PI/Al_2O_3杂化薄膜Al含量分析方法、电晕老化及热老化寿命研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚酰亚胺具有优良的力学、化学、耐辐射、电气性能及高低温使用性能,被广泛应用于电气绝缘、微电子工业和航空航天等领域。随着电力电子技术的发展,变频调速技术在电机中的应用越来越广泛,这项技术的应用可以使电机节电大约25%~30%,其节能效果相当显著。传统的聚酰亚胺耐局部放电性能已满足不了变频调制的使用要求,因此开展耐电晕PI杂化薄膜的研究显得大为重要,目前研究工作主要集中在杂化薄膜的制备工艺、纳米材料的分散性、热稳定性、绝缘性能等方面。但其电晕老化机理、热老化寿命的预测、杂化薄膜中无机组分的分析方法等问题尚有许多工作需要解决。
     以自制PI/Al2O3杂化薄膜(纳米氧化铝直接掺杂法制备)、本课题组提供的系列PI/Al2O3纳米杂化薄膜(异丙醇铝溶胶-凝胶法制备)为研究对象,首次使用电感耦合等离子体原子发射光谱(ICP-AES)、X射线荧光光谱(XRF),结合傅立叶变换红外光谱(FT-IR)、X射线能量色散谱(EDS)、重量法、热失重(TG)等测试方法,对系列杂化亚胺薄膜的无机组分进行了定性、定量分析。结果表明:FT-IR和EDS技术可用于杂化薄膜的定性分析,FT-IR通过对材料的官能团进行分析,进而推断材料的结构和组成;而EDS则主要分析材料表面所含元素的含量。TG和EDS方法对杂化薄膜成分进行分析,其实测值和理论值相差较大,相对标准偏差(RSD)较大,TG和EDS方法只能进行半定量分析;而ICP-AES和重量法的实测值和理论值相差较小,重量法的RSD小于0.8%;ICP-AES的RSD小于0.6%,加标回收率为103.24%。最终建立了ICP-AES分析PI/Al2O3杂化薄膜中Al含量的分析方法。
     利用扫描电子显微镜(SEM)、原子力显微镜(AFM)测定了系列杂化薄膜的微观结构。研究结果表明:在聚集态结构上,与PI/Al2O3杂化薄膜相比,PI/Al2O3纳米杂化薄膜中Al2O3粒径较小且分布均匀;随A1203含量的增加,杂化薄膜中Al2O3无机相由孤立球形粒子逐渐形成网络结构。
     本文利用自制的电晕老化装置对DuPont耐电晕聚酰亚胺薄膜(Kapton100-CR)进行了10小时电晕老化处理。采用扫描电镜(SEM)、原子力显微镜(AFM)和能谱(EDS)等测试方法对电晕前后薄膜结构、成分进行分析,依据薄膜微观结构和元素含量的变化趋势,对耐电晕薄膜的电晕老化击穿机理进行了探讨。分析认为:薄膜为三层结构,外面两层含有大量的铝元素,内层为纯PI,整体属于无机—有机—无机复合结构。其电晕老化击穿过程由潜伏期、树枝化的扩展和崩溃性击穿三个阶段组成。其电晕老化属于电、热、化学老化作用的结果。
     利用不同条件测得TG曲线,首次采用Coats-Redfern方法计算PI/Al2O3纳米杂化薄膜的热降解动力学参数,求得活化能(E)、碰撞因子(A)及反应级数(n);按照材料热分解动力学与热老化之间的关系,拟合出杂化薄膜的热老化寿命曲线,进一步估算杂化薄膜长期使用的温度。实验结果表明,Coats-Redfern方法可用于PI/Al2O3纳米杂化薄膜热老化寿命的预测。
As a high-performance engineering material, polyimide (PI) having excellent physical, chemical and electrical properties in a broad temperature range, have been applied on the electric insulatation, microelectronics, and aerospace industry. With the developing power electronics technology, variable frequency speed control technology is widely applied in the electrical machine, power saving 20 to 30%. The effect on the power saving is quite remarkable. Traditional polyimide partial discharge resistant properties have been unable to meet the requirements of frequency modulation, thus limiting the polyimide applications. So study on corona-resistant PI hybrid films is of importance. Now the research on preparation conditions, the dispersion of nano-materials, thermal stability, insulating properties of corona resistant PI hybrid films are mainly foucsed on. The corona resistant of PI have been greatly improved, but its breakdown mechanism of aging, prediction of thermal aging, and inorganic hybrid membrane components such as component analysis problem for inorganic hybrid film has not yet been resolved.
