用户名: 密码: 验证码:
聚苯胺基纳米复合材料的制备及在超级电容器中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超级电容器是一种新型的储能器件,既有传统电容器的高功率、长寿命、免维修、无污染等优点,又具有电池高能量密度的优点。双电层电容器有高功率、长寿命的优点,但是能量密度偏低;法拉第电容器比双电层电容器拥有更高的能量密度,但是由于涉及氧化还原反应,使其循环寿命较低。双电层电容器和法拉第电容器的结合有利于提高材料的电化学特性。聚苯胺以其合成方便、形貌可控等优点成为超级电容器电极材料研究的重要材料之一。本文通过原位聚合方法,将导电PANI分别负载在海藻酸钠、磺化倍半硅氧烷和纳米碳材料等载体中,得到不同形态结构的纳米复合材料,分析了材料的合成条件与形态结构的关系,并对该电极材料的电化学性质做了详细表征。
     海藻酸钠(SA)是一种富含羟基的线性生物大分子,通过pH值控制SA在水中的降解,可得到理想的生物高分子模板。利用模板诱导法制备了不同结构的PANI/SA复合纳米纤维,其中大面积网状结构的PANI/SA纳米复合纤维具有较高的比表面积(65.5m2g-1)和较好的孔径分布。网状结构中大量的孔隙为电解液离子迅速扩散提供了便捷通道;连续网状的PANI纳米纤维为电荷的迁移提供连续的通道;50-100nm的纤细直径使PANI纤维具有较大的比表面积,为氧化还原反应提供了较大的反应接触面积。优化的PANI/SA电极材料具有1612F g-1的高比电容和大功率特性,1000次循环后,仍保持了74%的初始电容。
     八苯基倍半硅氧烷(POSS)是一种含Si-O-Si笼型内核、八个顶点上带有苯基的纳米材料。通过苯基磺化得到带磺酸基的倍半硅氧烷(SOPS),磺酸基的存在大大提高了SOPS在水中的分散性。以SOPS作为掺杂酸,利用原位聚合制备得到PANI/SOPS复合材料。电化学测试表明,SOPS的引入明显提高了PANI/SOPS复合材料的比电容和循环寿命。在1A g-1的电流密度下,SOPS含量为2%的PANI/SOPS具有最大的比电容,达到1810Fg-1; SOPS含量为25%的PANI/SOPS电极在3000次循环后仍能保持82%的初始比电容。可能是SOPS上的磺酸基与PANI分子链有很好的作用力,使SOPS能以掺杂酸的角色与PANI达到分子/纳米水平的杂化。通常电极充放电过程中,离子在电极材料中脱出/嵌入会引起PANI基体的膨胀/收缩,Si-O-Si笼型内核的存在增强了PANI/SOPS复合材料微观结构的强度,避免了微观结构的塌陷或破坏。PANI/SOPS的纳米棒组装成有序的菊花形结构,使电解液离子的扩散路径更短,有利于提高电极材料的响应性,从而明显提高了电极材料的功率特性。
     石墨烯(graphene, G)是一种二维结构的新型碳系材料,具有极好的导电性、机械性、大比表面积等众多优点。用PANI包覆石墨烯制备二元复合电极材料,既具有双电层电容特性(石墨烯提供大比表面积),又具有赝电容特性(PANI可发生氧化还原反应)。石墨烯优良的机械性能将增强复合材料结构的稳定性,其优异的电导特性将改善复合材料的导电性。通过改进传统的石墨烯氧化还原制备方法,能够得到分散性能良好的还原石墨烯(r-G),避免了石墨烯的自团聚。用r-G与苯胺单体原位聚合,成功制备了聚苯胺/石墨烯(PANI/r-G)复合材料。电化学测试表明石墨烯的加入提高了PANI作为电极材料的利用率,当石墨烯的含量为6%时,PANI/r-G的比电容达到846F g-1;1000次循环后,仍保持74%初始比电容,比纯PANI电极稳定性有明显提高。
     电化学剥离法制备石墨烯比氧化还原法相对较为简便。我们在Na2SO4电解液中,用电化学剥离高纯碳棒制备石墨烯(ec-G),得到了品质更好的石墨烯。用ec-G与苯胺单体原位聚合,制备PANI/ec-G的复合材料。当ec-G的含量为4%时,在1A g-1电流密度下,PANI/ec-G的比电容达到895F g-1。当ec-G的含量为6%时,1000次循环后,PANI/ec-G保留了79%的初始比电容。ec-G在复合物中形成了导电网络有利于电子迁移;同时对PANI基体有机械支撑作用,提高了电极材料结构的稳定性。因此ec-G的引入有效地提高了PANI/ec-G复合材料电化学性能。
     膨胀石墨(EG)是石墨经热或微波处理,体积急剧膨胀的一种碳材料。相比天然石墨,EG石墨片层具有较大的间距,有利于超声剥离方法得到高品质的石墨烯。SEM、TEM、AFM、Raman光谱分析发现,EG超声剥离制备的石墨烯尺寸较大、结构较完整。将不同超声时间的EG石墨片层与苯胺单体原位聚合,制备不同剥离程度的石墨片层与聚苯胺的复合物(PANI/e-EG)。当超声时间较短时,PANI能很好的包覆EG石墨片层(PANI在EG石墨片层上形成有序的凸点),得到PANI插层的PANI/e-EG复合材料;当超声时间较长时,EG被超声剥离成多层石墨烯,PANI不能很好的包覆石墨烯。电化学测试表明,随着超声时间的延长,PANI/e-EG复合电极的电化学性能下降。在1Ag-1电流密度下,未强超声剥离的膨胀石墨片层与PANI的复合材料PANI/e-EGO比电容为1257F g-1;1000次循环后,保持了84%的初始比电容。分析认为,比石墨烯相比,EG为复合材料提供更好的骨架支撑、电子通道,所以其电化学性能更优良。
     随后我们对上述实验现象做了进一步研究。精细地合成了PANI纳米棒在EG界面上垂直生长的PANI/EG复合材料,电化学测试发现EG三维骨架结构大大提高了PANI的电极利用率,使其比电容、功率密度和循环寿命都有很大提高。在1A g-1电流密度下,含有10%EG的复合材料PANI/EG10%具有1665F g-1的比电容;2000次循环后,保持了87%的初始比电容。分析认为,有序的纳米棒阵列缩短了电解液离子在界面之间的扩散路径,大比表面积增加了电解液/活性物质的接触面积;EG的骨架结构为电荷迁移提供了有效途径,增强了复合材料微观结构的稳定性;复合材料的多孔结构为电解液迁移提供了良好的通道。
Supercapacitors, also called ultracapacitors, are promising energy storage devices which bridge the gap between batteries and conventional capacitors. They can provide higher energy density than conventional capacitors and much higher power density than batteries. Supercapacitors exhibit a promising set of features such as high power density, fast charge/discharge rate, sustainable cycling life, and safe operation. Based on the charge storage mechanism, supercapacitors can be divided into two categories. One is electrochemical double layer capacitor (EDLC), which stores charges electrostatically via reversible ion absorption at the electrode/electrolyte interface. EDLCs can provide ultrahigh power and excellent cycle life due to fast and nondegradation process between electrode active materials and electrolyte. However, the energy density of EDLC is limited by the finite electrical charge separation at the interface of electrode materials and electrolyte, and the availability of surface area. The other is the pseudocapacitor or redox supercapacitor, which stores energy by fast and reversible redox reactions. Because of the Faradaic process underpinning the energy stored in a pseudocapacitor, the pseudocapacitor often suffers from lack of stability during cycling. In this work, we want to fabricate electrode materials to combine these two charge storage mechanisms (Faradaic and non Faradaic), their synergic effects to improve device characteristics.
     Polyaniline (PANI), as a kind of widely studied electronically conducting polymers, is a promising candidate for electrode materials due to excellent capacities for energy storage, easy synthesis, non-toxic and low cost. Compared with metallic oxide, PANI possesses better conductivity. Its electrical properties can be modified by the oxidation state of the main chain and degree of protonation. And most importantly, the structures of PANI can be controlled by template-induced or self-assembly in different experimental conditions. Therefore, we want to design various structures of PANI composites, characterize their electrochemical properties, and reveal the relationship among composition, structure and performances.
     Sodium Alginate (SA) consists of a linear block co-polymer of1,4-linked (3-D-mannuronic (M) and R-L-guluronic acid (G), bearing abundant carboxyl and hydroxyl groups. We synthesized various templates of SA by controlling pH values of aqueous solution, and then fabricated the PANI/SA composites by in situ polymerization. The electrochemical characterization reveals that the electrode (PANI/SA) with large scale net-work structure exhibits a high electrochemical performance. PANI/SA nanofibers possess thin diameters (50-100nm), large specific surface area (65.5m2g-1) and an appropriate pore size distribution. The nanostructure of electrode materials generates high electrode/electrolyte contact area and short path lengths for electronic transport and electrolyte ion. The specific capacitance of an optimum electrode is up to1612F g-1and it maintains74%after1000cycles. The approach is simple and can be easily extended to fabricate nanostructural composites for supercapacitor electrode materials.
