TiO_2基纳米复合纤维光催化材料的组分设计、制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今社会,能源危机和环境污染已成为亟待解决的全球性问题,半导体材料由于其在环境净化和新能源中的潜在应用逐渐引起了科学界的广泛关注。在半导体材料中,二氧化钛(TiO2)由于其原料易得、无毒、性能稳定等特点,与其它半导体材料相比具有明显的优势,对其进行深入研究有重要意义。随着纳米技术的发展,科学家们发现纳米级的TiO2在光催化降解污染物上比大颗粒的TiO2效率更高,将其制成纳米纤维后增加了催化剂与污染物的接触面积、缩短了光生载流子迁移到表面的时间,纳米纤维相比纳米颗粒更易复合化与回收利用。
     静电纺丝已成为一种能快速制备连续、直径均匀的TiO2纳米纤维的常规方法。但TiO2纳米纤维光催化剂的催化效率距实际应用还有相当大的差距,主要原因是TiO2内部光生电子-空穴易复合导致其光催化活性还不够高,同时TiO2是一种宽带隙半导体,仅能利用太阳光中的紫外光。虽然已有工作制备了TiO2纳米纤维并对其进行了改进,提高了TiO2纳米纤维的催化能力,但开发新型高效、制备工艺简单、实用的光催化材料仍是我们努力的方向。从微观结构上讲,TiO2纳米纤维是由内部纳米颗粒按照一定方向团聚起来的,减小晶粒尺寸、增大比表面积、掺杂、与其他半导体耦合等方式均能进一步提升其光催化效率。本论文即是基于以上思路,以TiO2基纳米纤维为研究对象,通过对纤维内颗粒的原位结晶、掺杂、复合等研究来优化纳米纤维光催化剂的性能,主要研究内容与结果如下:
     (1)以微流体法合成的TiO2纳米颗粒为增加相,将其纺入纳米纤维中。利用微流体技术,在一缩二乙二醇(DEG)介质中制备超细晶粒尺寸(约5.0nm)的锐钛矿相TiO2纳米晶,其比表面积高达314.5m2g-1。将其加入到聚乙烯吡咯烷酮(PVP)的乙醇溶液中制备出纺丝液并进行静电纺丝,得到Ti02纳米晶均匀分散的PVP纳米纤维复合物,可用于柔性自清洁材料、空气净化、过滤膜等方面。
     (2)以钛酸四丁酯为钛源,将静电纺得到的含大量无定形Ti02颗粒的TiO2/PVP纳米复合纤维经水蒸气处理,得到锐钛矿相的TiO2/PVP纳米复合纤维,研究了水蒸气处理温度对纳米纤维内部颗粒结晶行为的影响。将PVP用有机溶剂溶解后,得到有机官能团修饰的超细结晶Ti02纳米晶(粒径约5-10nm),可作为填料加入到其它有机基体中,应用于光催化相关的领域中。
     (3)制备W6+掺杂的Ti02纳米纤维,研究不同掺杂量对纳米纤维晶粒尺寸、比表面积、纤维直径的影响,将掺杂纳米纤维采用沉积的方式固定在石英管壁上,研究可见光照射下其对甲苯气体的矿化。研究结果表明:随着掺杂离子浓度的增加,纤维的粒径减小,比表面积较单组分TiO2纤维提高了1.28倍。最佳掺杂量为20wt%,此时甲苯气体的矿化度达到76.6%。
     (4)采用特制的双孔纺丝喷丝头,制备肩并肩结构的TiO2/SnO2复合纳米纤维异质结,用SEM、TEM、N2等温吸附-脱附、XPS等对其进行表征,研究了异质结结构对促进电子和空穴的分离的影响。将Pt纳米晶负载在异质结构的TiO2/SnO2复合纳米纤维上,Pt优异的传导电子功能进一步提高了催化剂的活性。结果表明:表面负载有约1.0wt%Pt纳米晶的TiO2/SnO2复合纳米纤维其催化能力大于TiO2/SnO2复合纳米纤维及TiO2/Pt纳米纤维;Pt团簇在复合纤维表面分布均匀、稳定,4次循环利用后,催化剂的催化效率依然在90%以上。
     (5)将Ti02纳米纤维在钨酸、双氧水的水溶液中水热处理,制备多级结构的TiO2/WO3复合纳米纤维。结果表明,经180℃水热处理12小时,引入晶种层的TiO2纳米纤维表面垂直生长了W03纳米棒,这种复合结构催化剂拓宽了Ti02的光谱响应范围,在可见光照射下该结构的催化剂对亚甲基蓝以及罗丹明的降解效率均优于单组分Ti02纳米纤维。
     (6)采用改进的Hummers法制备出氧化石墨烯(GO),将其分散在有机溶剂氮氮二甲基甲酰胺(DMF)中,与钛酸四丁酯与PVP的乙醇溶液混合后,采用静电纺丝方法制备TiO2/GO复合纳米纤维,研究GO的添加量对复合纳米纤维光催化性能的影响。结果表明,添加GO后拓宽了Ti02对可见光的光谱响应范围,减少了纤维内部电子-空穴的复合。且随着GO含量的增加,Ti02晶粒尺寸逐渐减小。在可见光照射下,添加4.0wt%GO的复合光催化剂催化活性最高。
     本文为改善Ti02基纳米纤维性能进行了多种尝试和深入研究,得到了几种新型高效的光催化材料,为静电纺丝法制备其它纳米复合纤维材料及拓展其应用范围提供了参考。
In nowadays, the energy crisis and environmental pollution have become a global issue to be addressed urgently. Semiconductor materials gradually caused widespread concern due to their potential applications in environmental purification and solving the energy problem. Among numerous semiconductors, titanium dioxide (TiO2) has obvious advantages over other semiconductors due to its low cost, non-toxic, and stable performance. With the development of nanotechnology, scientists have found that the nanoscaled TiO2photocatalyst has a higher efficiency for degradation of pollutants than that of TiO2in the form of larger particles. TiO2nanofibers behave finer grain size, increased specific surface area as well as the contact area between the catalyst and the pollutants, and the superior recycling ability comparing with TiO2nanoparticles.