     Qualitative analysis and quantitative analysis on the Al content of PI/Al2O3 hybrid films were investigated using Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES), X-ray Fluorescence Spectrometry (XRF), Fourier Transform Infrared Spectrometry (FT-IR), X-ray Energy Dispersive Spectrometry (EDS), Gravimetric Method, Thermo-gravimetric Analysis (TG, in air atmosphere). The result showed that FT-IR and EDS were good qualitative analysis methods. FT-IR was used to confirm the structure and component via analyzing the group of hybrid films. EDS was mainly used to monitor elements contained in the surface of hybrid films. The relative standard deviations (RSD) of EDS and TG were too great to use quantitative analysis, then they only could be used as semi-quantitative analysis methods. On the contrary, ICP-AES and Gravimetric Method were excellent quantitative analysis methods. The RSD of Gravimetric Method is below 0.8%.The RSD of ICP-AES is below 0.6%. And the recovery of standard sample for ICP-AES is 103.24%. At last, the fast and accurate analysis method for the A1 content in the hybrid films was set up eventually by ICP-AES.
     The aggregation structure of series hybrid films were measured via Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM).The result show that, compared with the PI/Al2O3 hybrid film, particle size and distribution of Al2O3 in PI/Al2O3 nano hybrid films were smaller. And increased with the content of Al2O3, the inorganic phase had evolved into network structure from the isolated spherical phase in the hybrid film.
     The DuPont corona-resistant PI film (Kapton 100-CR) was treated with the device of corona aging test made by ourselves for 10 hours, and characterized via SEM, AFM, and EDS. The mechanism of corona aging and breakdown of Kapton 100-CR was studied depend on the variation trend of the microstructure and the element content. The results indicated that Kapton 100-CR film was made up of three layers. The outer layers contained a lot of Al element and the middle layer was pure PI. All of the films belonged to inorganic-organic-inorganic composite structure. The process of aging and breakdown had been composed of incubation course, expansion of branch and collapse breakdown. The corona aging of Kapton 100-CR derived from the electricity, heat and chemical reaction.
     The thermal stabilization of PI/Al2O3 hybrid films made by ourselves was studied by TGA. First the thermal decomposition kinetics parameters (activation energy of thermal decomposition, collision coefficient and action progression) of PI hybride films containing 4wt% and 8wt% nano-alumina particles were calculated with the Coats-Redfern method at different heating rate in N2 and air, respectively.Then based on the relationship between thermal aging and the thermal decomposition kinetics, the thermal aging curve of PI hybrid films in air atmosphere and nitrogen atmosphere were draw out, getting the temperature for long term service. The results show that the Coats-Redfern method is reliable methods for prediction thermal aging life of PI/Al2O3 hybrid materials.
引文
[1]BOGERT M T, RENSHAW R R, AM J.4-Amino-O-Phthalic Acid and Some of Its Derivatives [J]. Journal of the American Chemical Society,1908, 30:1140-1142.
    [2]崔永丽,张仲华,江利,等.聚酰亚胺的性能及应用[J].塑料科技,2005,3(167):50-54.
    [3]丁孟贤,何天白.聚酰亚胺新型材料[M].北京:科学出版社,1998:前言.
    [4]王寿泰,郝铭波.耐电晕PI薄膜及其耐电晕寿命评定方法的研究[J].绝缘材料通讯,2000,10(3):27-30.
    [5]HANDALA M A, LAMROUS O. Surface Degradation of Styrene Acrylonitrile Exposed to Corona Discharge [J]. European Transactions on Electrical Power,2008,18, (5):494-505.
    [6]YIN W, BULTEMEIER K, BARTA D, et al. Critical Factors Forearly Failure of Magnet Wires in Inverter-Fed Motors[C]. Conference on Electrical Insulation and Dielectric Phenomena, Virginia Beach VA USA,1995: 258-261.
    [7]张雯,张露,李家利等.国外聚酰亚胺薄膜概况及其应用进展[J].绝缘材料,2001,34(2):21-23.
