乳胶体系水基流延工艺及其叠层制备陶瓷材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
叠层制造成型(Laminated Object Manufacturing)已经在结构陶瓷和功能陶瓷器件的制备中被广泛应用,尤其是在电容器、电感、高温燃料电池、陶瓷基板等领域更是备受关注。因此,实现叠层制造成型的关键技术—流延工艺的研究显得尤其重要。本研究在传统水基流延成型工艺的基础上,借鉴乳胶漆的制备技术,选用乳胶作粘结剂,克服了传统水基流延工艺的诸多不足,成功制备出性能良好,并在室温下可直接叠层的流延素片,为更好应用于叠层制造成型奠定了基础。
     本文首次系统研究了乳胶体系水基流延浆料的制备、流变学特性、浆料干燥及成膜机理的相互关系,通过优化浆料制备、流延以及干燥控制等参数,制备出表面光滑平整、结构均匀、强度和柔韧性较高、容易叠层和烧结的流延素片;而且无毒无污染,有很好的经济效益和社会效益,达到国际先进水平。
     本文通过深入研究陶瓷颗粒特性、浆料PH值、粘结剂、分散剂、增塑剂以及消泡剂的比例等因素对水基流延浆料流变学性能的影响,制备了稳定性良好,流动性适宜,适合流延成型的高固相体积分数的陶瓷浆料;结合流延工艺参数优化,得到了水基流延浆料的最佳配比范围。
     本文对乳胶体系水基浆料的干燥和成膜机理进行研究后发现,乳胶和浆料成膜机理是一个溶剂不断蒸发造成玻璃化温度不断升高,粘度不断增大的一个干燥过程,其中增塑剂和成膜助剂起决定性作用。浆料干燥过程分为受蒸发控制的恒速干燥过程和受扩散控制的降速干燥过程两个阶段,二者之间存在一个临界点;恒速干燥阶段对温度的敏感性高于扩散控制阶段。
     利用该流延工艺制备的流延片,厚度在60~1000μm之间可控,素坯相对密度可以达到54%左右。烧结活性较好粉体所制备的流延片在烧结温度1580℃、保温2小时的条件下获得了相对密度为96.5%、无翘曲变形的薄片烧结体。
     利用乳胶粘结剂的压敏胶粘特性,对陶瓷材料的叠层制造工艺进行研究改进,首次实现了室温、低压力下用流延片直接叠层成型陶瓷器件。坯体的微观结构和烧结致密性与叠层压力有很大关系,叠层压力为16MPa时得到的素坯密度最大,结构最均匀,烧结后相对密度可达到97%,层间界面消失且不开裂。乳胶流延片的粘结强度与乳胶特性、用量、增塑剂比例等因素直接相关。本研究结果对陶瓷材料的叠层制造成型具有一定的指导意义。
Lamination of ceramics is an important process in the manufacturing of layered structures, such as multiplayer capacitors, inductance, heat exchangers, solid oxide fuel cells (SOFC), etc. Tape casting is the wide and crucial technique for fabrication of green sheets for laminated object manufacturing (LOM). On the base of latex dope technology, the study overcomes some defects of traditional aqueous tape casting by selecting latex binder, and gets a smooth-surface and high-strength green tape to lamination of ceramics at room temperature.
    This paper focuses systematically on the relationship with the preparation of slurry, the forming film mechanism of latex binder and the rheological behaviors of the suspensions. The aqueous tape casting process can produce green tapes with smooth surface, homogenous structure, high toughness and strength, easy lamination and sintering by improving technique parameters of tape casting process. The technology without toxin and pollution has already arrived at an advanced level with great economic benefits and social benefits on the world.
    The influences of the characteristics of ceramic powders, PH value of slurries, latex binder, dispersants and plasticizers on water-based tape casting process were studied systematically. Aqueous ceramic slurry with good stability, suitable fluidity, and high powder loading was prepared successfully. The best range of slurry composition was determined by experiments.
    The drying process of the alumina suspensions is shown to follow a two-stage mechanism (the first stage: evaporation controlled process; and the second stage: diffusion controlled process). The latex binder fraction, plasticizers ratio and casting thickness are not influence of the first stage, but influence of the resistance of diffusion on the second stage. The drying temperature is mostly influence of the first stage. During the drying stage of suspensions, the compressive force compressed the latex particles distortion, which results in cross-linking structures in contacted latex particles of the solidified tapes. Glycerol and TBP improve the film quality by decreasing the Tg of latex binder systems.