     Polyhedral oligomeric silsesquioxane (POSS),(RSiO1.5)n, has a cubic silica core with a diameter of0.53nm and a spherical radius of1-3nm including the functionalized organic arms. POSS is often used as an additive in nanoreinforced organic-inorganic hybrid materials. In this work, POSS was functionalized by direct sulfonation, and the porous and ordered hierarchical nanostructure of polyaniline/sulfonated polyhedral oligosilsesquioxane (PANI/SOPS) was subsequently fabricated by in situ polymerization. The morphologies of the PANI/SOPS nanocomposites can be controlled by adjusting the concentration of SOPS. Comparing with the pure PANI, the PANI/SOPS electrode exhibits a higher specific capacitance of1810F g-1, faster reflect of oxidation/reduction on high current changes and better cyclic stability. The specific capacitance maintains82%after3000cycles. The excellent performance may be attributed to the nano-architecture of electrode materials and the support of the SOPS nanoparticles.Synergetic interaction between PANI and SOPS significantly improves the porosity and the stability of electrode, yielding excellent electrochemical property. This result suggests that the construction of porous and ordered hierarchical nanostructure is a novel and effective way for improving the electrochemical properties of conducting polymers
     Graphene has attracted much research attention due to its two-dimensional and unique physical properties, such as high electronic transport properties, excellent mechanical strength, and elasticity and superior thermal conductivity. We designed and prepared a series of polyaniline/graphene (PANI/G) composites. A modified chemical exfoliation method was used to produce graphene. In chemical reduction stage, the DMF/H2O (9:1) mixed solution was used as reaction solution instead of conventional aqueous solution. We obtained individual disperse graphene, subsequently fabricated PANI/G composites via in situ polymerization. The electrochemical characterization demonstrated that the PANI/G electrode with6%graphene content exhibits relatively high specific capacitance (846F g-1) and good long-term cycling stability. After1000cycles, the discharge capacitance retention of the PANI/G electrode is74%while that of the pure PANI is only43%. Graphene improves the stability and conductivity of electrode materials structures, so the PANI was effectively utilized.
     The high quality and large-area graphene were obtained by the electrochemical exfoliation of graphite in Na2SO4electrolyte. Aniline monomer was adsorbed on the nanosheets to prepare PANI/G composites via in situ polymerization. The electrochemical characterization demonstrated that PANI is effectively utilized with the assistance of graphene conductive skeletons in the electrode. The composites electrodes achieve a good specific capacitance of895F g-1at1A g-1and long-term life. It may be due to the net-work of graphene in composites, which not only support a skeleton for PANI matrix but also supply paths for electronic transport.
     Expanded graphite (EG) is a kind of modified graphite with a hierarchical porous nature and good conductivity. In this work, EG was exfoliated by sonication with a cylindrical tip. The exfoliation degree of EG can be controlled by ultrasonic time. The EG flakes were coated by PANI using in-situ polymerization. The electrochemical characterization illustrated that the long ultrasonic time of EG flakes had a negative effect on the electrochemical properties of PANI/EG electrodes. SEM images revealed that the EG three-dimensional (3D) structure aggravated under long time sonication, and graphene sheets intercalated into random PANI nanorods. While the ordered PANI nanorods grew onto EG flakes with no or short time sonication. The EG supplied more effectively mechanical skeleton for PANI and transport paths for ions and electron than graphene, therefore the carbon supports of EG for PANI composite electrodes is more effective.
     The above experiment results are very interesting, arising our future attention. An oriented array of polyaniline (PANI) nanorods grown on expanded graphite (EG) nanosheets were fabricated by in situ polymerization. The morphologies of PANI/EG nanocomposites can be controlled by changing the ratio of EG to aniline monomer. The PANI/EG nanocomposites exhibited high specific capacitance, high rate capability and significant cyclic stability. An excellent specific capacitance as high as1665F g-1was observed in the PANI/EG electrode with10%EG content. The composite electrode material also exhibited significant rate capability with specific energy of113.8Wh kg-1and specific power of560kW kg-1at the current density of8A g-1, respectively, and good long-term cycling stability. In composites, EG serves as excellently3D conductive skeletons to support a highly electrolytic accessible surface area of redox active PANI and supply a direct path for electrons. Such3D nanoarchitecture composite is very promising for the next generation of high performance electrochemical supercapacitors.
引文
(1)Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nature materials 2008,7,845-854.
    (2)Bockris, J. O.; Reddy, A. K. N. Modern Electrochemistry New York, Plenm Press,1970.
    (3)Becker, H. I. Electric double layer capacitor. [P]. USA:2800616.1957-07-23.
    (4)Conway, B. E. Electrochemical Supercapacitors:Scientific Fundamentals and Technological Applications. New York,Kluwer Academic A'lenum Publishers, 1999.
    (5)Antonucci, V.; Shukla, A. K.; Arico, A. S. An appraisal of electric automobile power sources. Renewable and Sustainable Energy Reviews 2001,5,137-155.
    (6)Zhang, L. L.; Zhao, X. S. Carbon-based materials as supercapacitor electrodes. Chemical Society reviews 2009,38,2520-2531.
    (7)Hung, P. J.; Chang, K. H.; Lee, Y. F.; Hu, C. C.; Lin, K.-M. Ideal asymmetric supercapacitors consisting of polyaniline nanofibers and graphene nanosheets with proper complementary potential windows. Electrochimica Acta 2010,55, 6015-6021.
    (8)Obreja, V. V. N. On the performance of supercapacitors with electrodes based on carbon nanotubes and carbon activated material—A review. Physica E: Low-dimensional Systems and Nanostructures 2008,40,2596-2605.
    (9)Raymundopinero, E.; Kierzek, K.; Machnikowski, J.; Beguin, F. Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon 2006,44,2498-2507.
    (10)Kierzek, K. Electrochemical capacitors based on highly porous carbons prepared by KOH activation. Electrochimica Acta 2004,49,515-523.
    (11)Ania, C. O.; Khomenko, V.; Raymundo-Pinero, E.; Parra, J. B.; Beguin, F. The Large Electrochemical Capacitance of Microporous Doped Carbon Obtained by Using a Zeolite Template. Advanced Functional Materials 2007,17,1828-1836.
    (12)Azais, P.; Duclaux, L.; Florian, P.; Massiot, D.; Lillo-Rodenas, M.-A.; Linares-Solano, A.; Peres, J.-P.; Jehoulet, C.; Beguin, F. Causes of supercapacitors ageing in organic electrolyte. Journal of Power Sources 2007, 171,1046-1053.
    (13)Largeot, C.; Portet, C.; Chmiola, J.; Taberna, P.-louis; Gogotsi, Y.; Simon, P. Relation between the Ion Size and Pore Size for an Electric Double-Layer Capacitor. Journal of the American Chemical Society 2008,130,2730-2731.
    (14)Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simon, P.; Taberna, P. L. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 2006,313,1760-1763.
    (15)Huang, J.; Sumpter, B. G.; Meunier, V. Theoretical model for nanoporous carbon supercapacitors. Angewandte Chemie (International ed. in English) 2008,47, 520-524.
    (16)Huang, J.; Sumpter, B. G.; Meunier, V. A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes. Chemistry (Weinheim an der Bergstrasse, Germany) 2008,14, 6614-6626.
    (17)Raymundo-Pinero, E.; Leroux, F.; Beguin, F. A High-Performance Carbon for Supercapacitors Obtained by Carbonization of a Seaweed Biopolymer. Advanced Materials 2006,18,1877-1882.
    (18)Pandolfo, A. G.; Hollenkamp, A. F. Carbon properties and their role in supercapacitors. Journal of Power Sources 2006,157,11-27.
    (19)Yang, L.; Anantram, M. P.; Han, J.; Lu, J. P. Band-gap change of carbon nanotubes:Effect of small uniaxial and torsional strain. Physical Review B 1999, 60,874-878.
    (20)Zhang, H.; Cao, G.; Wang, Z.; Yang, Y.; Shi, Z.; Gu, Z. Growth of Manganese Oxide Nanoflowers on Vertically-Aligned Carbon Nanotube Arrays for High-Rate Electrochemical Capacitive Energy Storage 2008. Nano letters 2008, 8,2664-2668.
    (21)Niu, C. M.; Sichel, E. K.; Hoch, R.; Moy, D.; Tennent, H. High power electrochemical capacitors based on carbon nanotube electrodes. Applied Physics Letters 1997,70,1480-1482.
    (22)Zhang, H.; Cao, G. P.; Yang, Y. S.; Gu, Z. Comparison Between Electrochemical Properties of Aligned Carbon Nanotube Array and Entangled Carbon Nanotube Electrodes. Journal of The Electrochemical Society 2008,155, K19-K22.
    (23)Futabal, D. N.; Hatal, K.; Yamadal, T.; Hiraokal, T.; Hayamizul, Y.; Kakudate, Y.; Tanaike, O.; Hatori, H.; Yumural, M.; Iijimal, S. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nature materials 2006,5,987-994.
    (24)Bordjiba, T.; Mohamedi, M.; Dao, L. H. New Class of Carbon-Nanotube Aerogel Electrodes for Electrochemical Power Sources. Advanced Materials 2008,20,815-819.
    (25)Geim, A K.; Novoselov, K. S. The rise of graphene. Nature materials 2007,6, 183-191.
    (26)Lee, C. G.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008,321, 385-388.
    (27)Charlier, J. C.; Eklund, P. C.; Zhu, J.; Ferrari, A. C. Electron and Phonon Properties of Graphene:Their Relationship with Carbon Nanotubes. Topics in Applied Physics 2008,111,673-709.
    (28)Schedin, F.; Geim, a K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of individual gas molecules adsorbed on graphene. Nature materials 2007,6,652-655.
    (29)Jiao, L.; Wang, X.; Diankov, G.; Wang, H.; Dai, H. Facile synthesis of high-quality graphene nanoribbons. Nature nanotechnology 2010,5,321-325.
    (30)Liu, C.; Yu, Z.; Neff, D.; Zhamu, A.; Jang, B. Z. Graphene-Based Supercapacitor with an Ultrahigh Energy Density. Nano letters 2010,4863-4868.
    (31)Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S. Graphene-based ultracapacitors. Nano letters 2008,8,3498-3502.
    (32)Zhu, Y. W.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. a; Thommes, M.; Su, D.; Stach, E. a; Ruoff, R. S. Carbon-Based Supercapacitors Produced by Activation of Graphene. Science 2011,1537,1537-1541.