    [8]KATZ M, THEIS R J. New High Temperature Polyimide Insulation for Partial Discharge Resistant in Harsh Environments [J]. IEEE Electrical Insulation Magzine,1997,13(4):24-30.
    [9]赵斯梅.范勇PI/Al-Si氧化物纳米氧化薄膜的制备及性能表征[J].哈尔滨理工大学学报,2006,4:89-98.
    [10]赵斯梅SiO2-Al2O3内米杂化聚酰亚胺薄膜的结构与性能[J].化学推进剂与高分子材料,2005,4:40-45.
    [11]WU J T, YANG S Y, GAO S J, et al. Preparation, Morphology and Properties of Nano-Sized Al2O3/Polyimide Hybrid Films [J]. European Polymer Journal,2005,41(1):73-81.
    [12]赵斌,饶宝林.聚酰亚胺/纳米氧化铝复合薄膜的研究[J].绝缘材料,2005,38(6):23-25.
    [13]李鸿岩,郭磊,刘斌.聚酰亚胺/纳米Al2O3复合薄膜的介电性能[J].中 国电机工程学报,2006,26(20):166-170.
    [14]LI H Y, LIU G, LIU B, et al. Dielectric Properties of Polyimide/Al2O3 Hybrids Synthesized by in-situ Polymerization [J]. Materials Letters,2007, 61(7):1507-1511.
    [15]董素芳.纳米SiO2-Al2O3/聚酰亚胺杂化薄膜的制备及表征[J].化工新型材料,2006,6:31-35.
    [16]禹坤,于先进.纳米SiO2Al2O3/聚酰亚胺杂化薄膜的制备及表征[J].山东理工大学学报:自然科学版,2006,4:74-80.
    [17]吴大青.无机掺杂改性聚酰亚胺薄膜的制备及表征[J].材料科学与工艺,2006,4:436-441.
    [18]边丽娟,张灵云.氧化铝掺杂聚酰亚胺纳米复合薄膜的制备与性能研究[J].塑料工业,2006,9:5-6.
    [19]MA P C, NIE W, YANG Z H, et al. Preparation and Characterization of Polyimide/Al2O3 Hybrid Films by Sol-Gel Process[J]. Journal of Applied Polymer Science,2008,108(2):705-712.
    [20]罗立强.X射线光谱分析的现状和趋势[J].光谱学与光谱分析,2006,1:189-191.
    [21]HUANG T C. Thin-film Characterization by X-ray Fluorescence [J]. X-ray Spectrometry,1991,20:29-33.
    [22]吴振军.磷酸钙盐/A1203及相关复合生物涂层材料的制备、表征与体外性能研究[D].长沙:湖南大学博士学位论文,2006:3-21.
    [23]张明艳PI/SiO2纳米杂化薄膜的制备及性能研究[D].哈尔滨:哈尔滨理工大学博士学位论文,2006:93-94.
    [24]GLOAGUEN J M, LEFEBVRE J M. Plastic Deformation Behaviour of Thermoplastic/Clay Nanocomposites [J]. Polymer,2001,42:5841-5847.
    [25]杨贯羽,朱路,李延虎,等.天然沸石红外光谱X粉末衍射及扫描电镜分析[J].安阳师范学院学报,2006:77-78.
    [26]REED T B. Induction-coupled Plasma Torch[J]. Journal of Applied Physics, 1961,32:821-824.
    [27]GREENFIELD S, ANDERSON R J, GRAY A L, et al. Why Plasma Torches-Invited Lecture [J]. Proc Anal Div Chem Soc,1976,13:279-284.
    [28]WENDT R H, FASSEL V A. Induction Coupled Plasma Spectrometric Excitation Source[J]. Analytical Chemistry,1965,37:920-922.
    [29]汤姆逊M,沃尔什J N. ICP光谱分析指南[M].符斌,译.北京:冶金工业出版社,1991:1-7.
    [30]郭玉文,蒲丽梅,乔玮,等ICP-AES在分析飞灰中重金属化学形态上的应用[J].光谱学与光谱分析,2006,26(8):1540-1542.
    [31]李玉平,张懿,齐涛,等.用扫描式电感耦合等离子体光谱仪测定红矾钾产品中的杂质[J].光谱学与光谱分析,2004,24(11):1428-1431.
    [32]赵爱东,陈洪利.离子体发射光谱法测定铝合金中的杂质元素[J].光谱学与光谱分析,2001,21(5):647-648.
