硅胶基复合干燥剂强化除湿机理及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干燥剂除湿具有传质效率高、可用余热、太阳能低位热能驱动等突出优点,在室内环境湿度控制、工业干燥等场合有广泛用途。然而传统干燥剂存在吸湿量小、性能不够稳定以及再生要求相对较高等问题。本文研制了一种动态吸湿量大、再生容易、性能稳定的由硅胶和卤素盐(氯化锂)组成的新型复合干燥剂,可有效利用低位余热、太阳能等热源。论文确定了复合干燥剂的强制液解工艺过程,得到了复合干燥剂不发生液解的最佳成份配比,解决了困扰复合干燥剂应用的液解问题。实验测量了复合吸附剂和常用干燥剂(包括硅胶和沸石分子筛13X)在典型温度(25℃、35℃、40℃)下的空气吸水等温线,结果表明复合吸附剂的吸湿能力比常用吸附剂(如硅胶)的高出67%~145%。分析复合干燥剂的成份、孔隙结构、等温线类型以及吸附热等,提出了复合干燥剂—水分平衡吸附模型。揭示了硅胶基复合干燥剂材料基于物理吸附与化学吸附耦合作用的强化吸湿机理。
     论文提出了陶瓷基除湿转轮复合干燥剂浸渍和附着方法,制作了采用新型复合干燥剂材料的除湿转轮,设计搭建了干燥剂转轮除湿器除湿特性测试台,对干燥剂转轮除湿器的动态、稳态除湿特性进行了实验分析,并与常规转轮进行了对比。实验结果表明,在相同的气候条件下,复合干燥剂转轮的最佳再生温度低于硅胶转轮,而且除湿量比同规格的硅胶转轮提高了50%。在低湿的气候条件下,复合转轮的除湿优势更加明显。特别发展了陶瓷基干燥剂转轮除湿器数学模型,并进行了实验验证。在此基础上分析了除湿转轮各参数对转轮最优转速的影响,指明强化转轮传热、传质过程的途径。
     论文设计搭建了潜热、显热分级处理、应用新型干燥剂转轮除湿器的复合空调系统实验台,对复合除湿空调潜热传递规律和节能特性进行了理论分析与实验研究,揭示了利用新型干燥剂转轮除湿装置潜热、显热分级处理的空调流程的优越性和节能潜力,并围绕性能指标进行了优化。
Desiccant dehumidification has high mass transfer efficiency. It can make use of low-grade heat energy as driving force, such as waste heat and solar energy. Furthermore it also can be applied in the following fields, for example humidity control, industry desiccant and so on. However traditional desiccant has smaller dynamic adsorption amounts, unstable dehumidification performance, and it needs high temperature to regenerate the conventional desiccant. In this paper a composite desiccant with bigger dynamic adsorption amounts, stable dehumidification performance and low regeneration temperature is developed. The new composite desiccant is composed of silica gel and lithium chloride. The lyolysis puzzled the application of composite desiccant. In this paper the craft of forced lyolysis is determined. Furthermore the lyolysis is avoided and the optimal mixture ratio of the composite desiccant is obtained. SEM-EDAX, ASAP2010 and dynamical mechanics/differential thermal analyzer are used to character the composite desiccant. The reinforce adsorption mechanism of composite desiccant is explored based on the couple of physics adsorption and chemical adsorption. The adsorption isotherm of composite desiccant and traditional desiccants (silica gel and 13X molecular sieve) are measured under the classic temperature (25℃、35℃、and 40℃). The experimental results indicate that adsorption capacity is higher than that of silica gel by about 67%~145%. This paper analysis the type of isotherm adsorption, adsorption heat and pore structure for composite desiccant. A water vapor equilibrium adsorption model of composite desiccant is put forward.
     The dipping and adhesion method of composite desiccant wheel is raised in this paper. A new composite desiccant wheel is made and experimental equipment of desiccant wheel is built up. The dynamic and steady dehumidification performance of the desiccant wheels are measured and compared with traditional silica gel wheel by means of the experimental equipment. The experimental results reveal that the optimal regeneration temperature of composite desiccant is lower than that of silica gel desiccant wheel under the same experimental conditions and the moisture removal amounts is higher than silica gel wheel by 30%~50%. Moreover the dehumidification predominance of the composite desiccant wheel is more obvious under low moisture climate. Especially a mathematical model for composite desiccant wheel based on ceramic is developed and validated by experimental data. On the base of valid model the effects of parameters on the optimal rotation speed are analyzed. These analytic results demonstrate the reinforce approach of heat and mass transfer.