    (33)Li, Y.; Van Zijll, M.; Chiang, S.; Pan, N. KOH modified graphene nanosheets for supercapacitor electrodes. Journal of Power Sources 2011,196,6003-6006.
    (34)Zhao, X. S.; Su, F. B.; Yan, Q. F.; Guo, W. P.; Bao, X. Y.; Lv, L.; Zhou, Z. C. Templating methods for preparation of porous structures. Journal of Materials Chemistry 2006,16,637-648.
    (35)Wang, D. W.; Li, F.; Liu, M.; Lu, G. Q.; Cheng, H. M.3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angewandte Chemie (International ed. in English) 2008,47,373-376.
    (36)Yamada, H.; Nakamura, H.; Nakahara, F.; Moriguchi, I. Electrochemical Study of High Electrochemical Double Layer Capacitance of Ordered Porous Carbons with Both Meso/Macropores and Micropores. Journal of Physical Chemistry C 2007,111,227-233.
    (37)Hu, C. C.; Chen, W. C. Effects of substrates on the capacitive performance of RuOxanH2O and activated carbon RuOx electrodes for supercapacitors. Electrochimica Acta 2004,49,3469-3477.
    (38)Hu, C. C; Chang, K. H.; Lin, M. C.; Wu, Y. T. Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano letters 2006,6,2690-2695.
    (39)Dmowski, W.; Egami, T.; Swider-lyons, K. E.; Love, C. T.; Rolison, D. R. Local Atomic Structure and Conduction Mechanism of Nanocrystalline Hydrous RuO 2 from X-ray Scattering. Journal of Physical Chemistry B 2002,106, 12677-12683.
    (40)Wu, Z. S.; Wang, D. W.; Ren, W.; Zhao, J.; Zhou, G.; Li, F.; Cheng, H.-M. Anchoring Hydrous RuO2 on Graphene Sheets for High-Performance Electrochemical Capacitors. Advanced Functional Materials 2010,20, 3595-3602.
    (41)Gujar, T. P.; Shinde, V. R.; Lokhande, C. D.; Kim, W. Y.; Jung, K. D.; Joo, O.-S. Spray deposited amorphous RuO2 for an effective use in electrochemical supercapacitor. Electrochemistry Communications 2007,9,504-510.
    (42)Oke, S.; Yamamoto, M.; Shinohara, K.; Takikawa, H.; Xiaojun, H.; Itoh, S.; Yamaura, T.; Miura, K.; Yoshikawa, K.; Okawa, T.; Aoyagi, N. Specific capacitance of electrochemical capacitor using RuO2 loading arc-soot/activated carbon composite electrode. Chemical Engineering Journal 2009,146,434-438.
    (43)Liu, Y.; Zhao, W.; Zhang, X. Soft template synthesis of mesoporous Co3O4/RuO2xH2O composites for electrochemical capacitors. Electrochimica Acta 2008,53,3296-3304.
    (44)Wang, Y.; Cao, G. Z. Developments in Nanostructured Cathode Materials for High-Performance Lithium-Ion Batteries. Advanced Materials 2008,20, 2251-2269.
    (45)Fan, Z. J.; Yan, J.; Wei, T.; Zhi, L. J.; Ning, G. Q.; Li, T. Y.; Wei, F. Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes with High Power and Energy Density. Advanced Functional Materials 2011,21,2366-2375.
    (46)Chen, S.; Zhu, J. W.; Wu, X. D.; Han, Q. F.; Wang, X. Graphene Oxide MnO2 Nanocomposites for Supercapacitors. ACS nano 2010,4,2822-2830.
    (47)Li, J. A.; Cui, L.; Zhang, X. G. Preparation and electrochemistry of one-dimensional nanostructured MnO2/PPy composite for electrochemical capacitor. Applied Surface Science 2010,256,4339-4343.
    (48)Fan, Z.; Chen, J.; Zhang, B.; Liu, B.; Zhong, X.; Kuang, Y. High dispersion of γ-MnO2 on well-aligned carbon nanotube arrays and its application in supercapacitors. Diamond and Related Materials 2008,17,1943-1948.
    (49)Bao, L. H.; Zang, J. F.; Li, X. D. Flexible Zn2SnO4/MnO2 core/shell nanocable-carbon microfiber hybrid composites for high-performance supercapacitor electrodes. Nano letters 2011,11,1215-1220.
    (50)Li, Q.; Liu, J.; Zou, J.; Chunder, A.; Chen, Y.; Zhai, L. Synthesis and electrochemical performance of multi-walled carbon nanotube/polyaniline/MnO2 ternary coaxial nanostructures for supercapacitors. Journal of Power Sources 2011,196, 565-572.
    (51)Toupin, M.; Brousse, T.; Be, D. Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor. Chemistry of Materials 2004, 16, 3184-3190.
    (52)Rajendra Prasad, K.; Miura, N. Electrochemically synthesized MnO2-based mixed oxides for high performance redox supercapacitors. Electrochemistry Communications 2004, 6, 1004-1008.
    (53)Qu, Q. T.; Zhang, P.; Wang, B.; Chen, Y. H.; Tian, S.; Wu, Y. P.; Holze, R. Electrochemical Performance of MnO2 Nanorods in Neutral Aqueous Electrolytes as a Cathode for Asymmetric Supercapacitors. Journal of Physical Chemistry C 2010,113, 14020-14027.
    (54)Taberna, P. L.; Mitra, S.; Poizot, P.; Simon, P.; Tarascon, J. M. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nature materials 2006, 5, 567-573.
    (55)Shi, W. H.; Zhu, J. X.; Sim, D. H.; Tay, Y. Y.; Lu, Z. Y.; Zhang, X.; Sharma, Y.; Srinivasan, M.; Zhang, H.; Hng, H. H.; Yan, Q. Y. Achieving high specific charge capacitances in Fe3O4/reduced graphene oxide nanocomposites. Journal of Materials Chemistry 2011, 21, 3422-3427.
    (56)Chung, K. W.; Kim, K. B.; Han, S. H.; Lee, H. Novel Synthesis and Electrochemical Characterization of Nano-sized Cellular Fe3O4 Thin Film. Electrochemical and Solid-State Letters 2005, 8, A259-A262.
    (57)Wang, Y.; Takahashi, K.; Lee, K. H.; Cao, G. Z. Nanostructured Vanadium Oxide Electrodes for Enhanced Lithium-Ion Intercalation. Advanced Functional Materials 2006, 16, 1133-1144.
    (58)Li, Y. Z.; Kunitake, T.; Aoki, Y. Synthesis and Li+ Intercalation / Extraction in Ultrathin V2O5 Layer and Freestanding V2O5/Pt/PVA Multilayer Films. Chemistry of Materials 2007,19, 575-580.
    (59)Hou, Y.; Cheng, Y. W.; Hobson, T.; Liu, J. Nanospheres/Carbon Nanotubes/Conducting Polymer Ternary Composite for High Performance Electrochemical Electrodes. Nano letters 2010, 10, 2727-2733.
    (60)Zhao, X.; Sanchez, B. M.; Dobson, P. J.; Grant, P. S. The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. Nanoscale 2011, 3, 839-855.
    (61)Kuo, S. L.; Wu, N. L. Electrochemical Capacitor of MnFe2O4 with Organic Li-Ion Electrolyte. Journal of Electroanalytical Chemistry 2007, 10, A171-A175.
    (62)Dambournet, D.; Belharouak, I.; Amine, K. Tailored Preparation Methods of TiO2 Anatase, Rutile, Brookite:Mechanism of Formation and Electrochemical Properties. Chemistry of Materials 2010,22,1173-1179.
    (63)Cheah, S. K.; Perre, E.; Rooth, M.; Fondell, M.; Harsta, A.; Nyholm, L.; Boman, M.; Lu, J.; Simon, P.; Edstro, K. Self-Supported Three-Dimensional Nanoelectrodes for Microbattery Applications. Nano letters 2009,9,3230-3233.
    (64)Xiea, Y. B.; Zhoua, L. M.; Huanga, C. J.; Huangb, H. T.; Lua, J. Fabrication of nickel oxide-embedded titania nanotube array for redox capacitance application. Electrochimica Acta 2008,53,3643-3649.
    (65)Tao, F.; Shen, Y. zhong; Liang, Y. Y.; Li, H. L. Synthesis and characterization of Co(OH)2/TiO2 nanotube composites as supercapacitor materials. Journal of Solid State Electrochemistry 2006,11,853-858.
    (66)Macdiarmid, A. G. Synthetic Metals:A Novel Role for Organic Polymers (Nobel Lecture). Angewandte Chemie-international Edition 2001,40, 2581-2590.
    (67)Smela, E. Conjugated Polymer Actuators for Biomedical Applications. Advanced Materials 2003,15,481-494.
    (68)Blom, P. W. M.; Mihailetchi, V. D.; Koster, L. J. a.; Markov, D. E. Device Physics of Polymer:Fullerene Bulk Heterojunction Solar Cells. Advanced Materials 2007,19,1551-1566.
    (69)Heeger, A. J.; Kivelson, S.; Schrieffer, J. R.; P.Wu, W. Solitons in conducting polymers. Review of Modern physics 1988,60,782-751.
    (70)Huang, J.; Kaner, R. B. The intrinsic nanofibrillar morphology of polyaniline. Chemical communications (Cambridge, England) 2006,367-376.
    (71)Whitehead, M. A.; Fan, D.; Akkaraju, G. R.; Canham, L. T.; Coffer, J. L Accelerated calcification in electrically conductive polymer composites comprised of poly (e-caprolactone), polyaniline, and bioactive mesoporous silicon. Journal of Biomedical Materials Research Part A 2007.
    (72)Zhang, L.; Long, Y.; Chen, Z.; Wan, M. The Effect of Hydrogen Bonding on Self-Assembled Polyaniline Nanostructures. Advanced Functional Materials 2004,14,693-698.