    [33]侯列奇,王树安,李洁,等.电感耦合等离子体原子发射光谱法测定锆合金中微量铪[J].冶金分析,2006,26(6):54-56.
    [34]莫庆军.电感耦合等离子体原子发射光谱法测定硅铝钡合金中1种主次量元素[J].冶金分析,2006,26(5):44-47.
    [35]许祥红,王桂群,刘洪清,等.电感耦合等离子体原子发射光谱法测定铁矿石中Si, Ca, Mg, Mn, Al, P, V, Ti[J]冶金分析,2006,26(2):89-90.
    [36]顾培,巩万合,陈荣府,等.普通消解与微波消解分析植物样品等元素的方法比较[J].土壤通报,2007,38(3):616-618.
    [37]刘崇华,曾嘉欣,钟志光,等.电感耦合等离子体原子发射光谱法测定塑料及其制品中铅、汞、铬、镉、钡、砷检[J].验检疫科学,2007,117(4):32-35.
    [38]宋霞,孙雪萍,李文静.电感耦合等离子体发射光谱法测定聚氯乙烯塑料中的重金属元素[J].光谱实验室,2007,24(5):891-893.
    [39]革丽亚,蒋江虹,梁高道,等ICP-AES法测定食品中铝含量的方法研究[J].光谱仪器与分析,2006,1(3):193-196.
    [40]周浩然,赵德明,林飞,等.无机纳米氧化铝/聚酰亚胺复合膜的表征.光谱学与光谱分析,2008,28(3):707-710.
    [41]周浩然,林飞,赵德明,等.A1203杂化聚酰亚胺薄膜Al含量测试方法.光谱学与光谱分析,2009,29(1):250-255.
    [42]DISSADO L A, MAZZANTI G C. The Role of Trapped Space Charge in the Electrical Aging of Insulating Materials[J]. IEEE Transations on Dielectrics and Electrical Insulation,1997,4(5):496-506.
    [43]李鸿岩,王峰,郭磊,等.变频电机的匝间绝缘电老化机理[J].绝缘材料,2005,38(2):57-60.
    [44]李吉晓,张冶文,夏钟福,等.空间电荷在聚合物老化和击穿过程中的作 用[J].科学通报,2000,45(23):2469-2475.
    [45]李强军,姜其斌,李凤,等.耐电晕复合绝缘材料的研究[J].化工新型材,2005年,35(1):50-51.
    [46]李鸿岩,施杰,姜其斌,等.纳米粒子对聚酰亚胺薄膜电晕老化形态的影响[J].绝缘材料,2007,40(5):42-44
    [47]查俊伟,党智敏.无机纳米/聚酰亚胺复合杂化膜的绝缘特性研究[J].绝缘材料,2008,41(6):4-8
    [48]汪佛池,律方成,徐志钮,等.变频电机用聚酰亚胺薄膜电老化特性研究[J].高电压技术,2007年,33(4):30-32
    [49]殷景华,范勇,王暄,等.纳米杂化PI薄膜击穿孔区形貌及元素分布[J].材料科学与工艺,2006,2:204-211.
    [50]TANAKA T, KOZAKO M, FUSE N. Proposal of a Multi-Core Model for Polymer Nanocomposite Dielectrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2005,12(4):669-681.
    [51]YIN W J. Dielectric Properties of an Improved Magnet Wire for Inverter-Fed Motors[J]. IEEE Electrical Insulation Magazine,1997; 13(4):17-23.
    [52]OKAMOTO T. Partial Discharge Resistant Mechanism of Newly Developed Enameled Wire[C]. Conference on Electrical Insulation and Dielectric Phenomena. Minnea Polis,1997:512-515.
    [53]何恩广,刘学忠.纳米TiO2填料对变频电机耐电晕电磁线绝缘性能的影响[J].电工技术学报,2003,18(1):72-77.
    [54]HUDON C, SEGUIN J N, AMYOT N, et al. Turn Insulation Aging of Motors Exposed to Fast Pulses of Inverter Drives[C]. Electrical Insulation Conference. Chicago USA,1997:413-417.
    [55]尹毅,肖登明,屠德民.空间电荷在评估绝缘聚合物电老化程度中的应用研究[J].中国电机工程学报,2002,22(1):43-18.
