等离子喷涂羟基磷灰石/纳米氧化锆梯度涂层的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在Ti-6Al-4V基体上,采用大气等离子喷涂(APS)方法分别制备了羟基磷灰石(HA)涂层、HA-ZrO_2梯度涂层、HA/ZrO_2过渡涂层;采用微束等离子喷涂(MPS)方法制备了HA+ZrO_2复合涂层。采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、红外吸收光谱(FTIR)等测试方法,重点研究了喷涂工艺参数和热处理工艺对涂层表面形貌、组织结构、结合强度和生物学行为的影响。结果表明,在本研究条件下,随喷涂距离的增大,HA粒子的熔化程度和扁平化程度降低;各喷涂功率下涂层中均出现CaO、磷酸钙(TCP)和磷酸四钙(TTCP)等分解相,提高喷涂功率使得涂层的非晶化程度加剧。喷涂过程中HA发生了严重的OH-脱落和明显的PO43-红外吸收峰宽化,说明HA的结构遭到破坏。MPS制备的HA+ZrO_2复合涂层中的ZrO_2主要以四方相存在,涂层主要为α-TCP相,并有少量CaO杂质相。
     采用优化的后喷涂参数,制备的单一HA、HA/ZrO_2过渡涂层和HA-ZrO_2梯度涂层的结合强度分别为28.31MPa、41.56MPa、33.00MPa。单一HA涂层经过650℃热处理后,结合强度最高为36.47MPa;过渡和梯度涂层均在750℃热处理后的结合强度最高,分别为50.86MPa和39.72MPa。纳米ZrO_2涂层作为中间过渡层是结合强度增加的主要原因。
     梯度涂层经过550℃×3h的热处理后,红外吸收光谱和XRD分析显示,表面HA涂层的OH-得到部分恢复、CaO相消失,结晶度为61.6%。涂层在模拟体液(SBF)中浸泡2周后,表面出现了“沙丘”状的类骨磷灰石沉积层,沉积层由细小的针状颗粒组成。可见在此温度下热处理的涂层溶解较快,具有较高的生物活性。
     对梯度涂层进行750℃×3h的热处理后,涂层获得最高的结晶度86.2%,涂层中OH-恢复到接近原始粉末的水平。涂层浸泡在SBF中56天后,涂层表面只生成少量的磷灰石颗粒,说明涂层具有很低的溶解性,有利于提高植入体的长期稳定性。
     MPS制备的两种HA+ZrO_2复合涂层浸泡在SBF中7天后,涂层表面均可以观察到局部形成了球状磷灰石晶核。随着浸泡时间的延长,磷灰石薄膜面积明显增大并向外铺展,28天后几乎覆盖整个涂层表面,表明ZrO_2的引入对HA的生物活性影响较小。
Hydroxyapatite (HA) coating, HA-ZrO_2 graded coatings, HA/ZrO_2 intermediate coatings were deposited onto Ti-6Al-4V substrate by atmospheric plasma spraying (APS) and HA+ZrO_2 composite coatings were produced by micro-plasma spraying (MPS) in this study. The surface morphology, microstructure, bond strength and biological behavior of the coatings were particularly studied by using scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) before and after heat treatment.
     The results showed that under the involved conditions, melting and flatting of HA particles were weakened when increasing the spraying distance. At higher level power of input, amorphization of HA intensified and CaO, tricalcium phosphate (TCP), tetracalcium phosphate (TTCP) appeared under all the spraying distances. The characteristics of OH- bands and non-degenerate symmetric stretching of the PO43- groups in HA disappeared in all the coatings. All these changes suggested the distortion of the crystal structure and the dehydroxylation. MPS prepared HA+ZrO_2 composite coatings consisted of primitive tetragonal phase ZrO_2, a quantity ofα-TCP and a little CaO.
     The bond strength of the HA coating, HA/ZrO_2 intermediate coatings and HA-ZrO_2 graded coatings respectively were 28.31MPa、41.56MPa、33.00MPa after using the optimized spraying parameters. With regard to post heat-treatment, the heat treated pure HA coating showed the highest bond strength value (36.47MPa) when heating up to 650°C, while the HA/ZrO_2 intermediate coatings and HA-ZrO_2 graded coatings showed the highest bond strength value (50.86MPa and 39.72MPa) when heating up to 750°C. The higher bond strength of the HA-ZrO_2 graded coatings and HA/ZrO_2 intermediate coatings might due to the nano-zirconia bond coating as an intermediate layer between hydroxyapatite coating and titanium alloy substrate. XRD and FTIR analysis revealed a partial recovery of the crystalline HA structure due to the post heat treatment of 550℃for 3 hours. The peak of the CaO disappeared and the crystallinity of the coating was 61.6%. The graded coatings surface was covered with a newly formed“dune-like”apatite layer consisting of small granular precipitates after 2-week immersion in simulated body fluid (SBF) solution. The 550℃×3h heat-treated coatings with high solubility presented excellent bioactivity.