    (73)Huang, J. X. Syntheses and applications of conducting polymer polyaniline nanofibers. Pure and Applied Chemistry 2006,78,15-27.
    (74)Sapurina, I.; Osadchev, A. Y.; Volchek, B. Z.; Trchova, M.; Riede, A.; Stejskal, J. In-situ polymerized polyaniline films 5. Brush-like chain ordering. Synthetic Metals 2002,129,29-37.
    (75)Park, M. C; Sun, Q.; Deng, Y. Polyaniline Microspheres Consisting of Highly Crystallized Nanorods.2007,1237-1242.
    (76)Stejskal, J.; Sapurina, I.; Trchova, M. Polyaniline nanostructures and the role of aniline oligomers in their formation. Progress in Polymer Science 2010,35, 1420-1481.
    (77)Ryu, K. S.; Kim, K. M.; Park, N.-G.; Park, Y. J.; Chang, S. H. Symmetric redox supercapacitor with conducting polyaniline electrodes. Journal of Power Sources 2002,103,305-309.
    (78)Liu, J.; Zhou, M.; Fan, L. Z.; Li, P.; Qu, X. Porous polyaniline exhibits highly enhanced electrochemical capacitance performance. Electrochimica Acta 2010, 55,5819-5822.
    (79)Ryu, K. S.; Jeong, S. K.; Joo, J.; Kim, K. M. Polyaniline doped with dimethyl sulfate as a nucleophilic dopant and its electrochemical properties as an electrode in a lithium secondary battery and a redox supercapacitor. The journal of physical chemistry. B 2007,111,731-739.
    (80)Liu, Q.; Nayfeh, M. H.; Yau, S. T. Supercapacitor electrodes based on polyaniline-silicon nanoparticle composite. Journal of Power Sources 2010,195, 3956-3959.
    (81)Gupta, V.; Miura, N. High performance electrochemical supercapacitor from electrochemically synthesized nanostructured polyaniline. Materials Letters 2006,60,1466-1469.
    (82)Bian, C.; Yu, a; Wu, H. Fibriform polyaniline/nano-TiO2 composite as an electrode material for aqueous redox supercapacitors. Electrochemistry Communications 2009,11,266-269.
    (83)Gangopadhyay, R.; De, A. Conducting Polymer Nanocomposites:A Brief Overview. Chemistry of Materials 2000,12,608-622.
    (84)Suematsu, S.; Oura, Y.; Tsujimoto, H.; Kanno, H.; Naoi, K. Conducting polymer films of cross-linked structure and their QCM analysis. Electrochimica Acta 2000,45,3813-3821.
    (85)Kim, B. C.; Ko, J. M.; Wallace, G. G. A novel capacitor material based on Nafion-doped polypyrrole. Journal of Power Sources 2008,177,665-668.
    (86)Iroh, J. O.; Levine, K. Capacitance of the polypyrrole/polyimide composite by electrochemical impedance spectroscopy. Journal of Power Sources 2003,117, 267-272.
    (87)Ingram, M. Activated polypyrrole electrodes for high-power supercapacitor applications. Solid State Ionics 2004,169,51-57.
    (88)Fan, L. Z.; Maier, J. High-performance polypyrrole electrode materials for redox supercapacitors. Electrochemistry Communications 2006,8,937-940.
    (89)Sharma, R. K.; Rastogi, a. C.; Desu, S. B. Pulse polymerized polypyrrole electrodes for high energy density electrochemical supercapacitor. Electrochemistry Communications 2008,10,268-272.
    (90)Kazimierska, E.; Smyth, M. R.; Killard, A. J. Size-dependent electrocatalytic reduction of nitrite at nanostructured films of hollow polyaniline spheres and polyaniline-polystyrene core-shells. Electrochimica Acta 2009,54,7260-7267.
    (91)Mi, H. Y.; Zhang, X. G.; Ye, X. G.; Yang, S. D. Preparation and enhanced capacitance of core-shell polypyrrole/polyaniline composite electrode for supercapacitors. Journal of Power Sources 2008,176,403-409.
    (92)Mawragostino, M.; Menechello, L. Characterization by impedance spectroscopy of a polymer-based. Electrochimica Acta 1995,40,2223-2228.
    (93)Snook, G. A.; Kao, P.; Best, A. S. Conducting-polymer-based supercapacitor devices and electrodes. Journal of Power Sources 2011,196,1-12.
    (94)Laforgue, A.; Simon, P.; Fauvarquae, J. F.; Mastragostino, M.; Soavi, F.; Sarrau, J. F.; Lailler; Conte, M.; Rossi, E.; Saguattie, S. Activated Carbon/Conducting Polymer Hybrid Supercapacitors. Journal of Electrostatics 2003,150, A645-A651.
    (95)Peng, C.; Snook, G. a; Fray, D. J.; Shaffer, M. S. P.; Chen, G. Z. Carbon nanotube stabilised emulsions for electrochemical synthesis of porous nanocomposite coatings of poly[3,4-ethylene-dioxythiophene]. Chemical communications (Cambridge, England) 2006,4629-4631.
    (96)Lisowska-Oleksiak, A.; Nowak, A. P. Metal hexacyanoferrate network synthesized inside polymer matrix for electrochemical capacitors. Journal of Power Sources 2007,173,829-836.
    (97)Snook, G. A.; Peng, C.; Fray, D. J.; Chen, G. Z. Achieving high electrode specific capacitance with materials of low mass specific capacitance: Potentiostatically grown thick micro-nanoporous PEDOT films. Electrochemistry Communications 2007,9,83-88.
    (98)Lota, K.; Khomenko, V.; Frackowiak, E. Capacitance properties of poly(3,4-ethylenedioxythiophene)/carbon nanotubes composites. Journal of Physics and Chemistry of Solids 2004,65,295-301.
    (99)Snook, G. A.; Chen, G. Z. The measurement of specific capacitances of conducting polymers using the quartz crystal microbalance. Journal of Electroanalytical Chemistry 2008,612,140-146.
    (100)Xiao, Q. F.; Zhou, X. The study of multiwalled carbon nanotube deposited with conducting polymer for supercapacitor. Electrochimica Acta 2003,48,575-580.
    (101)Balducci, A.; Henderson, A. W.; Mastragostino, M.; Passerini, S.; Simon, P.; Soavi, F. Cycling stability of a hybrid activated carbon//poly(3-methylthiophene) supercapacitor with-butyl-methylpyrrolidinium bis(trifluoromethanesulfonyl)i mide ionic liquid as electrolyte. Electrochimica Acta 2005,50,2233-2237.
    (102)Rudgea, A.; Raistricka, I.; Gottesfelda, S.; Ferrarisb, J. P. A study of the electrochemical properties of conducting polymers for application in electrochemical capacitors. Electrochimica Acta 1994,39,273-287.
    (103)Fusalba, F.; Mehdi, N. E.; Breau, L.; Be, D. Physicochemical and Electrochemical Characterization of Polycyclopenta [2,1-b;3,4-b'] dithiophen-4-one as an Active Electrode for Electrochemical Supercapacitors. Chemistry of Materials 1999,11,2743-2753.
    (104)Chen, P. C.; Shen, G.; Shi, Y.; Chen, H.; Zhou, C. Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. ACS nano 2010,4,4403-4411.
    (105)Reddy, A. L. M.; Ramaprabhu, S. Nanocrystalline Metal Oxides Dispersed Multiwalled Carbon Nanotubes as Supercapacitor Electrodes. Journal of Physical Chemistry C 2007,111,7727-7734.
    (106)Landi, B. J.; Ganter, M. J.; Cress, C. D.; DiLeo, R. a.; Raffaelle, R. P. Carbon nanotubes for lithium ion batteries. Energy & Environmental Science 2009,2, 638-654.
    (107)Das, R. K.; Liu, B.; Reynolds, J. R.; Rinzler, A. G. Engineered macroporosity in single-wall carbon nanotube films. Nano letters 2009,9,677-683.
    (108)Wei, W. F.; Cui, X. W.; Chen, W. X.; Ivey, D. G. Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chemical Society reviews 2011,40,1697-1721.
    (109)Nam, K. W.; Lee, C. W.; Yang, X. Q.; Cho, B. W.; Yoon, W. S.; Kim, K. B. Electrodeposited manganese oxides on three-dimensional carbon nanotube substrate:Supercapacitive behaviour in aqueous and organic electrolytes. Journal of Power Sources 2009,188,323-331.
    (110)Nam, K. W.; Kim, K. H.; Lee, E. S.; Yoon, W. S.; Yang, X. Q.; Kim, K. B. Pseudocapacitive properties of electrochemically prepared nickel oxides on 3-dimensional carbon nanotube film substrates. Journal of Power Sources 2008, 182,642-652.
    (111)Zheng, H. J.; Tang, F. Q.; Lim, M.; Rufford, T.; Mukherji, A.; Wang, L. Z.; Lu, G. Q. Electrochemical behavior of carbon-nanotube/cobalt oxyhydroxide nanoflake multilayer films. Journal of Power Sources 2009,193,930-934.
    (112)Gao, L.; Peng, A; Wang, Z.; Zhang, H.; Shi, Z.; Gu, Z.; Cao, G.; Ding, B. Growth of aligned carbon nanotube arrays on metallic substrate and its application to supercapacitors. Solid State Communications 2008,146,380-383.
    (113)Li, F.; Song, J.; Yang, H.; Gan, S.; Zhang, Q.; Han, D.; Ivaska, A.; Niu, L. One-step synthesis of graphene/SnO2 nanocomposites and its application in electrochemical supercapacitors. Nanotechnology 2009,20,455602 (6pp).
    (114)Zhang, Y.; Li, H.; Pan, L.; Lu, T.; Sun, Z. Capacitive behavior of graphene-ZnO composite film for supercapacitors. Journal of Electroanalytical Chemistry 2009, 634,68-71.