    [56]PALONIEMI P. Isothermal Differential Calorimetry as a Means to Measure Insulation Aging Rate Down to the Operating Temperatures [J]. IEEE Transactions on Electrical Insulation,1972,7 (3):122-126.
    [57]BESSONOV M I, KOTON M M, KUDRYAVTSEV V V, etc. Polyimides Thermally Stable Polymers[M]. Consultants Bureau, New York,1987,128.
    [58]W. XIE, W.P. PAN, K. C. CHUANG. Thermal Degradation Study of Polymerization of Monomeric Reactants (PMR) Polyimides. Journal of Thermal Analysis and Calorimetry, Vol.64 (2001) 477-485.
    [59]韩晔,张盈锁,翟晓军.热重点斜法(TPS)概述[J].绝缘材料,2003,(6):51-55.
    [60]虞鑫海,徐永芬,赵炯心,等.聚酰亚胺薄膜的热降解动力学研究[J].化学与黏合,2008年,30(4):5-8
    [61]乔海霞,顾东雅,曾竟成.聚合物基复合材料加速老化方法研究进展[J].材料导报,2007,21(4):48-51
    [62]王利华,张爱清,陈栋华,等.一种新型聚酰亚胺的非等温热分解动力学[J].中南民族大学学报(自然科学版),2005,24(4):27-29
    [63]TIWARI, ATUL, NEMA, AJAY K, DAS,C.K.Thermal Analysis of Polysiloxanes, Aromatic Polyimide and their Blends[J].Thermochimica Acta, Jul 2004,417 (1):133-142,10p.
    [64]LIQING LI, CHUNXIU GUAN, AIQING ZHANG, DONGHUA CHEN and ZHIBAO QING.Thermal Stabilities and the Thermal Degradation Kinetics of Polyimides [J].Polymer Degradation and Stability,2004,84(3):369-373.
    [65]ARAVINDAN V, VICKRAMAN P. Characterization of SiO2 and Al2O3 Incorporated PVdF-HFP Based Composite Polymer Electrolytes with LiPF3(CF3CF2)3[J].Journal of Applied Polymer Science,2008,108(2):1314-1322.
    [66]BREKNER M J, FEGER C. Curing Studies of a Polyimide Precursor Ⅱ Polyamic Acid[J]. Journal of Polymer Science Part A:Polymer Chemistry, 1987,25:2479-2491.
    [67]张爱芬.X射线荧光分析技术在铝工业分析中的应用[J].科学技术与工程,2006,6(18):2972-2975
    [68]BREKNER M J, FEGER C. Curing Studies of a Polyimide Precursor[J]. Journal of Polymer Science Part A:Polymer Chemistry,1987,25:2005-2020.
    [69]OJEDA J R, MOBLEY J, MARTIN D C. Physical and Chemical Evolution of PMDA-ODA during Thermal Imidization[J]. Journal of Polymer Science Part B:Polymer Physics,1995,32:559-569.
    [70]DABRAL M, XIA X Y, GERBERICH W W, et al. Near-surface Structure Formation in Chemically Imidized Polyimide Films[J]. Journal of Polymer Science Part B:Polymer Physics,2001,39:1824-1838.
    [71]LIANG T, MAKITA Y, KIMURA S. Effect of Film Thickness on The Electrical Properties of Polyimide Thin Films [J]. Polymer,2001,42:4867-4872.
    [72]卓尚军.X射线荧光光谱分析[J].分析试验室,2007,26(12):112-122.
    [73]石景燕,李振海.电感耦合等离子体发射光谱法在化学分析中的应用[J].河北电力技术,2003,22(B 12):43-44.
    [74]雷清泉.高聚物的结构与电性能[M].武汉:华中理工大学出版社,1990:274-275.
    [75]Technical Information. Corona Resistant Kapton CR Takes Electrical Insulation Design and Reliability to New Levels[R]. (6/96) 248387A Printed in U.S.A.
    [76]LIU Z Y, LIU R S, WANG H M. Space Charge and Initiation of Electrical Trees[J]. IEEE Transaction on Electrical Insulation,1989,24(1):83-89.
    [77]郑飞虎,张冶文,肖春.聚合物电介质的击穿与空间电荷的关系[J].材料科学与工程学报,2006,24(2):316-321.
    [78]周健,黄祖洪.高导热绝缘材料在高压电机上的应用意义及前景[J].绝缘材料通讯,1999,(6):38-41.