     Post-heat treatment of 750℃for 3 hours made the sprayed HA regain high crystallinity (86.2%) and OH- content equivalent to the feedstock. When immersing in SBF for 56 days, the 750℃×3h heat-treated coatings had little apatite precipitation layer in contrast to the 550℃×3h sample. The increased crystalline HA content and dense structure of the 750℃×3h heat-treated coatings led to low solubility and long-term implant stability.
     When micro-plasma sprayed HA+ZrO_2 composite coatings soaking in SBF for 7 days, some clustered ball-like particles were formed on the composite coatings. After immersion duration of maximum 28 days, the number of these ball-like particles increased, and the surface was totally covered by the newly formed layer consisting of small granular structures. Our results suggested that the HA+ZrO_2 composite coatings prepared by this method was also bioactive.
引文
1 俞耀庭, 张兴栋 等. 生物医用材料. 天津大学出版社, 2000: 242~261
    2 谈国强, 苗鸿雁, 宁青菊 等. 生物陶瓷材料. 化学工业出版社, 2007: 104~137
    3 崔福斋, 冯庆铃. 生物材料学. 清华大学出版社, 2004.9: 1~10
    4 W. Suchanek, M. Yoshimura. Processing and Properties of Hydroxyapatite-Based Biomaterials for Use as Hard Tissue Replacement Implants. J. of Biomedical Materials Research. 1998, 39(1): 94~117
    5 G. Willmann. Coating of Implants with Hydroxyapatite Material Connections between Bone and Metal. Advanced Engineering Materials. 1999, 1(2): 95~105
    6 Y. Z. Yang, K. H. Kim and J. L. Ong. A Review on Calcium Phosphate Coatings Produced Using a Sputtering Process—an Alternative to Plasma Spraying. Biomaterials. 2005, 26(3): 327~337
    7 K. D. Groot, R. G. T. Geesink, C. P. A. T. Klein, et al. Plasma Sprayed Coatings of Hydroxyapatite. J. of Biomedical Materials Research. 1987, 21(11): 1375~1387
    8 A. Mortensen, S. Suresh. Functionally Graded Metals and Metal-Ceramic Composites: Part 1 Processing. International Materials Reviews. 1995, 40(6): 239~265
    9 王迎军,宁成云,马利泰 等. 等离子喷涂生物活性梯度涂层的残余应力与结合强度. 无机材料学报. 1998, 13(4): 529~533
    10 王志刚, 朱瑞富, 吕宇鹏 等. 等离子喷涂 HA/(HA+TiO2)复合生物涂层的研究. 金属热处理. 2005, 30(6): 13~15
    11 Y. W. Gu, K. A. Khor, D. Pan, et al. Activity of Plasma Sprayed Yttria Stabilized Zirconia Reinforced Hydroxyapatite/Ti–6Al–4V Composite Coatings in Simulated Body Fluid. Biomaterials. 2004, 25(16): 3177~3185
    12 M. Niinomi. Mechanical Properties of Biomedical Titanium Alloys. Materials Science and Engineering A. 1998, 243(1-2): 231~236
    13 尹衍升, 李嘉. 氧化锆陶瓷及其复合材料. 化学工业出版社, 2004: 4
    14 K. A. Khor, Y. W. Gu, C. H. Quek, et al. Plasma Spraying of Functionally Graded Hydroxyapatitey/Ti–6Al–4V Coatings. Surface and Coatings Technology. 2003, 168(2-3):195~201
    15 K. A. Khor, Y. W. Gu, D. Pan, et al. Microstructure and Mechanical Properties of Plasma Sprayed HA/YSZ/Ti–6Al–4V Composite Coatings. Biomaterials. 2004, 25(18): 4009~4017
    16 B. Y. Chou, E. Chang. Plasma-Sprayed Hydroxyapatite Coating on Titanium Alloy with ZrO2 Second Phase and ZrO2 Intermediate Layer. Surface and Coatings Technology. 2002, 153(1): 84~92
    17 R. S. Lima, B. R. Marple, K. A. Khor, et al. Mechanical Properties Microstructural Characteristics and in vitro Behavior of APS-Sprayed Nanostructured and Conventional Hydroxyapatite Coatings. Proceedings of the International Thermal Spray Conference, DVS-Verlag GmbH, Dusseldorf, Germany, 2004 (PDF file in the CD)
    18 L. M. Sun, C. C. Berndt and C. P. Grey. Phase, Structural and Microstructural Investigations of Plasma Sprayed Hydroxyapatite Coatings. Materials Science and Engineering A. 2003, 360(1-2): 70~84
    19 K. Yushchenko, Y. Borisov, Y. Pereverzev, et al. Microplasma Spraying. Proceedings of ITSC’1995, Kobe, Japan, 1995: 273~274
    20 K. Yushchenko, Y. Borisov, Y. Pereverzev, et al. Microplasma Spraying. Proceedings of ITSC’1998, Nice, France, 1998: 1461~1467
    21 Y. Borisov, I. Sviridova, S. Vojnarovich, et al. Investigation of the Microplasma Spraying Processes. Proceedings of ITSC’2002, Essen, Germany, 2002: 335~338
    22 Y. Borisov, S. Vojnarrovich, V. Bobrick, et al. Microplasma Spraying of Bioceramic Coatings. Paton Welding Journal. 2000, (12): 62~66
    23 Y. Borisov, S. Vojnarovich, V. Bobrick, et al. Microplasma Spraying of Bioceramic Coatings Proceedings of ITSC’2003, Orlando, Florida, USA, 2003: 553~558.
    24 Y. Borisov, S. Vojnarovich, A. Kislitsa, et al. Effect of Microplasma Spray Conditions on Structure, Phase Composition and Texture of Hydroxyapatite Coatings. Proceedings of ITSC’2006, Seattle, Washington, USA, 2006 (PDF file in the CD)
    25 李长久, 孙波, 汪民 等. 微束等离子喷涂工艺条件对 Cu 涂层组织和性能的影响. 西安交通大学学报. 2002, 36(11): 1182~1186
    26 C. J. Li, B. Sun. Microstructure and property of micro-plasma-sprayed Cu coating. Materials Science and Engineering A. 2004, 379(1-2): 92~101
    27 贺定勇, 孙旭峰, 赵力东. 微束等离子喷涂羟基磷灰石涂层. 无机材料学报. 2007, 22(7): 754~758
    28 丁传贤, 薛卫昌, 刘宣勇 等. 等离子喷涂人工骨涂层材料. 中国有色金属学报. 2004, 14(1): 306~309
    29 J. Y. Chen, W. D. Tong, Y. Cao, et al. Effect of Atmosphere on Phase Transformation in Plasma-Sprayed Hydroxyapatite Coating during Heat Treatment. J. of Biomedical Materials Research. 1997, 34(1): 15~20
    30 Y. P. Lu, G. Y. Xiao, S. T. Li, et al. Microstructural Inhomogeneity in Plasma-Sprayed Hydroxyapatite Coatings and Effect of Post-Heat Treatment. Applied Surface Science. 2006, 252(6): 2412~2421
    31 Y. C. Yang, E. Chang. The Bonding of Plasma-Sprayed Hydroxyapatite Coatings to Titanium: Effect of Processing, Porosity and Residual Stress. Thin Solid Films. 2003, 444(1-2): 260~275
    32 L. L. Yan, Y. Leng and L. T. Weng. Characterization of Chemical Inhomogeneity in Plasma-Sprayed Hydroxyapatite Coatings. Biomaterials. 2003, 24(15): 2585~2592
    33 S. W. K. Kweh, K. A. Khor and P. Cheang. An in vitro Investigation of Plasma Sprayed Hydroxyapatite Coatings Produces with Flame-Spheroidized Feedstock. Biomaterials. 2002, 23(3): 775~785
    34 A. E. Porter, L. W. Hobbs, R. V. Benezra, et al. The Ultrastructure of the Plasma-Sprayed Hydroxyapatite-Bone Interface Predisposing to Bone Bonding. Biomaterials. 2002, 23(3): 725~733
    35 Q. Y. Zhang, J. Y. Chen, J. M. Feng, et al. Dissolution and Mineralization Behaviors of HA Coatings. Biomaterials. 2003, 24(26): 4741~4748
    36 T. Kokubo, H. Kushitani, S. Sakka, et al. Solutions Able to Reproduce in Vivo Surface-Structure Changes in Bioactive Glass-Ceramic A-W3. J. of Biomedical Materials Research. 1990, 24(6): 721~734
    37 郑学斌,黄民辉,黄静琪 等. 喷涂距离和喷涂功率对羟基磷灰石涂层的影响. 无机材料学报. 1999, 14(5): 783~788
    38 B. C. Wang, E. Chang, T. M. Lee, et al. Changes in Phases and Crystallinity of Plasma-Sprayed Hydroxyapatite Coatings under Heat Treatment: a Quantitative Study. J. of Biomedical Materials Research. 1995, 29(12): 1483~1492
    39 常程康,朱然怡,毛大立 等. 等离子喷涂羟基磷灰石涂层的材料学特征. 无机材料学报. 2000, 15(5): 952~955
    40 E. Chang, W. J. Chang, B. C. Wang, et al. Plasma Spraying of Zirconia-Reinforced Hydroxyapatite Composite Coatings on Titanium Part I: Phase, Microstructure and Bonding Strength. J. of Materials Science: Materials in Medicine. 1997, 8(4): 193~200
    41 肖秀峰, 刘榕芳, 郑炀曾. 羟基磷灰石/氧化锆复合涂层热稳定性和结合强度的研究. 无机化学学报. 2005, 21(7): 965~970
    42 J. Cizek, K. A. Khor and Z. Prochazka. Influence of Spraying Conditions on Thermal and Velocity Properties of Plasma Sprayed Hydroxyapatite. Materials Science and Engineering C. 2007, 27(2): 340~344
    43 C. H. Quek, K. A. Khor and P. Cheang. Influence of Processing Parameters in the Plasma Spraying of Hydroxyapatite/Ti-6Al-4V Composite Coatings. J. of Materials Processing Technology. 1999, 89-90: 550~555
    44 H. Dasarathy, C. Riley and H. D Coble. Analysis of Apatite Deposits on Substrates. J. of Biomedical Materials Research. 1993, 27(4): 477~482
    45 Y. C. Tsui, C. Doyle and T. W. Clyne. Plasma Sprayed Hydroxyapatite Coatings on Titanium Substrates, Part 1: Mechanical Properties and Residual Stress Levels. Biomaterials. 1998, 19(22): 2015~2029
    46 A. Balamurugan, G. Balossier, S. Kannan, et al. Electrochemical and Structural Characterisation of Zirconia Reinforced Hydroxyapatite Bioceramic Sol–Gel Coatings on Surgical Grade 316L SS for Biomedical Applications. Ceramics International. 2007, 33(4): 605~614
    47 R. Y. Whitehead, W. R. Lacefield and L. C. Lucas. Structure and Integrity of Plasma Sprayed Hydroxylapatite Coating on Titanium. J. of Biomedical Materials Research. 1993, 27(12):1501~1507
    48 C. W. Yang, T. M. Lee, T. S. Lui, et al. Effect of Post Vacuum Heating on the Microstructural Feature and Bonding Strength of Plasma-Sprayed Hydroxyapatite Coatings. Materials Science and Engineering C. 2006, 26(8): 1395~1400
    49 K. A. Gross, C. C. Berndt. Thermal Processing of Hydroxyapatite for Coating Production. J. of Biomedical Materials Research. 1998, 39(4): 580~587
    50 Z. Zyman, J. Weng, X. Liu, et al. Phase and Structural Changes in Hydroxyapatite Coatings under Heat Treatment. Biomaterials. 1994, 15(2): 151~155
    51 J. Weng, X. Liu, X. Zhang et al. Integrity and Thermal Decomposition of Apatite in Coatings Influenced by Underlying Titanium during Plasma Spraying and Post-heat-treatment. J. of Biomedical Materials Research. 1999, 44(1): 5~11
    52 Y. C. Yang. Influence of Residual Stress on Bonding Strength of the Plasma-Sprayed Hydroxyapatite Coating after the Vacuum Heat Treatment. Surface and Coatings Technology. 2007, 201(16-17): 7187~7193
    53 张琪, 胡树兵. 生物活性梯度涂层热应力场的模拟分析. 中国机械工程. 2006, 17(S2): 357~361
    54 C. C. Chen, T. H. Huang, C. T. Kao, et al. Electrochemical Study of the In vitro Degradation of Plasma-Sprayed Hydroxyapatite/Bioactive Glass Composite Coatings after Heat Treatment. Electrochimica Acta. 2004, 50(4): 1023~1029
    55 K. A. Khor, H. Li, P. Cheang, et al. In vitro Behavior of HVOF Sprayed Calcium Phosphate Splats and Coatings. Biomaterials. 2003, 24(5): 723~735
    56 G. C. Wang, X .Y. Liu, C. X. Ding, et al. plasma-sprayed calcium oxide stabilized zirconia coatings for biomedical application. Proceedings of ITSC’2007, Beijing, China, 2007: 377~380
    57 B. Wopenka, J. D. Pasteris. A Mineralogical Perspective on the Apatite in Bone. Materials Science and Engineering C. 2005, 25(1): 131~143
    58 M. Svetina, L. C. Ciacchi, O. Sbaizero, et.al. Deposition of Calcium Ions on Rutile (110): a First-Principles Investigation. Acta Materialia. 2001, 49(12): 2169~2177
    59 Y. C. Tsui, C. Doyle and T. W. Clyne. Plasma Sprayed Hydroxyapatite Coatings on Titanium Substrates, Part 2: Optimisation of Coating Properties. Biomaterials. 1998, 19(22): 2031~2043
    60 X.Y. Liu, A. P. Huang, C. X. Ding, et al. Bioactivity and Cytocompatibility of Zirconia (ZrO2) Films Fabricated by Cathodic Arc Deposition. Biomaterials. 2006, 27(21): 3904~3911

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700