增膜型蒸发空冷器强化传热传质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蒸发式空冷器广泛用于炼油、化工、冶金等流程工业。本文提出的一种新型蒸发式空冷器——增膜型蒸发式空冷器,在管束的每上下两管之间装上亲水的平板,上管落下的热水在增膜板表面铺展成膜,与空气传热传质的面积增大,高温水膜在板上被冷却成低温水膜,与没有增膜板相比,低温水膜流到下管上,扩大了管内外温差,强化了下管的换热能力。
     研究建立了换热管和增模板的传热传质模型。以水膜和空气之间的温差和含湿量差作为传热传质驱动力,建立了可以显式差分求解的数学模型,模型形式简洁,易于求解。传统模型一般假设热流体与水膜并流,水膜与空气逆流。在吸收传统的换热管一维传热传质模型优点的基础上,研究建立了用于增膜型空冷器的二维传热传质模型,考虑了热流体与水膜错流、水膜与空气逆流和空气绕流管外水膜换热系数随管外环向角变化的实际情况,所以模型中5个独立的未知变量(热流体温度、空气温度、空气含湿量、水膜温度、水膜流量)都是在水平管轴向和铅垂方向二维分布的,与传统的铅垂方向一维模型有明显区别。
     准确获取水膜厚度是计算蒸发式空冷器管外换热系数的关键之一。研究提出了一种水膜厚度测量方法——电阻法。利用金属换热管电阻为百欧级、水膜电阻为兆欧级、空气电阻为无穷大的特点,在千分尺上和金属换热管上接上两电极,即可测出水膜厚度,测量精度达μm。测量了换热管外壁环向上水膜厚度随角度变化的数据,测量了增膜板上水膜厚度随高度变化的关系。建立了换热管和增膜板上水膜厚度和水膜热阻的模型。
     针对二维传热传质模型数值求解时,二元迭代函数曲线斜率绝对值小于1和迭代值衰减振荡的特点,证明了迭代值衰减振荡二元简单迭代法根的存在性、唯一性和收敛性,推论了二元弦割法迭代求解的收敛性。模型求解使用的显式迭代算法,比隐式迭代算法节省计算机内存。用Matlab软件编制了多管程传热传质计算软件。此软件的编制提高了对蒸发式空冷器传热传质性能的研究效率。
     分析了增膜板对多管程蒸发式空冷器中各管程和各排换热管强化传热程度的变化。增膜板对第一管程第一排管传热的全管强化度较小,到第二排时全管强化度就迅速增加,到第三排管时全管强化度达最大值,随后各管程各排管的全管强化度缓慢减小,但都有强化传热作用。从水膜在换热管外的流动方向看,经增膜板冷却的水膜落到管子顶部时,对传热的沿角强化度最高,随着水沿管壁流动,水温逐渐升高,沿角强化度逐渐减小。增膜板对管子传热沿角强化度的变化规律在管长方向基本相同,故热流体温度变化对增膜板的沿角强化度γ几乎无影响。
     通过实验,测量和研究了增模板的强化传热传质能力。通过正交实验探索了影响蒸发空冷器换热的主要因素,通过多因素的单变量实验探索了光管管束、增膜板管束、迎面风速、单位面积喷淋量对蒸发空冷器换热性能的影响。实验结果表明,增膜板管束换热能力的提高量与工况有关;在某些工况条件下,与光管管束相比,增膜板管束换热能力的提高量可达25%。
Evaporative air coolers are found in a wide range of applications, such as petrochemical plants and steel plants. A new type of evaporative air cooler also called film-increasing type evaporative air cooler (FITEAC) is developed in this paper. In the FITEAC, pieces of hydrophilic plates are placed in the spaces between a layer of tubes and another lower layer of tubes to change hot water falling from the upper layer of tubes into pieces of cooler water film. Placement of these hydrophilic plates enhances heat and mass transfer for the lower layer of tubes because temperature difference between the cooler water film and hot fluid inside the tubes is larger than that between hot water and the hot fluid.