    [79]周宏.聚酰亚胺/氧化铝纳米复合薄膜制备与性能研究[D].哈尔滨:哈尔滨理工大学博士学位论文,2009:56,63.
    [80]RULE D L, SMITH D R, SPARKS L L. Thermal Conductivity of Poly Pyromellitimide Film with Alumina Filler Particles from 4.2 to 300K[J]. Cryogenics,1996,36(4):283-290.
    [81]ZHAO L, PHELAN P E. Thermal Contact Conductance Across Filled Polyimide Films at Cryogenic Temperatures[J]. Cryogenics,1999,39(10): 803-809.
    [82]周健,黄祖洪.高导热绝缘材料在高压电机上的应用意义及前景[J].绝缘材料通讯,1999,(6):38-41.
    [83]汪佛池,律方成,张沛红,等.变频电机用聚酰亚胺薄膜电老化特性研究[J].高电压技术,2007,33(4):30-37.
    [84]张涛,周凯.聚合物绝缘研究中的微电流测量[J].长春师范学院学报:自然科学版,2007,26(2):45-48.
    [85]AVRAMI M. Kinetics of Phase Change I:General Theory[J]. Journal of Chemical Physics,2004,2(12):16-21.
    [86]HOROWITZ H H, METZGER G. A New Analysis of Thermogravimetric Traces[J]. Analytical Chemistry,1963,2(6):35-42.
    [87]KAZUMASA M, TAKAYUKI K, RYOSUKE Y. Kinetics of Non-isothermal Crystallization Process and Activation Energy for Crystal Growth in Amorphous Materials[J]. Journal of Materials Science,1984,19(1):291-296.
    [88]VAN D W, HERRDEN C V, HUTJENS F J. Kinetic Study by Thermogravimetry[J]. Fuel,1951,11(15):22-24.
    [89]郭英军,孙丽华,梁永春,等.电缆热老化寿命的预测研究[J].河北科技大学学报,2007,28(1):34-36.
    [90]SESTAK J, BERGGREN G. Study of the Kinetics of the Mechanism of Solid-state Reactions at Increasing Temperatures [J]. Thermochimica Acta, 1971,25 (3):69-74.
    [91]HENDERSON D W. Thermal Analysis of Non-isothermal Crystallization Kinetics in Glass Forming Liquids[J]. Journal of Non-Crystalline Solids, 1979,16(22):106-109.
    [92]YINNON H, UHLMANN, DONALD R. Applications of Thermoanalytical Techniques to the Study of Crystallization Kinetics in Glass-forming Liquids[J]. Journal of Non-Crystalline Solids,1983,54(3):253-275.
    [93]KISSINGER H E. Variation of Peak Temperature with Heating Rate in Differential Thermal Analysis[J]. Analytical Chemistry,1957,29:1702-1706.
    [94]DOYLE C D. Series Approximations to the Equation of Thermogravimetric Data[J]. Nature,1965,20(40):210-215.
    [95]FLYNN J H, WALL L A. A Quick Direct Method for the Determination of Activation Energy from Thermogravimetric Data[J]. J Polym Sci:PartB Polymer Letters,1966,4(3):23-28.
    [96]OZAWA T. A New Method of Analyzing Thermogravimetric Data[J]. Bulletin of the Chemical Society of Japan,1965,38(11):1881-1886.
    [97]COATS A W, REDFERN J P. Kinetic Parameters from Thermogravimetric Data[J]. Nature,1964,201(4914):68-69.
    [98]Bruck S D. Thermal Degradation of an Aromatic Polypyrom-ellitimide in Air and Vacuum Ⅰ-Rates and Activation Energies[J]. Polymer,1964,5:43.
    [99]Arnold Jr C, Borgman L K. Chemistry and Kinetics of Polyimide Degradation [J]. Ind. Eng. Chem., Prod. Res. and Dev.,1972,11(3):322.
    [100]KURODA S I, TERAUCHI K, NOGAMI K, et al. Dwgradation of Aromatic Polymers I Rates of Crosslinking and Chain Scission duing Themal Degradation of Several Soluble Aromatic Polymers[J]. European Polymer Journal,1989,25:1-7.
    [101]张盈锁,韩晔.高分子材料快速老化试验方法与化学动力学[J].合成材料老化与应用,1988,4:25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700