    
    
    
    Ceramic green tapes, with thickness vary from 60-1000jnm and with the relative density about 54%, were fabricated by aqueous tape casting process with latex binder. The relative density of sintered tapes arrived at 96.5% on the sintering condition of 1580℃ for 2h, which were fabricated by ALCOA alumina powders. The sintered sample has not warped and deformed.
    A new method that allows the green tapes lamination at room temperature without any adhesive to laminate ceramics is described in this paper. Because the Tg of styrene-acrylic latex binder is very low, then the latex binders possess some pressure sensitive adhesion characteristic at room temperature, which the green tapes can adhere to a part at room temperature and low pressure. The laminated green parts densities and deformation significantly depended on the lamination pressure. The green body of laminated pressure of 16 MPa has homogenous microstructure and good sintering behavior, and the relative density can reach 97%. The interfacial of sintered laminated sample was disappeared. The bonding strength between green tapes was influenced by the characteristic of latex, fraction of binder and plasticizers ratio et al.
引文
[1] D.I. Amey, S.J.Horowitz and C.R.S.Needes, Advanced in CMC ceramics, Solid State Technology, 1997, 6:143-146
    [2] 高瑞平、吴厚政,计算机辅助陶瓷无模制造方法进展,材料导报,1998 (12) 4:13-17
    [3] 宋金华,Solid Free Forming (SFF) 技术在工程陶瓷制造中的应用,材料研究学报,1998,12 (增刊):45-51
    [4] 杨守峰、田杰谟等,精细陶瓷成型新工艺—快速自动成型,功能材料,1998,299 (4):337-342
    [5] James D. Cawley, et al, Computer-aided manufacturing of laminated engineering materials, American Ceramic Society Bulletin, 1996, 75:75-79
    [6] P.M Dickens, et al. Research developments in rapid prototyping. Proc Instm Mech Engrs, 1995, 209:261-266
    [7] Lamont Wood, Rapid Auromated Prototyping: An Introduction, New York: Industrial Press Inc., 1993:55-95
    [8] Michel Descamps, et al. American Ceramic Society Bulletin, 1995,74(3): 89-92
    [9] Michael Feygin, et al, Rapid prototyping: current technology and future potential, Rapid Prototyping Journal, 1995, 11:11-19
    [10] 苟吉化等,快速成形技术及其在产品开发中的应用,机械设计与制造,1999,4:62-64
    [11] Donald A. Klosterman, Chartoff. Richard, et al, Interracial characteristics of composites fabricated by laminated object manufacturing, Composites Part A, 1998, 29: 9-10:1165-1174
    [12] Andreas Roosen, New lamination technique to join ceramic green tapes for the manufacturing of multiplayer devices, Journal of the European Ceramic Society, 2000, 21:1993-1996
    [13] Donald A. Klosterman, Chartoff. Richard, et al, Development of a curved layer LOM process for monolithic ceramics and ceramic matrix composites, Rapid Prototyping Journal, 1999, 5:61-71
    [14] 张宇民、郝晓东等,LOM 技术中的挤制陶瓷片的研究,材料工程,1999,5:32-35
    [15] 樊自田、李焰等,LOM 原型材料性能的测试指标及测试方法,华中理工大学学报,1998,26:36-39
    
    
    [16] 理查德 J.布鲁克主编,陶瓷工艺学 I,材料科学与技术丛书第十七卷,清华大学新型陶瓷与精细工艺国家重点实验室译,黄勇等审校,科学出版社,1999.6
    [17] Richard E. Mistier, Tape casting: Past, Present, Potential, The American Ceramic Society Bulletin, 1998, 77:82-86
    [18] 李国荣、陈大任等,流延成膜技术制备高性能多层片式压电陶瓷微驱动器研究,硅酸盐学报,1999,27:533-539
    [19] 陈铭、温廷琏等,YSZ 陶瓷膜流延等静压复合成型新工艺研究,无机材料学报,1999,14:745-750
    [20] G. O. medowski and R. D. Sutch, cited in J. C. Williams, Doctor-Blade process, in F. F. Y. Wang (ed), Treatise on Materials Science and Technology, Ceramic Fabrication Processes, Academic Press. New York, 1976, 9:173-198
    [21] 贺连星、温廷琏、吕之奕,流延法制膜技术,化学通报,1996,11:19-22
    [22] 江东亮等,一种水基流延制备陶瓷薄膜的方法,中国发明专利,申请号:99125697.2
    [23] 向军辉,水基凝胶快速固化流延成型研究,清华大学博士论文,清华大学,2001,9
    [24] J. E. Schuetz, I. A. Khoury and R. A. Dichiara, Water-binder for tape casting, Ceramic Industry, 1987, 66:42-44
    [25] K. Kita, J. Fukuda, H. Ohmura and T. Sakai, Green ceramic tapes and method of producing them, U. S. Patent. No. 4, 353,958,1982
    [26] K. E. Burnfield and B. C. Peterson, Cellulose ethers in tape casting formulation, in M. J. Cima (ed.), Ceramic Transactions, Vol. 26, Forming and Technology for Ceramics, American Ceramic Society, Westerville OH, 1992, 191-196
    [27] K. Nagata, Rheology and aqueous tape casting of acrylic ester-acrylic acid copolymer dispersed alumina, in S. Hirano, G. L. Messing and H. Hausner (eds.), Ceramic Transactions, Vol. 22, Ceramic Powder Science Ⅳ, American Ceramic Society, Westerville OH, 1991, 335-340
    [28] K. Nagata, Correlation of conformation of acrylic polymers in aqueous suspensions and properties of alumina green sheets, in M. J. Cima (ed.), Ceramic Transaction, Vol 26, Forming and Technology for Ceramics, American Ceramic Society, Westerville OH, 1992, 205-210
    [29] K. Nagata, Rheological behaviour of suspension and properties of green sheet-effect of compatibility between dispersant and binder, Journal of the Ceramic Society of Japan, 1993, 101:1271-1275
    [30] D. Hotza and P. Greil, Review: aqueous tape casting of ceramic powders, Materials Science and Engineering A, 1995, 202:206-217
    
    
    [31] G. Y. Onode Jr. The rheology of organic binder solutions, in G. Onoda Jr and L. L. Hench (eds.), Ceramic Processing Before Firing, Wiley, New York, 1978,235-251
    [32] C. Pagnoux, T. Chartier, M. de. F. Granja, F. Doreau, J. M. Ferreira and J. F. Baumard, Aqueous Suspensions for Tape-casting Based on Acrylic Binders, Journal of the European Ceramic Society, 1998,18: 241-247
    [33] F. Doreau, G. Tan, C. Pagnoux, T. Chartier and J. M. F. Ferreira, Processing of Aqueous Tape-casting of Alumina with Acrylic Emulsion Binders, Journal of the European Ceramic Society, 1998,18: 311-321
    [34] Annika Kristoffersson and Elis Carlstrom, Tape casting of Alumina in Water with an Acrylic Latex Binder, Journal of the European Ceramic Society, 1997, 17: 289-297
    [35] R. Moreno, The role of slip additives in tape casting technology: Part II-Binders and plasticizers, The American Ceramic Society Bulletin, 1992, 71: 1647-1657
    [36] F. Doreau, G. Tari, et al, Mechanical and lamination properties of alumina green tapes obtained by aqueous tape casting, J. Euro, ceram. Soc., 1999, 19: 2867-2873
    [37] David J. Bak, et al, Quick path to prototyping tooling, Design news, 1990, 25(6) :116-117
    [38] C.hinczewski, et al, Ceramic suspensions suitable for stereolithography,J. Euro.cera.soc, 1998,18(6) :583-590
    [39] Stephen C. Danforth, et al, Fused Deposition of Ceramics: A New Technique for the rapid fabrication of ceramic compontents, Tech.Advances, 1995,144(10) : 131-133
    [40] Mukesh K.Agarwala, et al, FDC, Rapid Fabrication of Structural Compontents, Am. Ceram. Soc. Bull., 1996, 75(11) :60-65
    [41] Dvid A. Belforte, et al, Laser modeling reduce engineering time, Laser Focus World, 1989, 6:103-106
    [42] P.M.Dichens, et al, Research development in rapid prototyping, J. Eng. Manu, 1995,209:261-266
    [43] Mohan Edirisinghe, et al, Freeforming ceramics, Materials World, 1997,5:138-140
    [44] Stephen J. Rock, et al, Freeform powder molding: From CAD Model to part without tooling, Inter. J. Powder Metallurgy, 1997,33(6) :37-44
    [45] Alair Griffin, et al, Rapid prototyping with engineered ceramics, Ceramics Industry, 1997,4:86-88
    [46] David Hauber, et al, Automatic Production of P/M parts directly from A computer aided design model, Inter. J. Powder Metallurgy, 1988,24(4) :337-342
    [47] Steven Ashley, et al, Rapid Prototyping Systems, Mechanical Engineering, 1991,4:
    
    34~43
    [48] A.G. Cooper, et al, Automated fabrication of complex molded parts using mold shape deposition manufacturing, Materials and Design, 1999, 20:83-89
    [49] Wei Zhang, et al, Rapid freezing prototyping with water, Materials and Design, 1999, 20:139-145
    [50] David P. Colley, et al, Instant Prototypes, Mechanical Engineering, 1988, (7): 68-70
    [51] Harris L.Marcus, et al, Solid Freeroem Fabrication: Powder Processing, Ceramic Bulletin, 1990, 69(6): 1030-1031
    [52] David L.Bourell, et al, Selective Laser Sintering of Metal and ceramics, The International Journal of Poeser Metallurgy, 1992, 28(4):369-381
    [53] Curtis Griffin, et al, Rapid prototyping of Structural Ceramic Components using selective laser sintering, Materals Technology, 1996, 2:48-49
    [54] E. Sachs, et al, Three Dimensional Printing: Rapid Tooling and Prototypes Directly from a CAD Model. J. Eng. Industry, 1992, 114(10):481-486
    [55] Jason Grau, et al, Fabricating Alumina molds for Slip Casting with 3-D Printing, Ceramic Industry, 1996, 7:22-27
    [56] David L. Bourell, et al, Selective Laser Sintering of Metal and ceramics, The International Journal of Poeser Metallurgy, 1992, 28(4): 369-381
    [57] Curtis Griffin, et al, Desktop Manufacturing: LOM vs Pressing, American Ceramic Society Bulletin, 1994, 73(8):109-113
    [58] Michelle L. Griffith, et al, Freeform Fabrication of Ceramics via Sttereolithography, J. Am Ceram. Soc., 1996, 79(10):2601-2608
    [59] Ken M. Gettelman, et al, Stereolithography: Fast Model Making, Moderam Machine Shop, 1989, 10:100-107
    [60] XM. Cui, SX. Ouyang, et al, A Study on LOM with Water-based Tape Casting, Materials Letters, 2003, 57:1300-1304
    [61] 黄树槐,快速成型技术的展望,2000,11(1-2):195-198
    [62] 黄树槐,快速原型技术的进展,中国机械工程,1998,8(5):8-10
    [63] 刘康时等,陶瓷工艺原理,华南理工大学出版社,1990.12
    [64] 陈宗淇,王光信,徐桂英,胶体与界面化学,高等教育出版社,2001.8
    [65] D. J. 肖著,张中路,张仁佑译,徐克敏校,胶体与表面化学导论,化学工业出版社,1989.1
    [66] 李葵英,界面与胶体的物理化学,哈尔滨工业大学出版社,1998.4
    [67] 常青,傅金镒,郦兆龙,絮凝原理,兰州大学出版社,1993.11
    
    
    [68] 胡纪华,杨兆禧,郑忠,胶体与界面化学,华南理工大学出版社,1997.7
    [69] 沈钟,王果庭,胶体与表面化学,化学工业出版社,1991.9
    [70] 周祖康,顾惕人,马季铭,胶体化学基础,北京大学出版社,1987.5
    [71] H. Henning Winter, Polymer gels-Materials that combine liquid and solid properties, Materials Bulletin, 1991, 8:44-48
    [72] 何曼君,陈维孝,董西侠,高分子物理,复旦大学出版社,1990.5
    [73] 郑树亮,黑恩成,应用胶体化学,华东理工大学出版社,1996.3
    [74] 杨金龙,“陶瓷胶态成型工艺及其原位凝固机制的研究”,清华大学博士学位论文,1996
    [75] 刘晓林,氧化锆—氧化铝凝胶注模成型的研究,清华大学博士论文,清华大学,2001,4
    [76] T. Chartier, C. Hinczewski and S. Corbel, UV Curable Systems for Tape Casting, Journal of the European Ceramic Society, 1999, 19:67-74
    [77] T. Charties and A. Bruneau, Aqueous Tape Casting of Alumina Substrates, Journal of the European ceramic Society, 1993, 12:243-247
    [78] 洪啸吟、冯汉保,涂料化学,中国科学出版社,2000
    [79] Hagen Loest, Roland Lipp, and Evan Mitsoulis, Numerical Flow Simulation of Viscoplastic Slurries and Design Criteria for a Tape Casting unit, Journal of the American Ceramic Society, 1994, 77:254-62
    [80] 王瑞刚、吴厚政、陈玉如、杨正方,陶瓷料浆稳定分散进展,材料科学与工程,1999 (17) 2:66-70
    [81] 王启宏,徐昭东主编,材料流变学探索,武汉工业大学出版社,1987
    [82] 王启宏,材料流变学,北京,中国建筑工业出版社,1985.9
    [83] Howard Lee, Richard Pober and Paul Calvet, Dispersion of Powders in solutions of block copolymer, Journal of Colloid and Interface Science, 1986, 110:144-148
    [84] 赵国玺,表面活性剂物理化学,北京大学出版社,1984.1
    [85] 王云峰,张春光,侯万国,表面活性剂及其在油气田中的应用,石油工业出版社,1995.6
    [86] A. El-Shimi and E. D. Goddard, Wettability of some low energy surface, Journal of Colloid and Interface Science, 1974, 48:249-255
    [87] Beyong-Hwan Ryu, Minoru Takahashi and Suguru Suzuki, Rheological Characteristics of Aqueous Alumina Slurry for Tape Casting, Journal of the Ceramic Society of Japan, 1993, 101:626-631
    
    
    [88] N. R. Gurak, P. L. Josty and R. J. Thompson, Properties and uses of synthetic emulsion polymers as binders in advanced ceramics processing, The American Ceramic Society Bulletin, 1987, 66: 1495-1497
    [89] B. H. Ryu, M. Takahashi and S. Suzuki, Rheological characteristics of aqueous alumina slurry for tape casting, Journal of the Ceramic Society of Japan, 1993, 101: 643-648
    [90] M. Kemr and H. Mizuhara, Flexible Ceramic Tape and Method of Making Same, U.S.Patent, No. 4,329,271,1982
    [91] Koichi Nagata, Dynamic Viscoelastic Measurements of Suspension for the Drying Process in Tape Casting, Journal of the Ceramic Society of Japan, 1992, 100: 1332-1336
    [92] K. Nagata, Effect of functionalities of binders on rhelogical behaviour of alumina suspension and properties of green sheets, Journal of the Ceramic Society of Japan, 1993, 101:845-849
    [93] P. Nahass, W. E. Rhine, R. L. Pober, H. K. Bowen and W. L. Robbins, A Comparison of aqueous slurries for tape casting, in K. M. Nair, R. Pohanka and R. C. Buchanan (eds.), Ceramic Transactions, Vol. 15, Materials and Processes in Microelectronic Systems, American Ceramic Society, Westerville OH, 1990, 355-364
    [94] N. Ushifusa and M. Cima, Aqueous processing of mullits-containing green sheets, Journal of the American Ceramic Society, 1991, 74: 2443-2447
    [95] Theodore P. Hyatt, Tape Casting and Roll Compaction, Ceramic Engineering Science Processing, 1995, 16: 71-75
    [96] M. Egashira, Y. Shimizu and S. Takatsuki, Chemical surface treatments of aluminium nitride powder suppressing its reactivity with water, Journal of Materails Science Letters, 1991, 10: 994-996
    [97] P. Greil, M. Kulig, D. Hotza, et al, Aluminium nitride ceramics with high thermal conductivity from gas-phase synthesized powders, Journal of the European Ceramic Society, 1994, 13: 229-237
    [98] D. Hotza, O. Sahling and P. Greil, Hydrophobing of aluminium nitride powders, Journal of Materials Science, 1995, 30: 127-132
    [99] J. Jr. Morris, Organic component interactions in tape-casting slips of barium titanata, Ph. D. thesis, State University of New Jersey, 1986
    
    
    [100] Koichi Nagata, Effect of Functionalities of Binders on Rheological Behavior of Alumina Suspensions and Properties of Green Sheets, Journal of the Ceramic Society of Japan, Int. Edition, 1993, 101: 822-825
    [101] G. P. van der Beek, U. Gontermann-Gehl and E. Krafczyk, Binder Distribution in Green Ceramic Foils, Journal of the European Ceramic Society, 1995,15: 741-758
    [102] A. Roosen, Basic requirements for tape casting of ceramic powders, in G. L. Messing, E. R. Fuller and H. Hausner (eds.), Ceramic Transactions, V01. 1, Ceramic Powder Science II, American Ceramic Society, Westerville OH, 1988, 675-692
    [103] Loey A. Salam, Richard D. Matthews, Hugh Robertson, Optimisation of thermoelectric green tape characteristics made by the tape casting method, Materials Chemistry Physics, 2000, 62: 263-272
    [104] Carlos A. Gutierrez, Rodrigo Moreno, Influence of slip preparation and casting conditions on aqueous tape casting of Al2O3, Mater. Research Bull., 2001, 36: 2059-2072
    [105] Bernd Bitterlich, Jugen G. Heinrich, Aqueous tape casting of silicon nitride, Journal of the European Ceramic Society, 2002, 22: 2427-2434
    [106] L. Bergstrom, E. Blomberg, et al, Interparticle force and rheological properties of ceramic suspensions, Key Engineering Materials, 1999, 159-160: 119-126
    [107] M. Hashiba, H. Nurishi, et al, Dispersion of ZrO2 particles in aqueous suspensions by Ammomiun Polyacrylate, J. Mater. Sci., 1989, 24: 873-876
    [108] D. J. Shaw, Colloid stability, in Colloid and Surface Chemistry, 4th edn, Butterworth-Heinemann, Oxford, 1992, 210-243
    [109] ASTM D-883, Plastics Nomenclature, ASTM Standards, Part 27. ASTM Pliladelphia, 1966, 381
    [110] R.根赫特, H.米勒主编,成国祥,姚康德等译,塑料添加剂手册,化学工业出版 社,2000. 1
    [111] 化工百科全书,化学工业出版社,1990. 12
    [112] J. Brandrup and E. H. Immergut, Polymer Handbook, Vol. 4: Solubility Parameter Values. John Wiiley and Sons Inc., New York, 1975, 337
    [113] K. Doolittle, The Technology of Solvents and Plasticizers, Wiley, New York, 1954
    [114] K. Doolittle, Mechanism of Plasticization, in Paul F. Bruins (ed.), Plasticizer Technology I, New York, 1965
    [115] 严瑞瑄,水溶性高分子,化学工业出版社,1998. 6
    [116] 潘祖仁,高分子化学,化学工业出版社,1997. 7
    
    
    [117] 刘正、朱晓滨等,苯丙乳液合成工艺,化学世界,1999,4:221-222
    [118] 室井宗一 (日),高分子乳液在建筑涂料中的应用,北京,化学工业出版社,1988.7
    [119] T.佐藤,R. J. 鲁赫著,江龙等译,聚合物吸附对胶态分散体稳定性的影响,科学出版社,1988.1
    [120] 王建明,王和平,田振坤,安丰堂,分散体系理论在制剂学中的应用,北京医科大学中国协和医科大学联合出版社,1995.4
    [121] R. Moreno, The role of slip additives in tape casting technology: Part Ⅰ-Solvents and dispersants, The American Ceramic Society Bulletin, 1992, 71:1521-1531
    [122] J. Cesarano Ⅲ and Ⅰ. A. Aksay, Processing of highly concentrated aqueous alumina suspensions stabilized with polyelectrolytes, Journal of the American Ceramic Society, 1988, 71:1062-1067
    [123] R. Greenwood, E. Roncari and C. Galassi, Preparation of Concentrated Aqueous Alumina Suspensions for Tape Casting, Journal of the European Ceramic Society, 1997, 17:1393-1401
    [124] M. F. L. Granja, F. Doreau and J. M. F. Ferreira, Aqueous Tape-casting of Silicon Carbide, Key Engineering Materials, 1997, 132-136:362-365
    [125] K. P. Plucknett, C. H. Caceres and D. S. Wilkinson, Tape Casting of Fine Alumina/Zireonia Powders for Composite Fabrication, Journal of the American Ceramic Society, 1994, 77:2137-2144
    [126] K. P. Plucknett, C. H. Caceres, C. Hughes and D. S. Wilkinson, Processing of Tape-Cast Laminates Prepared from Fine Alumina/Zirconia Powders, Jornal of the American Ceramic Society, 1994, 77:2145-2153
    [127] E. D. 柯亨(美),E.B.古塔夫(美)编 赵伯元译,现代涂布干燥技术,北京,中国轻工业出版社,1999.10
    [128] B. J. Briscoe, G. Lo Biundo and N. Ozkan, Drying kinetics of water-based ceramic suspensions for tape casting, Inter Ceramic., 1998, 24:347-357
    [129] W. Weorge Scherer, Theory of drying, J. Am. Ceram. Soc., 1990, 73:3-14
    [130] L. R. White, Capillary rise in powders, J. Colloid Interface Sci., 1982, 90:536-538
    [131] 刘福田,李兆前等,Mo-(Fe-B)-Fe 混合粉末流延成型薄层坯体的干燥机理分析,陶瓷学报,2002,23:211—216
    [132] P. Nahass, R. L. Pober, W. E. Rhine, W. L. Robbins and H. K. Bowen, Prediction and explanation of ageing shrinkage in tape-casting ceramic green sheets, Journal of the American Ceramic Society, 1992, 75:2373-2378
    
    
    [133] George W. Scherer, Theory of Drying, Journal of the American Ceramic Society, 1990, 73:3-14
    [134] B. J. Briscoe, G. Lo Biundo and N. Ozkan, Drying of Aqueous Ceramic Suspensions, Key Engineering Materials, 1997, 132-136:354-357
    [135] R. W. Ford, Ceramic Drying, Pergamon Press, Oxford, 1986
    [136] T. K. Sherwood, The Drying of Solids Ⅰ, Industrial and Engineering Chemistry, 1992, 21:12-16
    [137] T. K. Sherwood, The Drying of Solids Ⅱ, Industrial and Engineering Chemistry, 1929, 21:976-980
    [138] Jennifer A. Lewis, Kimberly A. Blackman and Andrea L. Ogden, Rheological Property and Stress Development During of Ceramic Layers, Journal of the American Ceramic Society, 1996, 79:3225-3234
    [139] Michel Descamps, Monique Mascart, Berard Thierry and Daniel Leger, How to Control Cracking of Tape-Cast Sheets, American Ceramic Society Bulletin, 1995, 74:89-92
    [140] Tan Meng Kwang,成膜助剂在水性乳胶涂料中的作用及其选择方法,涂料工业,1996,4:32—35
    [141] 陆佩文等,硅酸盐物理化学,东南大学出版社,1991.1
    [142] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann,陶瓷导论,中国建筑工业出版社,1982
    [143] 刘继强、李茂盛、贾新朝等,高精度高温合金薄壁管旋压成形,宇航材料工艺,1999,6:51—53
    [144] 日本塑性加工协会,陈敬之译,旋压成形技术,机械工业出版社,1988
    [145] 吴正良,微孔陶瓷管状产品成型工艺探讨,陶瓷工程,1994,27:23-24
    [146] Yao Jianguo, Murata Makoto, An experimental study on paraxial spinning of one tube end, Journal of Materials Processing Technology, 2002, 128:324-329
    [147] Rajnish Prakash, R. P. Singhal, Shear spinning technology for manufacture of long thin wall tubes of small bore, Journal of Materials Processing Technology, 1995, 54:186-192
    [148] 赵雷,臭氧发生器用金红石陶瓷薄壁管的制备与性能,清华大学硕士论文,2002
    [149] Mark A. Janny, Ogbemi O. Omatete, Claudia A. Walls, Stephen D. Nunn, Randy J. Ogle & Gary Westmoreland, Development of Low-Toxicity Gel-casting Systems, Journal of the American Ceramic Society, 1998, 81:581-591
    [150] 张黎明,谭业邦,尹向春,张健,黄少杰,陈丹青,李卓美,水溶性两性接枝纤维素的合成研究,纤维素科学与技术,1999,7:1-7
    [151] 陈亚丽,高分子凝胶在陶瓷浆料原位凝固成型的应用,清华大学硕士学位论文,1998
    
    
    [152] Rolf Waesche, Gabriele Steinborn and Alessandra Zingaro, Gelcasting of Alumina and Alumina-SiC Composites, Silicates Industriels, 1995, 60:193-197
    [153] 贾玉,海藻酸钠在陶瓷原位固化成型中的应用,清华大学硕士学位论文,2000
    [154] 纪明候,海藻化学,科学出版社,1997.5
    [155] 杨玉崑,压敏胶粘剂,科学出版社,1991
    [156] 吴文莉,增粘树脂对丙烯酸酯压敏胶性能的影响,广西化工,2001,30:25-27
    [157] 胡小玲、岳红、管萍等,丙烯酸酯乳液压敏胶的研制,化学研究与应用,1999,11:32-36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700