     improved models for calculation of heat and mass transfer on the surfaces of plates and tubes were built in the paper. Temperature difference and moisture content difference are chosen as the driving forces correspondingly of heat and mass transfer and a system of specific difference equations (SSDE) is developed to solve easily the mathematical model for heat and mass transfer on plates and tubes. Based on traditional one-dimensional heat and mass transfer model for tubes, a two-dimensional model was built in the paper. In traditonal models, it is assumed that hot fluid parallelflows with water film out of tubes and the water film also counterflows with moist air, however, it is assumed that hot fluid crossflows with the water film in the model in the paper and heat transfer coefficient of air and water out of tubes varies with angles. So five variables varying independently which are temperature of air, moisture content of air, temperature of water film, mass flux of water film, temperature of hot fluid are distributed two-dimensionally in the plane made of horizontal axes of tube and vertical line and that is different with the traditional one-dimensional model in vertical direction sharply.
     Thickness of water film is a key factor for calculating heat transfer coefficient of water film out of tubes in an evaporative air cooler. A new method used to measure thickness of water film, called resistance method, was proposed in the test. Beacause resistance values of metal heat tubes, water film and air are very different, such as, that of metal heat tubes is about 10~6Ω, that of water film is about 100Ω, that of air is nearly infinity, thickness of water film can be measured by two electrodes which are set at a micrometer and a tube, and the precision of the mothod is 1μm. Thickness of water film at some angles on the surface of tube and on the surface of plate is measured by this method. Based on thickness of water film, a heat transfer coefficient model of water film was built.
     Capability of film-increasing plates for enhancing heat and mass transfer is validated in the tests. Main factors influencing heat and mass transfer in an evaporative air cooler was investigated by orthogonal tests. Effect of velocity of air, mass flow rate of water film, temperature of hot fluid on evaperative heat transfer was also explored in tests. Comparing heat transfer capacity of traditional tubes with that of the film-increasing tubes, it was find that the capacity of film-increasing tubes is 25% higher than that of traditional tubes for some cases.
     Existence, exclusive and astringency of two-valuabled silmple iterative equation and two-valuabled secant method was discussed for the case that two-valuabled iteratived equation curve is smaller than 1 and the iterative value is attenuation. Based on two-dimensional heat and mass transfer model built in the paper, a software is writed in MATLAB software to calculate heat transfer of an evaporative air cooler with multipass tubes. A specific iterative arithmetic is proposed and used in the software, which ties up fower EMS memory. The software is a efficient tool used to study heat and mass transfer performance of an evaporative air cooler.
     The present work is supported by the National Natural Science Foundation of China(No. 2007CB206901).
引文
[1]齐晓霓.无填料冷却塔的理论与实验研究[D].上海交通大学博士学位论文,2008.
    [2]许旺发.板式湿式空冷器湿球温度迁移特性与优化研究[D].同济大学博士学位论文,2007.
    [3]蒋毅.高效节能的蒸发冷却技术及其应用的建模与实验研究[D].东南大学硕士学位论文,2006.
    [4]唐清华.节水型蒸发式空冷器有关参数的优化研究[D].武汉理工大学硕士学位论文,2005.
    [5]熊理,黄翔,强天伟.基于蒸发冷却智能化空调系统自动控制方案的探讨[J].制冷空调与电力机械,2008,29(6):47-50
    [6]高宏博,黄翔,吴志湘.基于再循环蒸发冷却塔和地源热泵热/冷源的辐劓空调系统初探[J].建筑节能,2008,12:25-27
    [7]徐方成,黄翔,武俊梅.与蒸发冷却复合的三种除湿空调系统对比分析[J].建筑热能通风空调,2008,27(6):47-49,59
    [8]高清华 孙丽君,肖睿,何世辉,冯自平,国德芳,崔昌学,刘振刚,刘振宇.直接蒸发内融冰式冰蓄冷空调蓄冰槽内的传热特性研究[J].流体机械,2008,36(11):56-60,74
    [9]吴生,黄翔,武俊梅.热回收型热管间接蒸发冷却器在空调系统中的应用[J].陕西纺织,2008,4:57-60
    [10]徐方成,黄翔,武俊梅.蒸发冷却与机械制冷复合空调机组火用分析[J].建筑节能,2008,11:4-6,31
    [11]李刚.除湿蒸发冷却空调系统的优化设计[J].制冷与空调(北京),2008,8(5):82-85
    [12]栾景阳,陈述增,杜永恒,潘玉勤.地下水直接蒸发冷却空调技术在中南地区村镇建筑中利用潜力模型的研究[J].建设科技(建设部),2008,18:96-99
    [13]花严红,曹阳.蒸发冷却空调系统在我国村镇的适用性研究[J].制冷学报,2008,29(5):49-53
    [14]黄东.李权旭,吴蓓,袁秀玲.流路布置对热泵空调中冷凝和蒸发两用换热器性能的影响[J].西安交通大学学报,2008,42(9):1107-1112
    [15]黄翔,徐方成,武俊梅.蒸发冷却空调技术在节能减排中的重要作用[J].制冷与空调(北京),2008,8(4):17-20
    [16]靳世文,马崇扬,赖天伟,袁秀玲.空调用翅片管式蒸发器的模拟与分析[J].制冷与空调(北京),2008,8(4):101-104
    [17]张登春,陈焕新.蒸发冷却技术在我国干燥地区的应用研究[J].暖通空调,2000(3):12-15
    [18]陈沛霖.蒸发冷却技术在非干燥地区的应用[J].暖通空调,1995,25(4):3-8
    [19]Kishimoto T,Kobayashi J,Noda K,Aikawa K,Ueda M,Inouye S.Direct evaporative cooling of K 41 into a Bose-Einstein condensate[J].Phys Rev A,2009,79(3):22-32
    [20]Dagtekin M,Karaca C,Yildiz Y.Performance characteristics of a pad evaporative cooling system in a broiler house in a Mediterranean climate[J].Biosystems Engineering,2009,103(1):100-104
    [21]Lemouari M,Boumaza M,Kaabi A.Experimental analysis of heat and mass transfer phenomena in a direct contact evaporative cooling tower[J].Energy Conversion and Management,2009,50(6):1610-1617
    [22]Costelloe B,Finn D P.Heat transfer correlations for low approach evaporative cooling systems in buildings[J].Applied Thermal Engineering,2009,29(1):105-115
    [23]Heidarinejad G,Bozorgrnehr M,Delfani S,Esmaeelian J.Experimental investigation of two-stage indirect/direct evaporative cooling system in various climatic conditions[J].Building and Environment,2009,44(10):2073-2079
    [24]Reindl T,Jekel T B.Frost on air-cooling evaporators[J].ASHRAE Journal,2009,51(2):27-33
    [25]El-Refaie M F,Kaseb S.Speculation in the feasibility of evaporative cooling[J].Building and Environment,2009,44(4):826-838
    [26]Vitte T,Brau J,Chatagnon N,Woloszyn M.Proposal for a new hybrid control strategy of a solar desiccant evaporative cooling air handling unit[J].Energy and Buildings,2008,40(5):896-905
    [27]Jha S N.Development of a pilot scale evaporative cooled storage structure for fruits and vegetables for hot and dry region[J].Journal of Food Science and Technology,2008,45(2):148-151
    [28]Pearlmutter D,Erell E,Etzion Y.A multi-stage down-draft evaporative cool tower for semi-enclosed spaces:Experiments with a water spraying system[J].Solar Energy,2008,82(5):430-440
    [29]Herrero M R.Characterization of a semi-indirect evaporative cooler[J].Applied Thermal Engineering,2009,29(10):2113-2117
    [30]Hettiarachchi H D,Golubovic M,Worek W.M.The effect of longitudinal heat conduction in cross flow indirect evaporative air coolers[J].Applied Thermal Engineering,2007,27(11-12):1841-1848
    [31]Anon.Method of test for rating indirect evaporative coolers[J].ASHRAE Standard,2007,143:1-26
    [32]张旭,陈沛霖.风冷冷水机组与DEC联用系统性能及应用前景[J].暖通空调,1999,29(6):2-6
    [33]Jain S,Dhar P L,Kaushik S C.Evaluation of solid-desiccant-based evaporative cooling sycles for typical hot and humid climates[J].Internationail Journal of Refrigeration,1995,18(5):287-296
    [34]李方,李治彬,宋福元.蒸发冷却与吸收除湿空调系统的优化分析方法[J].黑龙江水专学报,2002,29(3):60-62
    [35]Saleh A,Al-Nimr M A.The effectiveness of multi-stage dehumidification-humidification for improving the cooling ability of evaporative air conditioning[J].Proc.Inst.Mech.Eng.Part A J.Power Eng.,2009,223(1):11-20
    [36]张小松,殷勇高,曹毅然.蓄能型液体除湿蒸发冷却系统中除湿性能的实验研究[J].热科学与技术,2004,3(1):60-64
    [37]GiabakLou Z,Ballinger J A.A passive evaporative cooling system by natural ventilation[J].Building and Environment,1996,31(6):503-507
    [38]徐方成,黄翔,武俊梅.与蒸发冷却复合的三种除湿空调系统对比分析[J].建筑热能通风空调,2008,27(6):47-49,59
    [39]Dadhich S M,Dadhich H,Verma R C.Comparative study on storage of fruits and vegetables in evaporative cool chamber and in ambient[J].International Journal of Food Engineering,2008,4(1):40-46
    [40]年卫琦,刘雄,杨登科.溶液除湿蒸发冷却空调制冷系统性能研究[J].流体机械,2008,36(2):74-79
    [41]Lomas K J,Fiala D,Cook M J,Cropper P C.Building bioclimatic charts for non-domestic buildings and passive dowdraught evaporative cooling[J].Building and Environment.2004,36(39):661-676
    [42]陈沛霖.空调运行节能[J].制冷空调与电力机械,2001,22(3):1-4
    [43]Boris H.A general mathematical model of evaporative cooling devices[J].Rev Cen Therm,1998,37:245-255
    [44]Guo X C,Zhao T S.A parametric study of an evaporative air cooler[J].Int Comm Heat Mass Transfer,1998,25(2):217-226
    [45]San Jose Alonso J F,Rey Martinez F J,Velasco Gomez E,Alvarez Guerra Plasencia M A.Simulation mosel of an indirect evaporative cooler[J].Energy and Buiding,1998,29:23-27
    [46]Bourhan T,Mahmood T,Ahmed A,Victor A M,Doug R Thermodynamic behaviour of an air- conditioning system employing combined evaporative-water and air cooler[J]. Applied Energy, 2001,70:305-319
    [47] Maheshwari G P, Al-Ragom F, Suri R K. Energy-saving potential of an indirect evaporative cooler[J]. Applied Energy, 2001, 69:-76
    [48] James, George P, Datta A K. Development and validation of heat and mass transfer models for freeze -draying of vegetable slices[J]. Journal of Food Engineering, 2002, 52(1):89-93
    [49] Nobuaki E, Hiroshi K, Koichi A. Heat and mass transfer model approach to optimum design of cryogenic air separation plant by packed columns with structured packing[J]. Separation and Purification Technology, 2002, 29(2):141-151
    [50] Dai Y J, Sumathy K. Theoretical study on a cross-flow direct evaporative cooler using honeycomb paper as packing material[J]. Applied Thermal Engineering, 2002, 22:1417-1430
    [51] Sander A, Skansi D, Bolf N. Heat and mass transfer models in convection drying of clay slabs[J]. Ceramics International, 2003, 29(6):641-653
    [52] Sman R G M. Simple model for estimating heat and mass transfer in regular-shaped food[J]. Journal of Food Engineering, 2003, 60(4):383-390
    [53] Raisul Islam M, Wijeysundera N E, Ho J C. Simpled models for coupled heat and mass transfer in falling film absorbers[J]. International Journal of Heat and Mass Transfer, 2004, 47(2):395-406
    [54] Yong L, Sumathy K. Comparison between heat transfer and heat mass transfermodels for tarnsportation process in an adsorbent bed[J]. International Journal of Heat and Mass Transfer, 2004, 47(8-9): 1587-1598
    [55] Pascal S, Marchio D. Simplified model for indirect-contact evaporative cooling-tower behaviour[J]. Applied Energy, 2004, 78:433-451
    
    [56] Gilles C, Derrick A C, Peter E. Heat exchange by mass transfer in isothermal environment: A two- parameters non-linear model[J]. International Journal of Heat and mass Transfer, 2005, 48(25-26):5408-5416
    
    [57] Ren C Q, Yang H X. An analytical model for the heat and mass transfer processes in indirect evaporative cooling with parallel/counter flow configuration[J]. International Journal of Heat and Mass Transfer, 2006, 49:617-627.
    [58] Bilal A Q, Syed M Z. A complete model of wet cooling towers with fouling in fills[J]. Applied Thermal Engineering, 2006, 26:1982-1989
    [59] Maggio G, Freni A, Restuccia G. A dynamic model of heat and mass transfer in a double-bed adsorption machinewith internal heat recovery [J]. International Journal of Refrigeration, 2006, 29(4):589-600
    [60] Hettiarachchi HDM, Golubovic M, Worek W M. The effect of longitudinal heat conduction in cross flow indirect evaporative air coolers[J]. Applied Thermal Engineering, 2007, 27:1841-1848
    [61] Jain D. Development and testing of two-stage evaporative cooler[J]. Building and Environment, 2007, 42:2549-2554
    [62] Qureshi B A, Zubair S M. Prediction of evaporation losses in evaporative fluid coolers[J]. Applied Thermal Engineering, 2007, 27:520-527
    [63] Wu J M, Huang X, Zhang X. Theoretical analysis on heat and mass transfer in a direct evaporative cooler[J]. Applied Thermal Engineering, 2009, 29:980-984.
    [64] Liu K H, Jiang Y, Qu K Y. Heat and mass transfer model of cross flow liquid desiccant air dehumidifier/regenerator[J]. Energy Conversion and Management, 2009, 50(2):546-554
    [65] Camargo J R, Ebinuma C D, Silveira J L. Experimental performance of a direct evaporative cooler operating during summer in a Brazilian city[J]. International Journal of Refrigeration, 2005, 28(7): 1124-1132
    [66] Kickinger R, Wimmer P, Leibinger H. Numerical and experimental analysis of an evaporation cooler[J]. ASME Pressure Vessels Piping Div Publ PVP, 2002, 448(2):133-143.
    
    [67] Lemouari M, Boumaza M, Kaabi A. Experimental analysis of heat and mass transfer phenomena in a direct contact evaporative cooling tower[J]. Energy Conversion and Management, 2009, 50:1610-1617
    
    [68] Bayrakci H C, Ozgur A E, Kunduz M. Experimental analysis of heat and mass transfer between serpentine and water sprays in evaporative coolers[J]. Journal of the Faculty of Engineering and Architecture of Gazi University, 2007, 22(3):399-406
    
    [69] Goshayshi H R, Missenden J F. The investigation of cooling tower packing in various arrangements[J]. Appl Therm Eng 2000, 20:69-80.
    [70] Kloppers J C, Kroger DG. Refinement of the transfer characteristic correlation of wet cooling tower fills[J]. Heat Transfer Eng, 2005, 26(4):35-41.
    [71] Elsarrag E. Experimental study and predictions of an inclined draft ceramic tilepacking cooling tower[J]. Energy Convers Manage, 2006, 47:2034-2043.
    [72] Gharagheizi F, Hayati R, Fatemi S. Experimental study on the performance of mechanical cooling tower with two types of film packing[J].Energy Convers Manage, 2007, 48:277-280.
    [73] Hawlader M, Liu B. Numerical study of the thermal-hydraulic performance of evaporative natural draft cooling towers[J]. Appl Therm Eng, 2002, 22:41-59.
    [74] Khan J R, Qureshi B A, Zubair S M. A comprehensive design and performance evaluation study of counter flow wet cooling towers [J]. Int J Refrig, 2004, 27:914-923.
    [75] Kloppers J C, Kroger D G. A critical investigation into the heat and mass transfer analysis of counter flow wet-cooling towers[J]. Int J Heat Mass Transfer, 2005, 48:765-777.
    [76] Qureshi B A, Zubair S M. A complete model of wet cooling towers with fouling in fills.Appl Therm Eng, 2006, 26:1982-1989.
    [77] Milosavljevic N, Heikkila P. A comprehensive approach to cooling tower design[J].Appl Thermal Eng, 2001,21:899-915.
    [78] Kloppers J C, Kroger D G. Loss coefficient correlation for wet cooling tower fills[J]. Appl Therm Eng, 2003, 23:2201-2211.
    [79] Jameel U K, Yaqub M, Zubair S M. Performance characteristics of counter flow wet cooling towers[J]. Energ Convers Manage, 2003, 44:2073-2091.
    [80] Gao M, Sun F Z, Wang K, Shi Y T, Zhao Y B. Experimental research of heat transfer performance on natural draft counter flow wet cooling tower under cross-wind conditions[J]. International Journal of Thermal Sciences, 2008, 47:935-941
    [81] Kloppers J C, Kroger D G. The Lewis factor and its influence on the performance prediction of wet-cooling towers[J]. Int J Therm Sci, 2005, 44:879-884.
    [82] Zhai Z, Fu S. Improving cooling efficiency of dry-cooling towers under cross-wind conditions by using wind-break methods[J]. Applied Thermal Engineering, 2006, 26:1008-1017.
    [83] Kloppers J C, Kroger D G, The Lewis factor and its influence on the performance prediction of wet-cooling towers[J]. International Journal of Thermal Sciences[J], 2005, 44:879-884.
    [84] Smrekar J, Oman J. Improving the efficiency of natural draft cooling towers [J]. Energy Conversion and Management, 2006, 47:1086-1100.
    [85] Fisenko S P, Petruchik A I. Evaporative cooling of water in a natural draft cooling tower [J]. International Journal of Heat and Mass Transfer, 2002, 45: 4683-4694.
    [86] Fisenko S P, Brin A A, Petruchik A I. Evaporative cooling of water in a mechanical draft cooling tower[J]. International Journal of Heat and Mass Transfer, 2004, 47:165-177.
    [87] Isozumi R, Ito Y, Ito I, Osawa M, Hirai T, Takakura S. An outbreak of Legionella pneumonia originating from a cooling tower[J]. Scand J Infect Dis, 2005, 37(10):709-711.
    [88] Micheletti W.Atmospheric emissions from evaporative cooling towers[J]. Cooling Tower J 2006, 27(1):60-69.
    [89] Lucas M, Martinez P J, Viedma A. Experimental study on the thermal performance of a mechanical cooling tower with different drift eliminators [J]. Energy Convers Manage, 2009, 50:490-497.
    [90] Lucas M, Martinez P J, Viedma A. Comparative experimental drift study between a dry and adiabatic fluid cooler and a cooling tower[J]. International Journal of Refrigeration, 2008, 31:1169-1175
    
    [91] Gomez E V, Martinez F G R, Diez F V, Leyva M J M. Description and experimental results of a semi-indirect ceramic evaporative cooler[J]. International Journal of Refrigeration, 2005, 28(5):654-662
    
    [92] Al-Juwayhel F I, Al-Haddad A A, Shaban H I, El-Dessouky H T A. Experimental investigation of the performance of two-stage evaporative coolers[J]. Heat Transfer Engineering, 1997, 18(2):21-33
    [93] Soylemez M S.On the optimum performance of forced draft counter flow cooling towers[J]. Energ Convers Manage, 2004, 45:2335-2341.
    [94] Chuklin S G, Yanovskiy Y L. Heat transfer in a plate-type evaporative condenser[J]. Heat Transfer Soviet-Research, 1975, 7(5):79-84
    [95] Maclain-Cross I L. Banks P J. A general theory of wet surface heat exchangers and its application to regenerative evaporative cooling[J]. Journal of Heat Transfer, 1981, 103: 579-584
    [96] Kettleborough C F, Hsieh C S.The thermal performance of the wet surface plastic plate heat exchanger used as an indirect evaporative cooler[J]. ASME Journal of Heat Transfer, 1983, 105:366-373
    [97] Webb R L. A unified theoretical treatment of thermal analysis of cooling towers, evaporative condensers, and fluid coolers[J]. ASHRAE Transaction, 1984, 90:398-415
    [98] Chen P, Qin H, Huang Y J. A heat and mass transfer model for thermal and hydraulic calculations of indirect evaporative cooler performance [J]. ASHRAE Transaction, 1991, 97(2): 852-865
    [99] Boris H. A general mathematical model of evaporative cooling devices[J]. Rev.Cen.Therm., 1998, 37:245-255
    [100]Pascal S,Dominique M.Simplified model for indirect-contact evaporative cooling-tower behaviour[J].Applied Energy,2004,78:433-451
    [101]Qureshi B A,Zubair S M.Second-law-based performance evaluation of cooling towers and evaporative heat exchangers[J].International Journal of Thermal Sciences,2007,46(2);188-198
    [102]孙奉仲,朱玉萍,张克,高山.冷却塔设计的数学模型及先进设计方法.山东电力技术[J],2002,128(6):6-9
    [103]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,1998
    [104]马义伟.空冷器设计与应用[M],哈尔滨:哈尔滨工业大学出版社,1998
    [105]程林,冷学礼,杜文静.基于降低污垢热阻的复合强化传热研究[J].工程热物理学报,2003,24(3):502-504
    [106]崔福仪,李晓明,周红.污水换热器污垢热阻特性研究[J].煤气与热力,2005,25(6):9-12
    [107]刘金平,刘雪峰,杜艳国,魏瑞军,孔庆军.凝汽器冷却水污垢热阻的研究[J].中国电机工程学报,2008,25(15):100-105
    [108]A.J.查普曼著,何用梅译.传热学[M].1984.
    [109]许为全.热质交换过程与设备[M].北京:清华大学出版社,1999
    [110]Maclaine-cross I L,Banks P J.A general theory of wet surface heat exchangers and its application to regenerative evaporative cooling[J].J.Heat Transfer Trans ASME,1981,103:579-585
    [111]Stabat P,Marchio D.Simplified model for indirect-contact evaporative cooling-tower behaviour[J].Appl.Energy,2004,78:433-451
    [112]Berlemont A,Grancher M S,Gouesbet G..Heat and mass transfer coupling between vaporizing droplets and turbulence using a lagrangian approach[J].Int.J.Heat Mass Transfer,1995,38:3023-3034
    [113]Smolik J,Dzumbova L,Schwarz J,Kulmala M.Evaporation of ventilated water droplet:connection between heat and mass transfer[J].J.Aerosol Sci.,2001,32:739-784
    [114]Beck JC,Watkins A P,The droplet number moments approach to spray modelling:the development of heat and mass transfer sub-models[J].Int.J.Heat Fluid Flow,2003,24:242-259
    [115]Mezhericher M,Levy A,Borde I.Heat and mass transfer of single droplet/wet particle drying[J]. Chem.Eng.Sci.,2008,63:12-23
    [116]Abou A S,Maher M,Birouk M,Droplet heat and mass transfer in a turbulent hot airstream[J].Int.J.Heat Mass Transf.,2008,51:1313-1324
    [117]Webb R L,Ph.D P E.A unified theoretical treatment of thermal analysis of cooling towers[J].evaporative condensers,and fluid cooler,ASHRAE Trans.,1984,90:398-415
    [118]Qureshi B A,Zubair S M.Second-law-based performance evaluation of cooling towers and evaporative heat exchangers[J].Int.J.Therm.Sci.,2007,46:188-198
    [119]Rodriguez N J,Davey D,Vazquez J A.Hemandez A J,Numerical modelling of unsteady convective-diffusive heat transfer with a control volume hybrid method[J].Applied Mathematical Modelling,2008,33:897-923
    [120]Hakan D,Ahmet K,Galip T.Heat transfer of horizontal parallel pipe ground heat exchanger and experimental verification[J].Applied Mathematical Modelling,2008,29:224-233
    [121]Rady M A,Huzayyin A S,Arquis E,Monneyron P,Lebot C,Palomob E.Study of heat and mass transfer in a dehumidifying desiccant bed[J].Renew.Energy,2008,34:718-726
    [122]陶金连.换热器计算的另一种方法.安徽工学院学报[J].1992,11(3):94-99
    [123]陶金连.顺、逆流换热器温度分布曲线的形状分析[J].安徽工学院学报,1993,12(1):92-96[124]梁日忠.间壁换热器流体的温度分布[J].化学工业与工程技术.2000,21(3):1-3
    [125]王军,陈良才,冯志力.并、逆流间壁换热器冷热流体温度分布方程[J].2008,37(3):9-12
    [126]Wang J,Chen L C,He W,Feng Z L,Liu W.Temperature distribution of the incompletely mixed fluid flowing in the tubes and the unmixed fluid crossing over the tubes[J].Journal of Energy and Power Engineering,2007,1(1):49-56
    [127]曾丹笭,熬越,张新铭,刘朝。工程热力学[M].北京:高等教育出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700