     In recent years, with the development of the electrospinning technique, a variety of inorganic oxides including TiO2have been prepared into nanofibrous structure. Electrospinning has become a conventional method for rapid preparation of continuous TiO2nanofibers with a uniform diameter. However, it is still a challenge to enhance the photocatalytic efficiency of these semiconductors to meet the practical application requirements because of the drawback of poor quantum yield caused by the fast recombination of photogenerated charge carriers (hole-electron pairs). TiO2is a wide band gap semiconductor only photoactivated under UV light irradiation. Although there is a lot of work to prepare modified TiO2to improve their catalytic activity, the development of new, efficient and practical photocatalytic materials with a simple preparation method is still the direction of our efforts. TiO2nanofibers were formed by the internal nanoparticles reunioning in a certain direction. Reducing size of the nanoparticles within the nanofibers, increasing the specific surface area and coupling with other semiconductor could further increase the UV/visible light catalytic ability of the nanofibers. Based on the above ideas, we optimize the performance of the nanofiber photocatalyst by the crystallization, doping and compositing of the nanoparticles within the nanofibers. Main contents and results are listed as follows:
     (1) Prepared optimized and modified TiO2nanoparticles, and then added them in the spinning solution for preparing TiO2nanofibers. By the microfluidic technology, the TiO2nanocrystals were prepared with the crystallite size of5.0nm and a surface area of314.5m2g-1. The TiO2nanocrystals were monodispersed in the PVP nanofibers with the potential application in self-cleaning materials, air purification, and filtration membranes.
     (2) The amorous TiO2nanoparticles/PVP composite nanofibers were treated by water vapor, and then the amorous TiO2in situ crystallized into anatase TiO2within the composite nanofibers. The effect of temperature on the crystallization was also studied. Dissolving the PVP by organic solution, the ultrafine TiO2nanoparticles (5-10nm) with their surfaces modified by organic function group could be added to other organic materials for application in catalysis.