    (115)Wang, H.; Casalongue, H. S.; Liang, Y.; Dai, H. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. Journal of the American Chemical Society 2010,132, 7472-7477.
    (116)Rakhi, R. B.; Alshareef, H. N. Enhancement of the energy storage properties of supercapacitors using graphene nanosheets dispersed with metal oxide-loaded carbon nanotubes. Journal of Power Sources 2011,196, 8858-8865.
    (117)Wang, B.; Park, J.; Wang, C.; Ahn, H.; Wang, G. Mn3O4 nanoparticles embedded into graphene nanosheets: Preparation, characterization, and electrochemical properties for supercapacitors. Electrochimica Acta 2010, 55, 6812-6817.
    (118)Lu, T.; Zhang, Y.; Li, H.; Pan, L.; Li, Y.; Sun, Z. Electrochemical behaviors of graphene-ZnO and graphene-SnO2 composite films for supercapacitors. Electrochimica Acta 2010, 55, 4170-4173.
    (119)Wang, J.; Xu, Y.; Chen, X.; Sun, X. Capacitance properties of single wall carbon nanotube/polypyrrole composite films. Composites Science and Technology 2007,67,2981-2985.
    (120)Gao, B.; Fu, Q.; Su, L.; Yuan, C.; Zhang, X. Preparation and electrochemical properties of polyaniline doped with benzenesulfonic functionalized multi-walled carbon nanotubes. Electrochimica Acta 2010, 55, 2311-2318.
    (121)Sivakkumar, S. R.; Kim, W. J.; Choi, J.-A.; MacFarlane, D. R.; Forsyth, M; Kim, D.-W. Electrochemical performance of polyaniline nanofibres and polyaniline/multi-walled carbon nanotube composite as an electrode material for aqueous redox supercapacitors. Journal of Power Sources 2007,171, 1062-1068.
    (122)Mi, H. Y.; Zhang, X. G.; An, S. Y.; Ye, X. G.; Yang, S. D. Microwave-assisted synthesis and electrochemical capacitance of polyaniline/multi-wall carbon nanotubes composite. Electrochemistry Communications 2007, 9, 2859-2862.
    (123)An, K. H.; Jeon, K. K.; Heo, J. K.; Lim, S. C.; Bae, D. J.; Lee, Y. H. High-Capacitance Supercapacitor Using a Nanocomposite Electrode of Single-Walled Carbon Nanotube and Polypyrrole. Journal of The Electrochemical Society 2002,149, A1O58-A1062.
    (124)Lee, H.; Kim, H.; Cho, M. S.; Choi, J.; Lee, Y. Fabrication of polypyrrole (PPy)/carbon nanotube (CNT) composite electrode on ceramic fabric for supercapacitor applications. Electrochimica Acta 2011, 56, 7460-7466.
    (125)Lin, X.; Xu, Y. Facile synthesis and electrochemical capacitance of composites of polypyrrole/multi-walled carbon nanotubes. Electrochimica Acta 2008,53, 4990-4997.
    (126)Gupta, V.; Miura, N. Polyaniline/single-wall carbon nanotube (PANI/SWCNT) composites for high performance supercapacitors. Electrochimica Acta 2006,52, 1721-1726.
    (127)Wang, D. W.; Li, F.; Zhao, J.; Ren, W.; Chen, Z. G.; Tan, J.; Wu, Z. S.; Gentle, I.; Lu, G. Q.; Cheng, H. M. Fabrication of Graphene/Polyaniline Composite Paper via In Situ Anodic Electropolymerization for High-Performance Flexible Electrode. ACS nano 2009,3,1745-1752.
    (128)Davies, A.; Audette, P.; Farrow, B.; Hassan, F.; Chen, Z.; Choi, J.-yeon; Yu, A. Graphene-Based Flexible Supercapacitors:Pulse-Electropolymerization of Polypyrrole on Free-Standing Graphene Films. Society 2011,17612-17620.
    (129)Feng, X. M.; Li, R. M.; Ma, Y. W.; Chen, R. F.; Shi, N. E.; Fan, Q. L.; Huang, W. One-Step Electrochemical Synthesis of Graphene/Polyaniline Composite Film and Its Applications. Advanced Functional Materials 2011,21,2989-2996.
    (130)Xu, J. J.; Wang, K.; Zu, S. Z.; Han, B. H.; Wei, Z. X. Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS nano 2010,4,5019-5026.
    (131)Zhang, L. L.; Zhao, S.; Tian, X. N.; Zhao, X. S. Layered graphene oxide nanostructures with sandwiched conducting polymers as supercapacitor electrodes. Langmuir: the ACS journal of surfaces and colloids 2010,26, 17624-17628.
    (132)Zhang, K.; Zhang, L. L.; Zhao, X. S.; Wu, J. Graphene/Polyaniline Nanofiber Composites as Supercapacitor Electrodes. Chemistry of Materials 2010,22, 1392-1401.
    (133)Wang, H.; Hao, Q.; Yang, X.; Lu, L.; Wang, X. Graphene oxide doped polyaniline for supercapacitors. Electrochemistry Communications 2009,11, 1158-1161.
    (134)Wang, H.; Hao, Q.; Yang, X.; Lu, L.; Wang, X. Effect of graphene oxide on the properties of its composite with polyaniline. ACS applied materials & interfaces 2010,2,821-828.
    (135)Wang, H.; Hao, Q.; Yang, X.; Lu, L.; Wang, X. A nanostructured graphene/polyaniline hybrid material for supercapacitors. Nanoscale 2010,2, 2164-2170.
    (136)Biswas, S.; Drzal, L. T. Multilayered Nanoarchitecture of Graphene Nanosheets and Polypyrrole Nanowires for High Performance Supercapacitor Electrodes. Chemistry of Materials 2010,22,5667-5671.
    (137)Bai, H.; Xu, Y.; Zhao, L.; Li, C.; Shi, G. Q. Non-covalent functionalization of graphene sheets by sulfonated polyaniline. Chemical communications (Cambridge, England) 2009, 1667-1669.
    (138)Wu, Q.; Xu, Y.; Yao, Z.; Liu, A.; Shi, G. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS nano 2010, 4, 1963-1970.
    (139)Yan, J.; Wei, T.; Shao, B.; Fan, Z.; Qian, W.; Zhang, M.; Wei, F. Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon 2010, 48, 487-493.
    (140)Yan, J.; Wei, T.; Fan, Z.; Qian, W.; Zhang, M.; Shen, X.; Wei, F. Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors. Journal of Power Sources 2010,195, 3041-3045.
    (141)Chen, S.; Kucernak, A. The Voltammetric Response of Nanometer-Sized Carbon Electrodes. The Journal of Physical Chemistry B 2002,106, 9396-9404.
    (142)Choi, D.; Blomgren, G. E.; Kumta, P. N. Fast and Reversible Surface Redox Reaction in Nanocrystalline Vanadium Nitride Supercapacitors. Advanced Materials 2006, 18, 1178-1182.
    (143)Wang, Y. G.; Li, H. Q.; Xia, Y. Y. Ordered Whisker like Polyaniline Grown on the Surface of Mesoporous Carbon and Its Electrochemical Capacitance Performance. Advanced Materials 2006,18, 2619-2623.
    (144)Kuila, B. K.; Nandan, B.; Bohme, M.; Janke, A.; Stamm, M. Vertically oriented arrays of polyaniline nanorods and their super electrochemical properties. Chemical communications (Cambridge, England) 2009, 5749-5751.
    (145)Yu, Y.; Zhihuai, S.; Chen, S.; Bian, C.; Chen, W.; Xue, G. Facile synthesis of polyaniline-sodium alginate nanofibers. Langmuir□: the ACS journal of surfaces and colloids 2006, 22, 3899-3905.
    (146)Cao, Y.; Shen, X.; Chen, Y.; Guo, J.; Chen, Q.; Jiang, X. pH-induced self-assembly and capsules of sodium alginate. Biomacromolecules 2005, 6, 2189-2196.
    (147)Chen, S.; Chen, W.; Xue, G. Electrogeneration of polypyrrole/alginate films for immobilization of glucose oxidase. Macromolecular bioscience 2008, 8, 478-483.
    (148)Sartori, C.; Finch, D. S.; Ralph, B.; Gilding, K. Determination of the cation content of alginate thin films by FTi.r. spectroscopy. Polymer 1997, 38, 43-51.
    (149)Huang, K.; Wan, M. Self-Assembled Polyaniline Nanostructures with Photoisomerization Function. Chemistry of Materials 2002,14, 3486-3492.
    (150)Li, G. C.; Zhang, Z. K. Synthesis of Dendritic Polyaniline Nanofibers in a Surfactant Gel. Macromolecules 2004, 37, 2683-2685.
    (151)Xing, S.; Zhao, C.; Jing, S.; Wang, Z. Morphology and conductivity of polyaniline nanofibers prepared by "seeding" polymerization. Polymer 2006,47, 2305-2313.
    (152)Hu, C. Capacitive and textural characteristics of polyaniline-platinum composite films. Electrochimica Acta 2002,47,2741-2749.
    (153)Wasikiewicz, J.; Yoshii, F.; Nagasawa, N.; Wach, R.; Mitomo, H. Degradation of chitosan and sodium alginate by gamma radiation, sonochemical and ultraviolet methods. Radiation Physics and Chemistry 2005,73,287-295.
    (154)Pouget, J. P.; Jozefowicz, M. E.; Epstein, a. J.; Tang, X.; MacDiarmid, a. G. X-ray structure of polyaniline. Macromolecules 1991,24,779-789.
    (155)Zhou, J. P.; Zhang, L. N. Structure and Properties of Blend Membranes Prepared from Cellulose and Alginate in NaOH/Urea. Polymer 2001,451-458.