     Hybrid air conditioner equipment that deals the latent heat and sensible heat separately is designed and established. The transfer rule of latent heat and energy conversion characteristic of the hybrid air conditioner are analyzed theoretically and experimentally. It illuminates the advantage and energy conversion potential of the hybrid air conditioner using the composite desiccant wheel. Moreover the performance is optimized according to the performance index.
引文
(1) 彦启森,石文星. 空调器的发展历程与展望,制冷与空调, 3, 1997:10-16。
    (1) 殷平. 室内空气计算参数对空调系统经济性的影响,暖通空调. 2, 2002:21-25。
    (2) 沈晋明. 我国目前室内空气品质改善的对策与措施,暖通空调. 2,2002: 34-37。
    (3) J. Wurm, D. Kosar, T. Clemens, Solid desiccant technology review, Bulletin of the international institute of refrigeration, 82 (3), 2002: 2-31.
    (4) R. F. BabusHaq, H. Olsen & S. D. Probert, Feasibility of Using an Integrated Small-Scale CHP Unit plus Desiccant Wheel in a Leisure Complex, Applied Energy, 53(1996) 179-192.
    (5) Oscik, J. Adsorption, ed. I. L. Cooper. Ellis Horwood, Chichester, UK, 1982.
    (6) 董代富,正确使用干燥剂硅胶,感光材料,1996,(5),57。
    (7) M. A.Tahat, Babus,Haq, T. F. O,Callaghan, P. W. & Probert, S. D., Thermochimica Acta,255(1995) 39-47.
    (8) G. W.Brundrett, Handbook of Dehumidification Technology. Butterworths, London, 1987.
    (9) 薛殿华,空气调节,清华大学出版社,1997。
    (10) A. L.Hines, T. K.Ghosh, S. K. Loyalka, R. C.Warder, Indoor Air: Quality and Control. PTR Prentice Hall, New Jersey, 1993.
    (11) G. W.Brundrett, Handbook of Dehumidification Technology. Butterworths, London, 1987.
    (12) Desiccant Rotors. Munters, Huntingdon, UK., 1992.
    (13) A. W. Czanderna, Polymers as advanced materials for desiccant applications: I-Commercially available polymers, ASHRAE Transactions, Vol. 95, Part II, 1989.
    (14) T.W.Chung, T.S.Yah, Influence of manufacturing variable on surface properties and dynamic adsorption properties of silica gel, Journal of Non-Crystalline Solids, 279,2001:145-153.
    (15) 丁静,吸附式气体净化过程传递机理与杀菌动力学研究.华南理工大学博士后研究工作报告,1998。
    (16) 方玉堂等,新型 Al3+掺杂硅胶吸附材料的制备与性能. 华南理工大学学报. 32(3), 2004:3-9。
    (17) D.A.White, R.L.Bussey, Water sorption properties of modified clinoptilolite, Separation and purification technology, 11(2), 1997:137-141.
    (18) H.G.Monte,Y.Geraud, ESEM observations of compacted bentonite submitted to hydration/dehydration conditions, Colloids and Surface A: Physicochem. Eng. Aspects, 235(1-3), 2004:17-23.
    (19) O.M. Sadek, W.K.Mekhemer, Na-montmorillonite clay as thermal energy storage material ,Thermochimica Acta, 370( 1-2) ,2001: 57-63。
    (20) 周莉,从鱿鱼软骨提取 β-甲壳质及其结构表征与应用性能,精细化工,20(1),2003:8-10。
    (21) M.R.Ladisch, Biobased adsorbents for drying of gases, Enzyme Microbial Tech, 20(3), 1997:162-164.
    (22) K.E. Beery, M.R. Ladisch, Chemistry and properties of starch based desiccants, Enzyme Microbial Tech. 28(7-8),2001:573-581.
    (23) J. Khedari, R. Rawangkul, W. Chimchavee, Feasibility study of using agriculture waste as desiccant for air conditioning system, Renewable energy, 28(10),2003:1617-1628.
    (24) L.G.Gordeeva, M.M. Tokarev, V.N.Poarmon, Yu.I.Aristov et al. New composite sorbents for solar-driven technology of fresh water production from the atmosphere, Solar energy,66(2), 1999:165-168.