     (3) W-doped TiO2nanofibers were prepared. They behave finer crystallite size, stronger visible light absorbance, and larger surface area comparing with pure TiO2nanofibers. The nanofiber structured morphology on the quartz tube promotes the reaction rates for the gas-phase photo-oxidation of toluene. The concentrations of the produced CO2keep steady during the photodegradation process, indicating the practicality and operability for the whole experiment. This research is conducive to the development of novel photocatalytic materials to efficiently mineralize toxic gas pollutants including toluene for practical application.
     (4) Heterostructured TiO2/SnO2nanofibers deposited with ultrafine Pt nanocrystals (Pt-TiO2/SnO2) were prepared by combining electrospinning and polyol reduced method. The samples have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflection spectroscopy (DRS), photoluminescence spectra (PL) and nitrogen adsorption-desorption isotherm analysis. The results indicated that heterojunctions formed between TiO2fibers and SnO2fibers in the side-by-side structure with Pt nanocrystals uniformly deposited on them. The photocatalytic activity of Pt-TiO2/SnO2for the degradation of methylene blue was much higher than that of bare TiO2and SnO2nanofibers, which could be ascribed to the formation of heterojunctions in the TiO2/SnO2nanofibers and the rapid transportation of electrons to the surface by Pt nanocrystals.
     (5) Hierarchically nanostructured TiO2/WO3photocatalyst was synthesized via the subsequent hydrothermal treatment of electrospun TiO2nanofibers in the presence of tungstic acid. The WO3nanorods with a diameter of about40nm and an average length of about150nm grew perpendicularly on the TiO2nanofibers. The TiO2/WO3heterostructures have larger surface area for adsorption of the pollutants, and WO3nanorods possess a single crystal structure, which facilitates the migration of the photogenerated electrons. Photocatalytic tests display that the TiO2/WO3heterostructures exhibit a remarkably higher degradation rate of organic pollutants than that of the bare TiO2nanofibers under visible light irradiation. The enhanced photocatalytic activity is attributed to the extended absorption in the visible light region and the effective charge separation derived from the coupling effect of TiO2and WO3nanocomposite.
     (6) Graphene is a good conductor of electrons and cheaper compared to the noble metals. C in graphene and Ti in titanium dioxide are easy to form C-Ti bond to broaden the spectral response range of TiO2. GO was prepared by modified Hummers method and dispersed in an organic solvent of dimethylformamide (DMF), and was added at different concentrations to the TiO2nanofibers using electrospinning method. The results show that adding GO broadened the spectral response range of TiO2to visible light region. With increasing the content of graphene, TiO2grain size bacame finer. The composite nanofibers with4.0wt%GO show the highest catalytic activity under visible light irradiation.
     Our study provides a feasible path to deal with the puzzles of the recombination of photogenerated electron-holes and the low visible photoactivity. Several new and efficient photocatalysts were developed in our work. Improving the performance of the nanofibers by optimization design of internal nanoparticles provides a reference for the use of electrospinning method to prepare other oxide nanofibers and expand its range of applications.
引文
[1]M. Gratzel, Photoelectrochemical cells, Nature,2001,414,338-344.
    [2]S. N. Frank, A. J. Bard, Semiconductor electrodes phoassisted oxidations and photoelectrosynthesis at polycrystalline TiO2 electrodes, J. Am. Chem. Soc.,1977,14, 4667-4675.
    [3]陈冠荣.化工百科全书.化学工业出版社,北京,1997,2,769-772.
    [4]H. Tong, S. X. Ouyang, Y. P. Bi, N. Umezawa, M. Oshikiri, J. H. Ye, Nano-photocatalytic Materials:Possibilities and Challenges, Adv. Mater.,2012,24, 229-251.
    [5]N. Zhang, S. Q. Liu, X. Z. Fu, Y. J. Xu, Synthesis of M@TiO2 (M= Au, Pd, Pt) Core-Shell Nanoconnposites with Tunable Photoreactivity, J. Phys. Chem. C,2011, 115,9136-9145.
    [6]J. Yang, C. C. Chen, H. W. Ji, W. H. Ma, J. C. Zhao, Mechanism of TiO2-assisted photocatalytic degradation of dyes under visible irradiation:Photoelectrocatalytic study by TiO2-film electrodes, J. Phys. Chem. B,2005,109,21900-21907.