    (156)Yan, J.; Wei, T.; Qiao, W.; Fan, Z.; Zhang, L.; Li, T.; Zhao, Q. A high-performance carbon derived from polyaniline for supercapacitors. Electrochemistry Communications 2010,12,1279-1282.
    (157)Focke, W. W.; Wnek, E. Influence of Oxidation State, pH, and Counterion on the Conductlvity of Polyaniline. J. Phys. Chem 1987,91,5813-5818.
    (158)David K. Gosser, J. Cyclic voltammetry-simulation and analysis of reaction mechanisms; VCH Publishers:New York,1993.
    (159)Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J.-M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nature materials 2005,4,366-377.
    (160)Morishita, T.; Soneda, Y.; Hatori, H.; Inagaki, M. Carbon-coated tungsten and molybdenum carbides for electrode of electrochemical capacitor. Electrochimica Acta 2007,52,2478-2484.
    (161)Sun, W.; Chen, X. Fabrication and tests of a novel three dimensional micro supercapacitor. Microelectronic Engineering 2009,86,1307-1310.
    (162)Kim, B. H.; Yang, K. S.; Woo, H. G. Thin, bendable electrodes consisting of porous carbon nanofibers via the electrospinning of polyacrylonitrile containing tetraethoxy orthosilicate for supercapacitor. Electrochemistry Communications 2011,13,1042-1046.
    (163)Guo, P.; Song, H.; Chen, X. Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries. Electrochemistry Communications 2009,11,1320-1324.
    (164)Komura, T.; Ishihara, M.; Yamaguchi, T.; Takahashi, K. Charge-transporting properties of electropolymerized phenosafranin in aqueous media. Journal of Electroanalytical Chemistry 2000,493,84-92.
    (165)Yu, D. S.; Dai, L. M. Self-Assembled Graphene/Carbon Nanotube Hybrid Films for Supercapacitors. The Journal of Physical Chemistry Letters 2010,1, 467-470.
    (166)Mai, L. Q.; Yang, F.; Zhao, Y. L.; Xu, X.; Xu, L.; Luo, Y. Z. Hierarchical MnMoO(4)/CoMoO(4) heterostructured nanowires with enhanced supercapacitor performance. Nature communications 2011,2,381(pp5).
    (167)Aravindan, V.; Reddy, M. V.; Madhavi, S.; Mhaisalkar, S. G.; Subba Rao, G. V.; Chowdari, B. V. R. Hybrid supercapacitor with nano-TiP2O7 as intercalation electrode. Journal of Power Sources 2011,196,8850-8854.
    (168)Ko, J. M.; Ryu, K. S.; Kim, S.; Kim, K. M. Supercapacitive properties of composite electrodes consisting of polyaniline, carbon nanotube, and RuO2. Journal of Applied Electrochemistry 2009,39,1331-1337.
    (169)Olsson, H.; Nystrom, G.; Str(?)mme, M.; Sjodin, M.; Nyholm, L. Cycling stability and self-protective properties of a paper-based polypyrrole energy storage device. Electrochemistry Communications 2011,13,869-871.
    (170)Ryu, K. Redox supercapacitor using polyaniline doped with Li salt as electrode. Solid State Ionics 2002,152-153,861-866.
    (171)Derrien, G.; Hassoun, J.; Panero, S.; Scrosati, B. Nanostructured Sn-C Composite as an Advanced Anode Material in High-Performance Lithium-Ion Batteries. Advanced Materials 2007,19,2336-2340.
    (172)Guo, J.; Wang, C. A polymer scaffold binder structure for high capacity silicon anode of lithium-ion battery. Chemical communications (Cambridge, England) 2010,46,1428-1430.
    (173)Bazin, L.; Mitra, S.; Taberna, P. L.; Poizot, P.; Gressier, M.; Menu, M. J.; Barnabe, a.; Simon, P.; Tarascon, J.-M. High rate capability pure Sn-based nano-architectured electrode assembly for rechargeable lithium batteries. Journal of Power Sources 2009,188,578-582.
    (174)Nyholm, L.; Nystrom, G.; Mihranyan, A.; Str(?)mme, M. Toward Flexible Polymer and Paper-Based Energy Storage Devices. Advanced materials (Deerfield Beach, Fla.) 2011,23,3751-3769.
    (175)Han, Y.; Hao, L.; Zhang, X. Preparation and electrochemical performances of graphite oxide/polypyrrole composites. Synthetic Metals 2010,160,2336-2340.
    (176)Liu, Q.; Nayfeh, M. H.; Yau, S.-T. Supercapacitor electrodes based on polyaniline-silicon nanoparticle composite. Journal of Power Sources 2010,195, 3956-3959.
    (177)Wang, H.; Hao, Q.; Yang, X.; Lu, L.; Wang, X. A nanostructured graphene/polyaniline hybrid material for supercapacitors. Nanoscale 2010,2, 2164-2170.
    (178)Lang, J. W.; Yan, X. B.; Yuan, X. Y.; Yang, J.; Xue, Q. J. Study on the electrochemical properties of cubic ordered mesoporous carbon for supercapacitors. Journal of Power Sources 2011,196,10472-10478.
    (179)Lin, Y. H.; Wei, T. Y.; Chien, H. C.; Lu, S. Y. Manganese Oxide/Carbon Aerogel Composite:an Outstanding Supercapacitor Electrode Material. Advanced Energy Materials 2011,1,901-907.
    (180)Horng, Y. Y.; Lu, Y. C.; Hsu, Y. K.; Chen, C. C.; Chen, L. C.; Chen, K. H. Flexible supercapacitor based on polyaniline nanowires/carbon cloth with both high gravimetric and area-normalized capacitance. Journal of Power Sources 2010,195,4418-4422.
    (181)Yan, Y. F.; Cheng, Q. L.; Wang, G. C.; Li, C. Z. Growth of polyaniline nanowhiskers on mesoporous carbon for supercapacitor application. Journal of Power Sources 2011,196,7835-7840.
    (182)Subianto, S.; Mistry, M. K.; Choudhury, N. R.; Dutta, N. K.; Knott, R. Composite polymer electrolyte containing ionic liquid and functionalized polyhedral oligomeric silsesquioxanes for anhydrous PEM applications. ACS applied materials & interfaces 2009,1,1173-1182.
    (183)Yen, Y. C.; Ye, Y. S.; Cheng, C. C.; Lu, C. H.; Tsai, L. D.; Huang, J. M.; Chang, F. C. The effect of sulfonic acid groups within a polyhedral oligomeric silsesquioxane containing cross-linked proton exchange membrane. Polymer 2010,51,84-91.
    (184)Zhang, J.; Xu, R. W.; Yu, D. S. A Novel and Facile Method for the Synthesis of Octa (aminophenyl) silsesquioxane and Its Nanocomposites with Bismaleimide-Diamine Resin. Journal of Applied Polymer Science 2006,103, 1004-1010.
    (185)Huang, Y. F.; Lin, C. W. Introduction of methanol in the formation of polyaniline nanotubes in an acid-free aqueous solution through a self-curling process. Polymer 2009,50,775-782.
    (186)Li, W.; Zhu, M.; Zhang, Q.; Chen, D. Expanded conformation of macromolecular chain in polyaniline with one-dimensional nanostructure prepared by interfacial polymerization. Applied Physics Letters 2006,89,103110 (pp3).
    (187)Li, D.; Huang, J. X.; Kaner, R. B. Polyaniline nanofibers:a unique polymer nanostructure for versatile applications. Accounts of chemical research 2009,42, 135-145.
    (188)Chaudhari, H. K.; Kelkar, D. S. X-ray diffraction study of doped polyaniline. Journal of Applied Polymer Science 1996,62,15-18.
    (189)Sapurina, I.; Stejskal, J. The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polymer International 2008,1325,1295-1325.
    (190)Liu, H.; Rusling, J. F.; Hu, N. Electroactive core-shell nanocluster films of heme proteins, polyelectrolytes, and silica nanoparticles. Langmuir:the ACS journal of surfaces and colloids 2004,20,10700-10705.
    (191)Turri, S.; Levi, M. Structure, Dynamic Properties, and Surface Behavior of Nanostructured Ionomeric Polyurethanes from Reactive Polyhedral Oligomeric Silsesquioxanes. Macromolecules 2005,38,5569-5574.
    (192)Liu, L.; Tian, M.; Zhang, W.; Zhang, L. Q.; Mark, J. E. Crystallization and morphology study of polyhedral oligomeric silsesquioxane (POSS)/polysiloxane elastomer composites prepared by melt blending. Polymer 2007,48,3201-3212.
    (193)Jimenez, P.; Castell, P.; Sainz, R.; Anson, A.; Martinez, M. T.; Benito, A. M.; Maser, W. K. Carbon nanotube effect on polyaniline morphology in water dispersible composites. The journal of physical chemistry. B 2010,114, 1579-1585.
    (194)Qiu, H.; Wan, M. Properties of Nanostructural Polyaniline Doped with Novel Sulfonic Acids (4-{n-[4-(4-Nitrophenylazo) phenyloxy] alkyl} aminobenzene Sulfonic Acid). Polymer 2001,3485-3497.
    (195)Ding, H.; Long, Y.; Shen, J.; Wan, M. Fe2(SO4)3 as a binary oxidant and dopant to thin polyaniline nanowires with high conductivity. The journal of physical chemistry. B 2010,114,115-119.
    (196)Xing, S. X.; Zheng, H. W.; Zhao, G. K. Preparation of polyaniline nanofibers via a novel interfacial polymerization method. Synthetic Metals 2008,158,59-63.
    (197)Waddon, A. J.; Coughlin, E. B. Crystal Structure of Polyhedral Oligomeric Silsequioxane (POSS) Nano-materials:A Study by X-ray Diffraction and Electron Microscopy. Chemistry of Materials 2003,15,4555-4561.
    (198)Zhou, L.; Wang, W.; Xu, H.; Sun, S.; Shang, M. Bi2O3 hierarchical nanostructures:controllable synthesis, growth mechanism, and their application in photocatalysis. Chemistry (Weinheim an der Bergstrasse, Germany) 2009,15, 1776-1782.
    (199)Kruk, M.; Jaroniec, M. Gas Adsorption Characterization of Ordered Organic-Inorganic Nanocomposite Materials. Chemistry of Materials 2001,13, 3169-3183.
    (200)Zhang, W. H.; Shi, J. L.; Wang, L. Z.; Yan, D. S. Preparation and Characterization of ZnO Clusters inside Mesoporous Silica. Chemistry of Materials 2000,12,1408-1413.
    (201)Lang, X.; Hirata, A.; Fujita, T.; Chen, M. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nature Nanotechnology 2011, 1-5.
    (202)Gamby, J.; Taberna, P..; Simon, P.; Fauvarque, J..; Chesneau, M. Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. Journal of Power Sources 2001,101,109-116.
    (203)Radhakrishnan, S.; Rao, C. R. K.; Vijayan, M. Performance of Conducting Polyaniline-DBSA and Polyaniline-DBSA/Fe 3 O 4 Composites as Electrode Materials for Aqueous Redox Supercapacitors. Polymer 2011.
    (204)Zhou, H.; Chen, H.; Luo, S.; Lu, G.; Wei, W.; Kuang, Y. The effect of the polyaniline morphology on the performance of polyaniline supercapacitors. Journal of Solid State Electrochemistry 2005,9,574-580.
    (205)Yan, J.; Wei, T.; Fan, Z.; Qian, W.; Zhang, M.; Shen, X.; Wei, F. Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors. Journal of Power Sources 2010,195,3041-3045.
    (206)Wang, H.; Hao, Q.; Yang, X.; Lu, L.; Wang, X. Effect of graphene oxide on the properties of its composite with polyaniline. ACS applied materials & interfaces 2010,2,821-828.
    (207)Yan, X.; Chen, J.; Yang, J.; Xue, Q.; Miele, P. Fabrication of free-standing, electrochemically active, and biocompatible graphene oxide-polyaniline and graphene-polyaniline hybrid papers. ACS applied materials & interfaces 2010,2, 2521-2529.
    (208)Zhang, L. L.; Li, S.; Zhang, J.; Guo, P.; Zheng, J.; Zhao, X. S. Enhancement of Electrochemical Performance of Macroporous Carbon by Surface Coating of Polyaniline. Chemistry of Materials 2010,22,1195-1202.
    (209)Meng, C.; Liu, C.; Fan, S. Flexible carbon nanotube/polyaniline paper-like films and their enhanced electrochemical properties. Electrochemistry Communications 2009,11,186-189.
    (210)Zhao, X. Y.; Zang, J. B.; Wang, Y. H.; Bian, L. Y.; Yu, J. K. Electropolymerizing polyaniline on undoped 100nm diamond powder and its electrochemical characteristics. Electrochemistry Communications 2009,11, 1297-1300.
    (211)Gomez, H.; Ram, M. K.; Alvi, F.; Villalba, P.; Stefanakos, E. (Lee); Kumar, A. Graphene-conducting polymer nanocomposite as novel electrode for supercapacitors. Journal of Power Sources 2011,196,4102-4108.
    (212)Kishore, R.; Karakoti, A.; Seal, S.; Zhai, L. Multiwall carbon nanotube-poly (4-styrenesulfonic acid) supported polypyrrole/manganese oxide nano-composites for high performance electrochemical electrodes. Electronics 2010,195,1256-1262.
    (213)Han, Y.; Qing, X.; Ye, S.; Lu, Y. Conducting polypyrrole with nanoscale hierarchical structure. Synthetic Metals 2010,160, 1159-1166.
    (214)Khomenko, V.; Frackowiak, E.; Beguin, F. Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations. Electrochimica Acta 2005, 50, 2499-2506.
    (215)Yang, L.; Cheng, S.; Ding, Y.; Zhu, X.; Wang, Z. L.; Liu, M. Hierarchical Network Architectures of Carbon Fiber Paper Supported Cobalt Oxide Nanonet for High-Capacity Pseudocapacitors. Nano 2011,12, 321-325.
    (216)Yu, G. H.; Hu, L. B.; Liu, N. A.; Wang, H. L.; Vosgueritchian, M.; Yang, Y. Cui, Y. Enhancing the Supercapacitor Performance of Graphene/MnO 2 Nanostructured Electrodes by Conductive Wrapping. Nano Letters 2011, 11, 4438-4442.
    (217)Yu, G.; Hu, L.; Vosgueritchian, M.; Wang, H.; Xie, X.; Mcdonough, J. R.; Cui, X.; Cui, Y.; Bao, Z. Solution-Processed Graphene/MnO 2 Nanostructured Textiles for High-Performance Electrochemical Capacitors. Nano Letters 2011, 2905-2911.
    (218)Zhang, L. L.; Zhou, R.; Zhao, X. S. Graphene-based materials as supercapacitor electrodes. Journal of Materials Chemistry 2010, 20, 5983-5992. |
    (219)http://en.wikipedia.org/wiki/Graphene.
    (220)Stankovich, S.; Dikin, D. a; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. a; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442, 282-286.
    (221)Gilje, S.; Han, S.; Wang, M.; Wang, K. L.; Kaner, R. B. A chemical route to graphene for device applications. Nano letters 2007, 7, 3394-3398.
    (222)Li, D.; Miiller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nature nanotechnology 2008, 3, 101-105.
    (223)Novoselov, K. S.; Geim, a K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, a a Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.
    (224)Wei, D.; Liu, Y.; Wang, Y.; Zhang, H.; Huang, L.; Yu, G. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano letters 2009,9, 1752-1758.
    (225)Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano letters 2009, 9, 30-35.
    (226)Zhao, L.; He, R.; Rim, K. T.; Schiros, T.; Kim, K. S.; Zhou, H.; Gutierrez, C.; Chockalingam, S. P.; Arguello, C. J.; Palova, L.; Nordlund, D.; Hybertsen, M. S. Reichman, D. R.; Heinz, T. F.; Kim, P.; Pinczuk, a.; Flynn, G. W.; Pasupathy, a. N. Visualizing Individual Nitrogen Dopants in Monolayer Graphene. Science 2011,333,999-1003.
    (227)Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009,324,1312-1314.
    (228)Park, S.; An, J.; Jung, I.; Piner, R. D.; An, S. J.; Li, X.; Velamakanni, A.; Ruoff, R. S. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano letters 2009,9,1593-1597.
    (229)Lv, W.; Tang, D.-M.; He, Y.-B.; You, C.-H.; Shi, Z.-Q.; Chen, X.-C.; Chen, C.-M.; Hou, P.-X.; Liu, C.; Yang, Q.-H. Low-temperature exfoliated graphenes: vacuum-promoted exfoliation and electrochemical energy storage. ACS nano 2009,3,3730-3736.
    (230)Gu, W.; Zhang, W.; Li, X.; Zhu, H.; Wei, J.; Li, Z.; Shu, Q.; Wang, C.; Wang, K.; Shen, W.; Kang, F.; Wu, D. Graphene sheets from worm-like exfoliated graphite. Journal of Materials Chemistry 2009,19,3367-3369.
    (231)Nicolle, J.; Machon, D.; Poncharal, P.; Pierre-Louis, O.; San-Miguel, A. Pressure-mediated doping in graphene. Nano letters 2011,11,3564-3568.
    (232)King, P. J.; Khan, U.; Lotya, M.; De, S.; Coleman, J. N. Improvement of transparent conducting nanotube films by addition of small quantities of graphene. ACS nano 2010,4,4238-4246.
    (233)Faugeras, C.; Faugeras, B.; Orlita, M.; Potemski, M.; Nair, R. R.; Geim, a K. Thermal conductivity of graphene in corbino membrane geometry. ACS nano 2010,4,1889-1892.
    (234)Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature nanotechnology 2008,3,270-274.
    (235)Xu, Y.; Liu, Z.; Zhang, X.; Wang, Y.; Tian, J.; Huang, Y.; Ma, Y.; Zhang, X.; Chen, Y. A Graphene Hybrid Material Covalently Functionalized with Porphyrin: Synthesis and Optical Limiting Property. Advanced Materials 2009,21, 1275-1279.
    (236)Zhou, X.; Wu, T.; Hu, B.; Yang, G.; Han, B. Synthesis of graphene/polyaniline composite nanosheets mediated by polymerized ionic liquid. Chemical communications (Cambridge, England) 2010,46,3663-3665.
    (237)Chiou, N. R.; Lu, C. M.; Guan, J. J.; Lee, L. J.; Epstein, A. J. Growth and alignment of polyaniline nano fibres with super hydrophobic, superhydrophilic and other properties. Nature nanotechnology 2007,2,354-357.
    (238)Guo, P.; Song, H.; Chen, X. Hollow graphene oxide spheres self-assembled by W/O emulsion. Journal of Materials Chemistry 2010,20,4867-4874.|
    (239)Zhang, J.; Jiang, J.; Li, H.; Zhao, X. S. A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes. Energy & Environmental Science 2011,4,4009-4015.
    (240)Dhakate, S. R.; Mathur, R. B.; Sharma, S.; Borah, M.; Dhami, T. L. Influence of Expanded Graphite Particle Size on the Properties of Composite Bipolar Plates for Fuel Cell Application. Energy & Fuels 2009,23,934-941.
    (241)Yu, D. S.; Dai, L. M. Self-Assembled Graphene/Carbon Nanotube Hybrid Films for Supercapacitors. The Journal of Physical Chemistry Letters 2010,1, 467-470.
    (242)Dhakate, S. R.; Sharma, S.; Borah, M.; Mathur, R. B.; Dhami, T. L. Development and Characterization of Expanded Graphite-Based Nanocomposite as Bipolar Plate for Polymer Electrolyte Membrane Fuel Cells (PEMFCs). Energy & Fuels 2008,22,3329-3334.
    (243)Su, C. Y.; Lu, A. Y.; Xu, Y. P.; Chen, F. R.; Khlobystov, A. N.; Li, L. J. High-quality thin graphene films from fast electrochemical exfoliation. ACS nano 2011,5,2332-2339.
    (244)Lu, J.; Yang, J. X.; Wang, J. Z.; Lim, A.; Wang, S.; Loh, K. P. One-Pot Synthesis of Fluorescent Carbon Graphene by the Exfoliation of Graphite in Ionic Liquids. ACS nano 2009,3,2367-2375.
    (245)Liu, N.; Luo, F.; Wu, H. X.; Liu, Y. H.; Zhang, C.; Chen, J. One-Step Ionic-Liquid-Assisted Electrochemical Synthesis of Ionic-Liquid-Functionalized Graphene Sheets Directly from Graphite. Advanced Functional Materials 2008, 18,1518-1525.
    (246)Warner, J. H.; Ru, M. H.; Gemming, T.; Bu, B.; Briggs, G. A. D. Direct Imaging of Rotational Stacking Faults in Few Layer Graphene 2009. Nano 2009,9, 102-106.
    (247)Lotya, M.; Hernandez, Y.; King, P. J.; Smith, R. J.; Nicolosi, V.; Karlsson, L. S.; Blighe, F. M.; De, S.; Wang, Z.; Mcgovern, I. T.; Duesberg, G. S.; Cole man, J. N. Liquid Phase Production of Graphene by Exfoliation of Graphite in Surfactant /Water Solutions. J. AM. CHEM. SOC.2009,2009,131,3611-3620.
    (248)Green, A. A; Hersam, M. C. Solution phase production of graphene with controlled thickness via density differentiation. Nano letters 2009,9,4031-4036.
    (249)Kong, B. S.; Geng, J. X.; Jung, H. T. Layer-by-layer assembly of graphene and gold nanoparticles by vacuum filtration and spontaneous reduction of gold ions. Chemical communications (Cambridge, England) 2009,2174-2176.
    (250)Yan, X. B.; Chen, J. T.; Yang, J.; Xue, Q. J.; Miele, P. L. Fabrication of free-standing, electrochemically active, and biocompatible graphene oxide-polyaniline and graphene-polyaniline hybrid papers. ACS applied materials & interfaces 2010, 2, 2521-2529.
    (251)Zheng, W. G.; Lu, X. H.; Wong, S. C. Electrical and mechanical properties of expanded graphite-reinforced high-density polyethylene. Journal of Applied Polymer Science 2004, 91, 2781-2788.
    (252)Celzard, A.; Krzesinska, M.; Begin, D.; Mareche, J. F.; Puricelli, S.; Furdin, G. Preparation, electrical and elastic properties of new anisotropic expanded graphite-based composites. Carbon 2002, 40, 557-566.
    (253)Zhao, X.; Zhang, Q.; Chen, D.; Lu, P. Enhanced Mechanical Properties of Graphene-Based Poly(vinyl alcohol) Composites. Macromolecules 2010, 43, 2357-2363.
    (254)Brihuega, L; Mallet, P.; Bena, C.; Bose, S.; Michaelis, C.; Vitali, L.; Varchon, F.; Magaud, L.; Kern, K.; Veuillen, J. Quasiparticle Chirality in Epitaxial Graphene Probed at the Nanometer Scale. Physical Review Letters 2008, 101, 206802 (pp4).
    (255)Campos-Delgado, J.; Romo-Herrera, J. M.; Jia, X.; Cullen, D. a; Muramatsu, H.; Kim, Y. A.; Hayashi, T.; Ren, Z.; Smith, D. J.; Okuno, Y.; Ohba, T.; Kanoh, H.; Kaneko, K.; Endo, M.; Terrones, H.; Dresselhaus, M. S.; Terrones, M. Bulk production of a new form of sp(2) carbon: crystalline graphene nanoribbons. Nano letters 2008, 8, 2773-2778.
    (256)Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud'homme, R. K; Aksay, I. a; Car, R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano letters 2008, 5,36-41.
    (257)Ferrari, a. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, a. K. Raman Spectrum of Graphene and Graphene Layers. Physical Review Letters 2006, 97, 187401-187404.
    (258)Shimizu, T.; Haruyama, J.; Marcano, D. C.; Kosinkin, D. V.; Tour, J. M.; Hirose, K.; Suenaga, K. Large intrinsic energy bandgaps in annealed nanotube-derived graphene nanoribbons. Nature nanotechnology 2011, 6, 45-50.
    (259)Jin, Z.; Mcnicholas, T. P.; Shih, C.-jen; Wang, Q. H.; Paulus, G. L. C.; Hilmer, A. J.; Shimizu, S.; Strano, M. S. Click Chemistry on Solution-Dispersed Graphene and Monolayer CVD Graphene. Chemistry of Materials 2011, 23, 3362-3370.
    (260)Zhao, X.; Zhang, Q. H.; Hao, Y. P.; Li, Y. Z.; Fang, Y.; Chen, D. J. Alternate Multilayer Films of Poly(vinyl alcohol) and Exfoliated Graphene Oxide Fabricated via a Facial Layer-by-Layer Assembly. Macromolecules 2010,43, 9411-9416.
    (261)Kim, J. H.; Lee, K. H.; Overzet, L. J.; Lee, G. S. Synthesis and electrochemical properties of spin-capable carbon nanotube sheet/MnO(x) composites for high-performance energy storage devices. Nano letters 2011,11,2611-2617.
    (262)Lu, X.; Zheng, D.; Zhai, T.; Liu, Z.; Huang, Y.; Xie, S.; Tong, Y. Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor. Energy & Environmental Science 2011,4, 2915-2921.
    (263)Chen, W.; Rakhi, R. B.; Hu, L. B.; Xie, X.; Cui, Y.; Alshareef, H. N. High-Performance Nanostructured Supercapacitors on a Sponge. Nano letters 2011,11,5165-5172.
    (264)Bao, L.; Zang, J.; Li, X. Flexible Zn 2 SnO 4/MnO 2 Core/Shell Nanocable-Carbon Microfiber Hybrid Composites for High-Performance Supercapacitor Electrodes. Nano 2011,1215-1220.
    (265)Fan, Y. C.; Wang, L. J.; Li, J. L.; Li, J. Q.; Sun, S. K.; Chen, F.; Chen, L. D.; Jiang, W. Preparation and electrical properties of graphene nanosheet/Al2O3 composites. Carbon 2010,48,1743-1749.
    (266)Zhang, K.; Mao, L.; Zhang, L. L.; On Chan, H. S.; Zhao, X. S.; Wu, J. Surfactant-intercalated, chemically reduced graphene oxide for high performance supercapacitor electrodes. Journal of Materials Chemistry 2011,21,7302-7307.
    (267)Li, X. S.; Cai, W. W.; An, J. H.; Kim, S. Y.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009,324,1312-1314.
    (268)Bunch, J. S.; van der Zande, A. M.; Verbridge, S. S.; Frank, I. W.; Tanenbaum, D. M.; Parpia, J. M.; Craighead, H. G.; McEuen, P. L. Electromechanical resonators from graphene sheets. Science 2007,315,490-493.
    (269)Huang, J. X.; Kaner, R. B. A general chemical route to polyaniline nanofibers. Journal of the American Chemical Society 2004,126,851-855.
    (270)Wu, C. G.; Yeh, Y. R.; Chen, J. Y.; Chiou, Y. H. Electroless surface polymerization of ordered conducting polyaniline films on aniline-primed substrates. Polymer 2001,42,2877-2885.
    (271)An, X.; Simmons, T.; Shah, R.; Wolfe, C.; Lewis, K. M.; Washington, M.; Nayak, S. K.; Talapatra, S.; Kar, S. Stable aqueous dispersions of noncovalently functionalized graphene from graphite and their multifunctional high-performance applications. Nano letters 2010,10,4295-4301.
    (272)Du, Q.; Zheng, M.; Zhang, L.; Wang, Y.; Chen, J.; Xue, L.; Dai, W.; Ji, G.; Cao, J. Preparation of functionalized graphene sheets by a low-temperature thermal exfoliation approach and their electrochemical supercapacitive behaviors. Electrochimica Acta 2010,55,3897-3903.
    (273)Si, Y.; Samulski, E. T. Synthesis of water soluble graphene. Nano letters 2008,8, 1679-1682.
    (274)Li, X. W.; Li, X. H.; Dai, N.; Wang, G. C.; Wang, Z. Preparation and electrochemical capacitance performances of super-hydrophilic conducting polyaniline. Journal of Power Sources 2010,195,5417-5421.
    (275)Zhang, H. G.; Yu, X. D.; Braun, P. V. Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nature Nanotechnology 2011,6,277-281.
    (276)Chen, W. C.; Wen, T. C. Electrochemical and capacitive properties of polyaniline-implanted porous carbon electrode for supercapacitors. Journal of Power Sources 2003,117,273-282.
    (277)Sun, W.; Chen, X. Y. Fabrication and tests of a novel three dimensional micro supercapacitor. Microelectronic Engineering 2009,86,1307-1310.
    (278)Zhang, K.; Zhang, L. L.; Zhao, X. S.; Wu, J. Graphene/Polyaniline Nanofiber Composites as Supercapacitor Electrodes. Chemistry of Materials 2010,22, 1392-1401.
    (279)Zhang, D.; Zhang, X.; Chen, Y.; Yu, P.; Wang, C.; Ma, Y. Enhanced capacitance and rate capability of graphene/polypyrrole composite as electrode material for supercapacitors. Journal of Power Sources 2011,196,5990-5996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700