    (25) E. A. Levitskij, Yu. I. Aristov, M. M. Tokarev et al. “Chemical Heat Accumulators”: A New Approach to Accumulating Low Potential Heat. Solar Energy Materials and Solar Cells. 1996. 44, pp. 219-235.
    (26) Yu. I. Aristov, M.M Tokarev, G.Cacciola, et al. Selective Water Sorbents for Multiple Applications, 1. CaCl2 Confined in mesopores of Silica Gel: Sorption properties. Reaction Kinetics and Catalysis Letters. 59(2) ,1996:325-333.
    (27) Yu. I. Aristov, M.M Tokarev, G.Restuccia, et al. Selective Water Sorbents for Multiple Applications, 2. CaCl2 Confined in micropores of Silica Gel: Sorption properties. Reaction Kinetics and Catalysis Letters. 59(2), 1996:335-342.
    (28) Yu. I. Aristov, G. D. Marco, M. M. Tokarev, V. N. Parmon, Selective water sorbents for multiple applications, 3. CaCl2 solution confined in micro- and mesoporous silica gels: pore size effect on the“solidification-melting”, Reaction Kinetics and Catalysis Letters, 61 (1), 1997: 147-154.
    (29) M.M Tokarev, Yu. I. Aristov. Selective Water Sorbents for Multiple Applications, 4. CaCl2 Confined in Silica Gel Pores: Sorption/Desorption Kinetics. Reaction Kinetics and Catalysis Letters. 62(1), 1997:143-150.
    (30) L.G.Gordeeva, M.M Tokarev, V.N.parmon, Yu. I. Aristov. Selective Water Sorbents for Multiple Applications, 6 freshwater production from the atmosphere.1998,65(1):153-159.
    (31) 刘业凤,空气取水用复合吸附剂的吸附性能及吸附动力学特性研究,上海交通大学博士论文,2003。
    (32) 张学军,代彦军,王如竹,新型复合干燥剂吸附分形特性,工程热物理学报,25(2),2004:320-322。
    (33) J.C. González, M. Molina-Sabio, F. Rodríguez-Reinoso, Sepiolite-based adsorbents as humidity controller,Applied Clay Science, 20, 2001:111-118.
    (34) Z.Lavan, J.B.Monnier, W.M.Worek, Second law analysis of desiccant cooling systems. ASME Journal of solar energy engineering, 104(3), 1982:229-236.
    (35) W.M. Worek, Z.Lavan, Performance of a cross-cooled desiccant dehumidifier prototype. ASME Journal of solar energy engineering, 104(3), 1982:187-196.
    (36) 刘晓茹,袁卫星,于志强,内冷却紧凑式叉流除湿器性能数值模拟与分析,太阳能学报,26(1),2005:110-115。
    (37) S. Singh, P. P. Singh, Regeneration of silica gel in multi-shelf regenerator, Renewable Energy, 13 (1), 1998: 105-119.
    (38) 冯圣洪,陈在康等,蜂窝通道硅胶除湿器的实验研究,洁净与空调技术,1,2001:21-24。
    (39) S. M. Lai, P. C. Tseng, and Y. K. Chuah, Computer Simulation and Performance Analysis of a Purged Rotary Dehumidifier, Studies in Surface Science and Catalysis,. 80,1993:349-356.
    (40) R. K. Collier, B. M. Cohen, An analytical examination of methods for improving the performance of desiccant cooling systems, ASME Journal of Solar Energy Engineering 113, 1991: 157-163.
    (41) R. S. Barlow, Analysis of the adsorption process and of desiccant cooling systems: A pseudo-steady-state model for coupled heat and mass transfer, U. S. Department of Energy Report No. SERI/TR-631-1330, Solar Energy Research Institute, Golden, Colo., 1982.
    (42) J. J. Jurinak, J. W. Mitchell, Effect of matrix properties on the performance of a counterflow rotary dehumidifier, Journal of Heat Transfer 106, 1984: 638-645.
    (43) D. Charoensupaya, W. M. Worek, Parametric study of an open-cycle adiabatic, solid, desiccant cooling system, Energy, 13 (9), 1988: 739-749.
    (44) W. Zheng, W. M. Worek, Numerical simulation of combined heat and mass transfer process in a rotary dehumidifier, Numerical Heat Transfer 23, Part A, 1993: 211-232.
    (45) I. L. Maclaine-cross, P. J. Banks, Coupled heat and mass transfer in regenerators- Prediction using an analogy with heat transfer, Int. J. Heat Mass Transfer 15, 1972: 1225-1242.
    (46) E. Van Den Bulck, J. W. Mitchell, S. A. Klein, Design theory for rotary heat and mass exchangers- I. Wave analysis of rotary heat and mass exchangers with infinite transfer coefficients, Int. J. Heat Mass Transfer 28, 1985: 1575-1586.
    (47) E. Van Den Bulck, J. W. Mitchell, S. A. Klein, Design theory for rotary heat and mass exchangers- II. Effectiveness-number-of-transfer-units method for rotary heat and mass exchangers, Int. J. Heat Mass Transfer 28, 1985: 1587-1595.
    (48) E. Van Den Bulck, S. A. Klein, J. W. Mitchell, Second law analysis of solid desiccant rotary dehumidifier, ASME Journal of Solar Energy Engineering 110, 1988: 2-9.
    (49) 代彦军,干燥剂除湿与蒸发冷却复合传热传质及应用研究,西北工业大学博士论文,1999。
    (50) 张学军,代彦军,王如竹,蜂窝式除湿转轮的传热传质数学模型及其实验验证,机械工程学报,1,2005:。
    (51) X. J. Zhang, Y. J. Dai, R. Z. Wang, A simulation study of heat and mass transfer in a honeycombed rotary desiccant dehumidifier, Applied Thermal Engineering, 23 (8), 2003: 989-1003.
    (52) 张学军,代彦军,王如竹,蜂窝式干燥转轮除湿性能的参数优化:峰值分析法和波形分析法,机械工程学报,5,2005。
    (53) A. A. Pesaran, A. F. Mills, Moisture transport in Silica Gel packed beds- I. Theoretical study, Int.J. Heat and Mass Transfer 30, 1987: 1037-1049.
    (54) A. A. Pesaran, A. F. Mills, Moisture transport in Silica Gel packed beds- II. Experimental study, Int. J. Heat and Mass Transfer 30, 1987: 1051-1060.
    (55) P. Majumdar, Heat and mass transfer in composite desiccant pore structures for dehumidification, Solar Energy, 62 (1), 1998: 1-10.
    (56) J. L. Niu, L. Z. Zhang, Effects of wall thickness on the heat and moisture transfers in desiccant wheels for air dehumidification and enthalpy recovery, Int. Comm. Heat Transfer, 29 (2), 2002: 255-268.
    (57) 代彦军; 俞金娣; 张鹤飞,扩散及吸附剂特性系数对转轮除湿器性能的影响,太阳能学报,19(4),1998:388-393
    (58) Tai-Hee Eun, Hyun-Kon Song, John Hun Han. Enhancement of heat and mass transfer in silica-expanded graphite composite blocks for adsorption heat pumps: Part I. Characterization of the composite blocks. International Journal of Refrigeration, 23, 2000:64-73.
    (59) 陈海军,崔群,顾春华,姚虎卿,吸附制冷用复合吸附剂导热性能强化,南京工业大学学报(自然科学版)1,2004:13-18
    (60) 朱冬生,汪立军,康新宇等,太阳能旋转除湿轮中强化热传导性能的实验研究,太阳能学报,19(2),1998:196-198.
    (61) B. Kovak, P. R. Heimann, J. Hammel, Sanitizing effects of desiccant-based cooling, ASHRAE Journal, 39 (4), 1997: 60-64.
    (62) N. A. Pennington, Humidity changer for air conditioning, U. S. Patent No. 2, 700, 537, 1955
    (63) S. S. Mathaudhu, HVAC for energy showcase, ASHRAE Journal, 39 (7), 1997: 27-30.
    (64) D. G. Waugaman, A. Kini, C. F. Kettleborough, A review of desiccant cooling systems, Journal of Energy Resources Technology 115, 1993: 1-8.
    (65) R. V. Dunkle, A method of solar air conditioning, Mech. and Chem. Eng. Trans., I. E., 1965: 73-78.
    (66) G. O. G. Lof, J. Appleyard, Preliminary performance of simplified advanced solar desiccant cooling system employing air-to-water exchanger coil and partial air recirculation, Proceedings of the 10th Annual ASME Solar Energy Conference, Denver, Colo., 1988: 145-151.
    (67) D. G. Waugaman, C. F. Kettleborough, Combining direct and indirect evaporative cooling with a rotating desiccant wheel in residential applications, Solar Engineering 2, 1987: 848-854.
    (68) J. J. Jurinak, J. W. Mitchell, W. A. Beckman, Open-cycle desiccant air conditioning as an alternative to vapor compression cooling in residential applications, ASME Journal of Solar Energy Engineering 106, 1984: 252-260.
    (69) T. S. Kang, I. L. Maclaine-cross, High performance solid desiccant open cooling cycles, ASME Journal of Solar Energy Engineering 111, 1989: 176-183.
    (70) 冯毅,谭盈科,李宗楠,太阳能驱动的吸附除湿空调系统的研究,太阳能学报,21(3),2000:265-268。
    (71) H-M. Henning, T. Erpenbeck, C. Hindenburg et al, The potential of solar energy use in desiccant cooling cycles, International Journal of Refrigeration 24, 2001: 220-229.
    (72) P. R. Burns, J. W. Mitchell, W. A. Beckman, Hybrid desiccant cooling systems in super market applications, ASHRAE Trans. 91, Part-1B, 1985: 457-468.
    (73) J. C. Sheridan, J. W. Mitchell, Hybrid solar desiccant cooling system, Solar Energy, 34 (2), 1985: 187-193.
    (74) W. M. Worek, C. J. Moon, Simulation of an integrated hybrid desiccant vapor-compression cooling system, Energy, 11 (10), 1986: 1005-1021.
    (75) P. L. Dhar, S. K. Singh, Studies on solid desiccant based hybrid air-conditioning systems, Applied Thermal Engineering 21, 2001: 119-134.
    (76) R.P.W.Scott, Silica gel and bonded phases, New York Wiley, 1993.
    (77) R.Conde. Manuel, Properties of aqueous solutions of lithium and calcium chlorides: formulations for use in air conditioning equipment design, International Journal of thermal science, 43,2004, 367-382.
    (78) 北川浩,铃木谦一郎,吸附的基础和设计,化学工业出版社,1983。
    (79) S.Bruauer,L.S.Deming, W.E.Deming, E.Teller, On a theory of the van der Waals adsorption of gases, Journal of the American Chemical Society, 62,1940:1723-1732.
    (80) R.T.Yang 著,王树森,曾美云,胡竞民 译,吸附法气体分离,1987:18-19。
    (81) 杨世铭 著,传热学(第二版),高等教育出版社,1994。
    (82) (波兰)M.杰罗尼克,(美)R.迈狄著,非均匀固体上的物理吸附,化学工业出版社,1997年。
    (83) 叶振华 著 化工吸附分离过程,化学工业出版社,1992 年。
    (84) W.I.Friesen. R.J.Mikula, Fractal dimension of coal particles, Journal of Colloid Interface Science. 120,1987:263-271.
    (85) B. Meng, Determination and interpretation of fractal properties of the sandstone pore system, Materials structure, 29, 1996:195-205
    (86) B. B. Mandelbrot, The fractal geometry of nature, Freeman, San Francisco, 1982.
    (87) P. Pfeifer, D. Avnir, Chemistry in noninteger dimensions between two and three- I. Fractal theory and heterogeneous surfaces, J. Chem. Phys. 79 (7), 1983: 3558-3565.
    (88) P. Pfeifer, D. Avnir, Chemistry in noninteger dimensions between two and three- I. Fractal theory and heterogeneous surfaces (erratum), J. Chem. Phys. 80, 1984: 4573.
    (89) D. Avnir, D. Farin, P. Pfeifer, Chemistry in noninteger dimensions between two and three- II. Fractal surfaces of adsorbents, J. Chem. Phys. 79 (7), 1983: 3566-3571.
    (90) P. Pfeifer, D. Avnir, D. Farin, Ideally irregular surfaces of D>2, in theory and practice, Surface Sci. 126, 1983: 569-572.
    (91) D. Avnir, D. Farin, P. Pfeifer, Molecular fractal surfaces, Nature 308 (5956), 1984: 261-263.
    (92) D.Avnir, M. Jaroniec, Langmuir, 5,1989:43
    (93) H.Y.Huang, J.Padin, R.T.Yang Comparison of π-complexations of ethylene and carbon monoxide with Cu+ and Ag+. Ind. Eng. Chem. Res., 38,1999: 2720-2725.