    [7]O. Legrini, E. Oliveros, A. M. Braun, Photochemical processes for water-treatment, Chem. Rev.,1993,93,671-698.
    [8]T. Sugimoto, X. Zhou, A. Muramatsu, Synthesis of uniform anatase TiO2 nanoparticles by gel-sol method 3. Formation process and size control, J. Colloid Interf. Sci.,2003,259,43-52.
    [9]X. L. Li, Q. Peng, J. X. Yi, X. Wang, Y. D. Li, Near monodisperse TiO2 nanoparticles and nanorods, Chem. Eur. J.,2006,12,2383-2391.
    [10]D. V. Bavykin, F. C. Walsh, Elongated titanate nanostructures and their applications, Eur. J. Inorg. Chem.,2009,8,977-997.
    [11]D. S. C. Gomes, J. L. Faria, Photochemical and photocatalytic degradation of an azo dye in aqueous solution by UV irradiation, J. Photoch. Photobio. A:Chem., 2003,155,133-143.
    [12]孟季如,赵磊,梁国正等.无机非金属纳米微粒的制备方法[J].化工新型材料,2000,28(4):23-27.
    [13]杨或,贾殿,葛炜炜等.低热固相反应制备无机纳米材料的方法[J].无机化学学报,2004,20(8):881-888.
    [14]章金兵,许民,周小英等.固相法合成纳米二氧化钛[J].有色金属,2005,(6):42-44.
    [15]S. Li, Y. G Li, H. Z. Wang, W. G. Fan, Q. H. Zhang, Peptization-hydrothermal method as a surfactant-free process toward nanorod-like anatase TiO2 nanocrystals, Eur. J. Inorg. Chem.,2009,4078-4084.
    [16]M. Liu, L. Y. Piao, W. M. Lu, S. T. Ju, L. Zhao, C. L. Zhou, H. L. Li, W. J. Wang, Flower-like TiO2 nanostructures with exposed{001} facets:Facile synthesis and enhanced photocatalysis, Nanoscale,2010,2,1115-1117.
    [17]H. D. Jang, S. K. Kim, Controlled synthesis of titanium dioxide nanoparticles in amodified diffusion flame reactor, Mater. Res. Bull.,2001,36,627-637.
    [18]H. Y. Xie, Y. N. Zhang, Q. L. Xu, Photodegradation of VOCs by C_TiO2 nanoparticles produced by flame CVD process, J. Nanosci. Nanotechnol.2010,10, 5445-5450.
    [19]A. Formhals,1934, U. S. Patent No.1975504.
    [20]H. L. Simons,1966, U. S. Patent No.3280229.
    [21]J. Doshi, D. H. Reneker, Electrospinning process and applications of electrospun fibers, J. Electrostat.,1995,35,151-160.
    [22]A. F. Spivak, Y. A. Dzenis, D. H. Reneker, A model of steady state jet in the electrospinning process, Mech. Res. Commun.,2000,27,37-42.
    [23]D. Li, Y. Xia, Electrospinning of nanofibers:Reinventing the wheel? Adv. Mater., 2004,16,1151-1170.
    [24]G. Larsen, R. Velarde-Ortiz, K. Minchow, A method for making inorganic and hybrid (organic/inorganic) fibers and vesicles with diameters in the submicrometer and micrometer range via sol-gel chemistry and electrically forced liquid jets, J. Am. Chem. Soc,2003,125,1154-1155.
    [25]Y. Wang, R. Furlan, I. Ramos, J. J. Santiago-Aviles, Synthesis and characterization of micro/nanoscopic Pb(Zr0.52Ti0.48)O3 fibers by electrospinning, Appl. Phys. A,2004,78,1043-1047.
    [26]D. Li, Y. Xia, Fabrication of titania nanofibers by electrospinning, Nano Lett., 2003,3,555-560.
    [27]H. Y. Guan, C. L. Shao, S. B. Wen, B. Chen, J. Gong, X. H. Yang, A novel method for preparing CO3O4 nanofibers by using electrospun PVA/cobalt acetate composite fibers as precursor, Mater. Chem. Phys.,2003,82,1002-1006.
    [28]C. L. Shao, H. Y. Guan, Y. C. Liu, X. L. Li, X. H. Yang, Preparation of Mn2O3 and Mn3O4 nanofibers via an electrospinning technique, J. Solid State Chem.,2004, 177,2628-2631.
    [29]H. Y. Guan, C. L. Shao, B. Chen, J. Gong, X. H. Yang, A novel method for making CuO superfine fibres via an electrospinning technique, Inorg. Chem. Commun.,2003,6,1409-1411.
    [30]S. S. Choi, S. G Lee, S. S. Lm, S. H. Kim, Y. L. Joo, Silica nanofibers from electrospinning/sol-gel process, J. Mater. Sci. Lett.,2003,22,891-893.
    [31]王进贤,郭月秋,董相廷,李志国,刘桂霞,钇或钕掺杂TiO2纳米的制备及光催化性能的研究[J].无机材料学报,2010,25(4),379-385.
    [32]D. Li, Y L. Wang, Y N. Xia, Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays, Nano. Lett.,2003,3,1167-1171.
    [33]A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature,1972,238,37-38.
    [34]B. O'Regan, M. Gratzel, A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films, Nature,1991,353,737-740.
    [35]R. Asahi, Y. Taga, W. Mannstadt, Electronic and optical properties of anatase TiO2, Phys. Rev. B,2000,61,7459-7465.
    [36]A. Hagfeldt, M. Gratzel, Light-induced redox reactions in nanocrystalline systems, Chem. Rev.,1995,95,49-68.
    [37]J. Xu, W. Z. Wang, M. Shang, E. P. Gao, Z. J. Zhang, J. Ren, Electrospun nanofibers of Bi-doped TiO2 with high photocatalytic activity under visible light irradiation, J. Hazard. Mater.,2011,196,426-430.
    [38]Z. Y. Zhang, C. L. Shao, L. N. Zhang, X. H. Li, Y. C. Liu, Electrospun nanofibers of V-doped TiO2 with high photocatalytic activity, J. Colloid Interf. Sci.,2010,351, 57-62.
    [39]A. Kudo, H. Kato, I. Tsuji, Strategies for the development of visible-light-driven photocatalysts for water splitting, Chem. Lett.,2004,33,1534-1539.
    [40]H. P. Li, W. Zhang, B. Li, W. Pan, Diameter-dependent photocatalytic activity of electrospun TiO2 nanofiber, J. Am. Ceram. Soc.,2010,93,2503-2506.
    [41]M. R. Hoffmann, S. T. Martin, W. Y. Choi, Environmental applications of semiconductor photocatalysis, Chem. Rev.,1995,95,69-96.
    [42]H. P. Li, W. Zhang, W. Pan, Enhanced photocatalytic activity of electrospun TiO2 nanofibers with optimal anatase/rutile ratio, J. Am. Ceram. Soc.,2011,94,3184-3187.
    [43]C. Y. Xu, R. Inai, M. Kotaki, S. Ramakrishna, Aligned biodegradable nanotibrous structure:a potential scaffold for blood vessel engineering, biomaterials,2004,25, 877-886.
    [44]D. Liang, B. S. Hsiao, B. Chu, Functional electrospun nanofibrous scaffolds for biomedical applications, Adv. Drug. Deliv. Rev.,2007,59,1392-1412.
    [45]V. Thavasi, G. Singh, S. Ramakrishna, Electrospun nanofibers in energy and environmental applications, Energy Environ. Sci.,2008,1,205-221.
    [46]Q. H. Mu, Y. G. Li, Q. H. Zhang, H. Z. Wang, Template-free formation of vertically oriented TiO2 nanorods with uniform distribution for organics-sensing application, J. Hazard. Mater.,2011,188,363-368.
    [47]J. A. Matthews,G. E. Wnek, D. G Simpson, G. L. Bowlin, Electrospinning of collagen nanofibers, Biomacromolecules,2002,3,232-238.
    [48]P. Katta, M. Alessandro, R. D. Ramsier, G. G. Chase, Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector, Nano Lett.,2004,4, 2215-2218.
    [49]N. Bhattarai, D. Edmondson, O. Veiseh, F. A. Matsen, M. Zhang, Electrospun chitosan-based nanofibers and their cellular compatibility, Biomaterials,2005,26, 6176-6184.
    [50]W. E. Teo, S. Ramakrishna, Electrospun fibre bundle made of aligned nanofibres over two fixed points, Nanotechnology,2005,16,1878-1884.
    [51]A. Theron, E. Zussman, A. L. Yarin, Electrostatic field-assisted alignment of electrospun nanofibres, Nanotechnology,2001,12,384-390.
    [52]E. Smit, U. Buttner, R. D. Sanderson, Continuous yarns from electrospun fibers, Polym. Commun.,2005,46,2419-2423.
    [53]D. Li, Y. L. Wang, Y. N. Xia, Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films, Adv. Mater.,2004,16,361-366.
    [54]R. H. Baughman, A. A. Zakhidov, W. A. de Heer, Carbon nanotubes-the route toward applications, Science,2002,297,787-792.
    [55]L. Hueso, N. Mathur, Nanotechnology-Dreams of a hollow future, Nature,2004, 427,301-301.
    [56]C. R. Martin, P. Kohli, The emerging field of nanotube biotechnology, Nature Rev. Drug Discov.,2003,2,29-37.
    [57]J. M. Schnur, Lipid tubules-a paradigm for molecularly engineered structures, Science,1993,262,1669-1676.
    [58]L. J. Lauhon, M. S. Gudiksen, D. Wang, C. M. Lieber, Epitaxial core-shell and core-multishell nanowire heterostructures, Nature,2002,420,57-61.
    [59]J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H. J. Choi, P. Yang, Single-crystal gallium nitride nanotubes, Nature,2003,422,599-602.
    [60]B. Mayers, X. C. Jiang, D. Sunderland, B. Cattle, Y. N. Xia, Hollow nanostructures of platinum with controllable dimensions can be synthesized by templating against selenium nanowires and colloids, J. Am. Chem. Soc.,2003,125, 13364-13365.
    [61]M. Bognitzki, Z. Jia, A. K. Schaper, R. B. Wehrspohn, U. Gosele, J. H. Wendorff, Polymer, metal, and hybrid nano-and mesotubes by coating degradable polymer template fibers (TUFT process), Adv. Mater.,2000,12,637-640.
    [62]R. A. Caruso, J. H. Schattka, A. Greiner, Titanium dioxide tubes from sol-gel coating of electrospun polymer fibers, Adv. Mater.,2001,13,1577-1579.
    [63]H. Dong, S. Prasad, V. Nyame, W. E. Jones, Sub-micrometer conducting polyaniline tubes prepared from polymer fiber templates, Chem. Mater.,2004,16, 371-373.
    [64]C. R. Martin, Nanomaterials-a membrane-based synthetic approach, Science, 1994,266,1961-1966.
    [65]M. Steinhart, A. Greiner, R. B. Wehrspohn, K. Nielsch, J. Schilling, J. Choi, Polymer nanotubes by wetting of ordered porous templates, Science,2002,296, 1997-1997.
    [66]M. Steinhart, Z. H. Jia, A. K. Schaper, R. B. Wehrspohn, U. Gosele, J. H. Wendorff, Palladium nanotubes with tailored wall morphologies, Adv. Mater.,2003, 15,706-709.
    [67]P. Levy, A. G. Leyva, H. E. Troiani, R. D. Sanchez, Nanotubes of rare-earth manganese oxide, Appl. Phys. Lett.,2003,83,5247-5249.
    [68]O. G. Schmidt, K. Eberl, Nanotechnology-Thin solid films roll up into nanotubes, Nature,2001,410,168-168.
    [69]D. Li, Y. N. Xia, Direct fabrication of composite and ceramic hollow nanofibers by electrospinning, Nano Lett.,2004,4,933-938.
    [70]Y. Zhao, X. Y. Cao, L. Jiang, Bio-mimic multichannel microtubes by a facile method, J. Am. Chem. Soc.,2007,129,764-765.
    [71]G. Rothenberger, J. Moser, M. Gratzel, N. Serpone, D. K. Sharma, Charge carrier trapping and recombination dynamics in small semiconductor particles, J. Am. Chem. Soc.,1985,107,8054-8059.
    [72]S. Sakthivel, M. V. Shankar, M. