validation of the Full Cavitation Model. Tr. ASME, J. Fluid Eng., 2002, vol. 124, pp. 617-624.
    [76]. Alajbegovic A, Grogger H and Philipp H. Calculation of the Transient Cavitaiton in Nozzle Using the Two-Fluid Model. Proc. ILASS-Americas’99 Annua Conf., 1999, pp. 373-377.
    [77]. V. Berg E, Edelbauer W and Alajbegovic A et al. Coupled Simulations of Nozzle Flow, Primary Fuel Jet Breakup, and Spray Formation. Journal of Engineering for Gas Turbines and Power, 2005, Vol. 127(4), pp. 897-908.
    [78]. Plesset M S and Prosperetti A. Bubble Dynamics and Cavitation. Annual Review of Fluid Mechanics, 1977, vol. 9, pp. 145-185.
    [79]. Payri R, Margot X and Salvador F J. A Numerical Study of the Influence of Diesel Nozzle Geometry on the Inner Cavitating Flow. SAE Paper 2002-01-0215, 2002.
    [80].汪翔,苏万华.利用双流体模型研究柴油高压喷嘴内部的空化流动.科学通报,2008,53(15),pp. 1864-1870.
    [81]. Jia M, Hou D, Li J et al. A Micro-Variable Circular Orifice Fuel Injector for HCCI-Conventional Engine Combustion-Part I Numerical Simulation of Cavitation. SAE Paper 2007-01-0249, 2007.
    [82]. Chiavola O and Palmieri F. Modeling Needle Motion Influence on Nozzle Flow in High Presure Injection System. SAE Paper 2007-01-0250, 2007.
    [83]. Wang X and Su W. Influence of Injection Pressure Fluctuations on Cavitation inside a Nozzle Hole at Diesel Engine Conditions. SAE Paper 2008-01-0935, 2008.
    [84]. Fath A, Fettes C and Leipetz A. Investigation of the Diesel Break-up Close to the Nozzle at Different Injection Conditions. The Fourth Internatinal Symposium COMODIA98, Kyoto, Japan, 1998, pp. 429-434.
    [85]. Wu K J, Su C C, and Steinberger R L et al. Measurements of the Spray Angle of Atomizing jets. ASME J. Fluids Eng., 1983, vol. 105, pp.406-413.
    [86]. Suh H K and Lee C S. Effect of Cavitation in Nozzle Orifice on the Diesel Fuel Atomization Characteristics. International Journal of Heat and Fluid Flow, 2008, vol. 29, pp. 1001-1009.
    [87]. Sou A, Hosokawa S and Tomiyama A. Effects of Cavitation in a Nozzle on Liquid Jet Atomization. International Journal of Heat and Mass Transfer, 2007, vol. 50, pp. 3575-3582.
    [88]. Huh K Y and Gosman A D. A Phenomenological Model of Diesel Spray Atomization. Proceedings of the International Conference on Multiphase Flows, September 24-27, Tsukuba, Japan, 1991.
    [89]. Bianchi G M and Pelloni P. Modeling the Diesel Fuel Spray Breakup by Using a Hybrid Model. SAE Paper 1999-01-0226, 1999.
    [90]. Bianchi G M, Pelloni P and Corcione F E et al. Modeling Atomization of High-Pressure Diesel Sprays. Journal of Engineering for Gas Turbines and Power, 2001, vol. 123, pp. 419-427.
    [91]. Arcoumanis C, Gavaises M and French B. Effect of Fuel Injection on the Structure of Diesel Sprays. SAE Paper 970799, 1997.
    [92]. Nishimura A and Assanis D N. A Model for Primary Diesel Fuel Atomization Based on Cavitation Bubble Collapse Energy. ICLASS2000, Pasadena, CA, July 16-20, 2000.
    [93]. Tatschl R, v. Kunsberg Sarre C, Alajbegovic A and Winklhofer E. Diesel Spray Break-Up Modelling Including Multidimensional Cavitation Nozzle Flow Effects. 16th ILASS-Europe Conf., Darmstadt, Germany, 2000.
    [94]. Baumgarten C, Stegemann J and Merker G. A New Model for Cavitation Induced Primary Break-up of Diesel Sprays. ILASS-Europe, Zaragoza, 2002.
    [95]. Wallis G B. One-Dimensional Two-Phase Flow. McGraw-Hill, NY, 1969.
    [96]. Schmidt D P. Cavitation in Diesel Fuel Injector Nozzles. PhD Thesis, University of Wisconsin-Madison, 1997, p.69.
    [97]. Wilcox D C. Turbulence Modeling for CFD. DCW Industries Inc., La Canada, CA, 1998.
    [98]. Rayleigh L. On the Pressure Developed in a Liquid during the Collapse of a Spherical Cavity. Philosophical Magazine, 1917, 34(6): 94-98.
    [99]. Basuki W, Schnerr G H and Yuan W. Single-Phase and Modified Turbulence Models for Simulation of Unsteady Cavitation Flows. Wissenschaftliche Berichte FZKA, 2003, vol. 6759, pp. 14-29.
    [100]. Bernad S, Susan-Resiga R, Muntean S and Anton I. Numerical Analysis of the Cavitating Flows. Proceedings of the Romanian Academy, 2006, vol. 7(1).
    [101]. Heister S D. Simulating Two-Phase Flows inside High-Speed Injectors. Advances in Fluid Mechanics: Computational Methods in Multiphase Flows, 2001.
    [102]. Lecoffre Y and Bonnin J. Cavitation Tests and Nucleation Control. Int. Symposium on Cavitation Inception, ASME, 1979, New York, pp. 141-146.
    [103]. Stoffel B and Schuller W. Investigations Concerning the Influence of Pressure Distribution and Cavity Length on Hydrodynamic Cavitation Intensity. ASME Fluids Eng. Conf., Hilton Head, SC, 1995.
    [104]. Keller A P and Rott H K. The Effect of Flow Structure on Cavitation Inception. ASME FED, Cavitation and Multiphase Flow, Vol. 194, pp. 15-19.
    [105]. Joseph D D. Cavitation in a Flowing Liquid. Physical Review E, 1995, Vol. 51(3), pp. 1649-1650.
    [106]. Joseph D D. Cavitation and the State of Stress in a Flowing Liquid. J. Fluid Mech., 1998, Vol. 366, pp. 367-378.
    [107]. Hinze J Q. Turbulence. 2nd ed., McGraw-Hill, New York, 1975.
    [108]. Sato Y and Sekoguchi K. Liquid Velocity Distribution in Two-Phase Bubble Flow. International Journal of Multiphase Flow, 1975, Vol. 2, pp. 79-95.
    [109]. Theotanous T G and Sullivan J. Turbulence in 2-Phase Dispersed Flows. Journal of Fluid Mechanics, 1982, Vol. 116, pp. 343-362.
    [110]. Ishii M and Mishima K. Two-Fluid and Hydrodynamic Constitutive Relations. Nuclear Engineering and Design, 1984, Vol. 82(2-3), pp. 107-126.
    [111]. Lopez de Bertodano M. Turbulent Bubbly Two-Phase Flows in a Triangular Duct. Ph.D. Thesis, Renssealaer Polytechnic Institute, Troy, New York, 1992.
    [112]. Alajbegovic A, Meister G, Greif D and Basara B. Three Phase Cavitating Flows in High-Pressure Swirl Injectors. Experimental Thermal and Fluid Science, 2002, Vol. 26(6-7), pp. 677-681.
    [113]. Peterson F B, Danel F, Keller A P, and Lecoffre Y. Comparative Measurements of Bubble and Particulate Spectra by Sthree Optical Methods. Proceedings of the 14th International Towing Tank Conference, 1975, Vol.2, pp. 27-52, Ottawa, Canada.
    [114]. Gates E M and Bacon J. Determination of Cavitation Nuclei Distribution by Holography. Journal of Ship Research, 1978, Vol. 22(1), pp. 29-31.
    [115]. Billet M L. Cavitation Nuclei Measurements. International Symposium on Cavitation Inception, 1984, FED-Vol. 16, pp. 33-42.
    [116]. O’Hern T J, Katz J and Acosta A J. Holographic Measurements of Cavitation Nuclei in the Sea. Proceedings of ASME Cavitation and Multiphase Flow Forum, 1985, pp. 39-42.
    [117]. Maeda M, Yamaguchi H and Kato H. Laser Holography Measurement of Bubble Population in Cavitation on a Foil Section. 1st ASME/JSME Conference, 1991, ortland, OR, FED-Vol. 116, pp. 67-75.
    [118]. Franklin R E. A Note on the Radius Distribution Function for Microbubble of Gas in Water. ASME Cavitation and Multiphase Flow Forum, 1992, FED-Vol. 135, pp. 77-85.
    [119]. Hsiao C T and Chahine G L. Scaling of Tip Vortex Cavitation Inception Noise with a Bubble Dynamics Model Accounting for Nuclei Size Distribution. Journal of Fluids Engineering, 2005, Vol. 127, pp. 55-65.
    [120]. Wang Y C. Effects of Nuclei Size Distribution on the Dynamics of a Spherical Cloud of Cavitaiton Bubbles. Journal of Fluids Engineering, 1999, Vol. 121, pp. 881-886.
    [121]. Ramamurthi K and Nandakumar K. Characteristics of Flow through Small Sharp-Edged Cylindrical Orifices. Flow Measurement and Instrumentation, 1999, Vol. 10, pp. 133-143.
    [122]. Chisholm D. Two-Phase Flow in Pipelines and Heat Exchangers, 1983, Godwin, London.
    [123]. Alajbegovic A. Three-Dimensional Cavitation Calculations in Nozzles. 2nd Annual Meeting Institute for Multifluid Science and Technology, March 18-20, 1999, Santa Barbara, California, USA.
    [124]. Fujimoto H G, Mishikori T, Tsumakoto T and Senda J. Modeling of Atomization and Vaporization Process in Flash Boiling Spray. Proc. ILASS-1994, Rouen, France, July 1994, Paper VI-13, pp. 680-687.
    [125]. FIRE v8.5 Multiphase Manual, AVL List GmBH, 2006.
    [126]. Patankar S V. Numerical Heat Transfer and Fluid Flow. McGraw Gill, London, 1980.
    [127]. Van Doormaal J P and Raithby G D. Enhancement of SIMPLE Method for Predicting Incompressible Fluid Flows. Numerical Heat Transfer, 1984, vol. 7, pp. 147-163.
    [128]. Tatschl R, v. Künsberg-Sarre C, Alajbegovic A and Winklhofer E. Diesel Spray Modelling Including Multidimensional Cavitation Nozzle Flow Effects. Proc. of ILASS-Europe Conference, Sept. 11-13, 2000, Darmstadt, Germany.
    [129]. Reitz R D. Modeling Atomization Process in High-Pressure Vaporing Sprays. Atomization and Sprays, 1987, Vol. 3, pp. 309-337.
    [130]. Su T F, Patterson M A, Reitz R D and Farrell P V. Experimental and Numerical Studies of High Pressure Multiple Injection Sprays. SAE Paper 960861, 1996.
    [131]. O’Rourke P J. Collective Drop Effects in Vaporizing Liquid Sprays. Ph.D Thesis 1532-T, Princeton University, New Jersey,1981.
    [132].谢茂昭.内燃机计算燃烧学.大连:大连理工大学出版社,2005,pp. 85.
    [133]. Nordin N. Complex Chemistry Modeling of Diesel Spray Combustion. Ph.D Thesis, Chalmers University of Technology, 2001.
    [134]. Melton L. Spectrally Separated Fluorescence Emissions for Diesel Fuel Droplets and Vapor. Applied Optics, 1983, Vol. 22, No. 14, pp. 2224-2226.
    [135]. Zhao H and Ladommatos N, Engine Combustion Instrumentation and Diagnostics. Warrendale PA, USA, Society of Automotive Engineers, 2001, pp. 423-435.
    [136]. Senda J, Kanda T, Kobayashi M et al. Quantitative Analysis of Fuel Vapor Concentration in Diesel Spray by Exciplex Fluorescence Method. SAE Paper 970796, 1997.
    [137].雷卫.一种新的HCCI柴油机燃油喷雾特性的PLIEF法测试系统.硕士学位论文,天津大学,天津,2003.
    [138].孙田,苏万华,郭红松.应用激光诱导荧光法研究超高压喷雾气液相浓度场分布特性.内燃机学报,2007,V. 23(2): 1-9.
    [139].郭红松,苏万华,孙田.利用PLIEF技术研究超高压燃油喷雾雾化和混合过程.燃烧科学与技术,v. 13(6):525-531.
    [140].孙田.复合激光诱导荧光定量标定技术及其对柴油喷雾特性研究的应用.博士论文,天津大学,天津,2008.
    [141]. Jose V.Pastor, Jose J.Lopez, J.Enrique Julia. Planar Laser-Induced Fluorescence Fuel Concentration Measurement in Isothermal Diesel Sprays. Optics Express, Vol. 10(7), 2002.
    [142]. M. D. Barnes, W. B. Whitten and J. M. Ramsey. Enhanced fluorescence yields through cavity quantum-electrodinamics effects in micro droplets. J. Opt. Soc. Am. B 11, 1297-1924 (1994).
    [143]. G. Chen, M. M. Mazumder, R. K. Chang, J. C. Swindal and W. P. Acker. Laser diagnostics for droplets characterization: application of morphology dependent resonances. Prog. Energy Combust. Sci. 22, 163-188 (1996).
    [144]. C. Nan Yeh, T. Kamimoto, H. Kosaka and S. Kobori. Quantitative measurements of 2D Fuel vapor concentration in a Transient Spray via Laser Induced Fluorescence Technique. SAE Paper 941953 (Society of Automotive Engineers, Warrendale, Pa., 1994).
    [145]. A.A. Rotunno, M. Winter, G. M. Dobbs and L. A. Melton. Direct Calibration Procedures for Exciplex-Based Vapor/Liquid Visualization of Fuel Sprays. Combust. Sci. and Tech. 71, 247-261 (1990).
    [146]. Jong-Uk Kim, Byungyou Hong, Quantitative Vapour–liquid Visualization Using Laser-induced Exciplex Fluorescence. Opt A: Pure Appl Opt, 2001,3(5):338–345
    [147]. Tonini S, Gavaises M and Theodorakakos A. Modelling of High-Pressure Dense Diesel Sprays with Adaptive Local Grid Refinement. International Journal of Heat and Fluid Flow, 2008, vol. 29, pp. 427-448.
    [148]. Bianchi G M, Pelloni P, Corcione F E, Allocca L and Luppino F. Modeling Atomization of High-Pressure Diesel Sprays. Journal of Engineering for Gas Turbines and Power, 2001, vol. 123, pp. 419-427.
    [149]. Barroso G, Schneider B, Boulouchos K. An Extensive Parametric Study on Diesel Spray Simulation and Verification with Experimental Data. SAE Ppaer 2003-01-3230, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700