    (94) A. Kodama, T. Hirayama, M. Goto, T. Hirose, R. E. Critoph, The use of psychrometric charts for the optimization of a thermal swing desiccant wheel, Applied Thermal Engineering 21, 2001:1657-1674
    (95) M.Beccali, Simplified models for the performance evaluation of desiccant wheel dehumidification, International journal of energy research, 27(1), 2003:17-29.
    (96) 苏长荪,谭连城,刘桂玉,高等工程热力学,高等教育出版社,1987。
    (97) 沈维道,郑佩芝,蒋淡安,工程热力学,高等教育出版社,1983。
    (98) J. Y. San, Heat and mass transfer in a two-dimensional cross-flow regenerator with a solid conduction effect, Int. J. Heat Mass Transfer, 36 (3), 1993: 633-643.
    (99) K.J.Sladek, E.R,Gilliland, R.F. Buddour, Diffusion on surface Ⅱ, correlation of diffusivities of physically and chemically adsorbed specie. Industrial chemical fundamental, 13(2), 1974:867-878.
    (100) F.P. Incropera, D.P Dewitt, Fundamental of heat and mass transfer, NewYork, Wiley.
    (101) 陶文铨,数值传热学,西安交通大学出版社,1988。
    (102) W.Zheng,W.M.Worek, D.Novesel. Performance optimization of rotary dehumidifier. Journal of Solar Energy Engineering, 117, 1995:40-44.
    (103) Y.J.Dai,R.Z.Wang,J.D.Yu, Use of Liquid desiccant cooling to improve the Performance of vapor compression air conditioning. Applied Thermal Engineering, 21, 2001:1185-1202
    (104) H.Wang , S.Touber, Distributed and Non-steady-state Modelling of an Air Cooler, Int.J.of Refrig, 14(2),1991:98-111.
    (105) M.Turaga and R.W.Guy.Refrigerant Side Heat Transfer and Pressure Drop Estimates for Direct Expansion Coils,A Review of Work in North American Use, Int.J.of Refrig, 8(3) ,1985:134-142.
    (106) S.J.Eckels,M.B.Pate.A Comparison of R-134a and R-12 in-tube Heat Transfer Coefficients Based on Existing Correlations. ASHRAE Trans, 96(1) ,1990:256-265.
    (107) M.Turaga,S.lin,P.P.Fazio.Correlations for Heat Transfer and Pressure Drop Factors for Direct Expansion Air Cooling and Dehumidifying Coils. ASHRAE Trans, 94(2) ,1988:616-630
    (108) M.M.Shah. Chart Correlation for Saturated Boiling Heat Transfer: Equations and Further Study. ASHRAE Trans, 88(1) ,1982:185-196.
    (109) D.Jung,R.Radermacher. Prediction of Evaporation Heat Transfer Coefficient and Pressure Drop of Refrigerant Mixtures in Horizontal Tubes. Int.J.of Refrig, 16(3) ,1993:201-209.
    (110) C.K.Rice, The effect of void fraction correlation and heat flux assumption on refrigeration charge inventory predictions, ASHRAE Transactions,93,1987:341-367.
    (111) S.N.Kondepudi,D.L.O’Neal, Performance of Finned-Tube Heat Exchangers under Frosting Conditions: Ⅰ .Simulation Model, Int.J.of Refrig, 16(3) ,1993:175-180.
    (112) F.C.McQuiston, Finned Tube Heat Exchangers: State of the Art for the Air Side,ASHRAE Trans,87(1),1981:1077-1085
    (113) F.C.McQuiston, Correlation of Heat, Mass, and Momentum Transport Coefficients for Plate-Fin-Tube Heat Transfer Surfaces with Staggered Tubes, ASHRAE Trans,84(1) ,1978.
    (114) R.L.Webb, Air-Side Heat Transfer Correlations for Flat and Wavy Plate Fin-and-Tube Geometries,ASHRAE Trans,96(2),1990:445-449.
    (115) A.C.Clel,Computer subroutines for rapid evaluation of refrigerant thermodynamic properties,International Journal of Refrigeration,9,1986:346-351.
    (116) 丁国良,张春路著, 制冷空调装置仿真与优化,科学出版社,北京, 2001。
    (117) 陈芝久,丁国良著, 制冷系统热动力学,机械工业出版社,北京,1998。
    (118) 赵荣义,空调设计手册,中国建筑工业出版社,北京,1994。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700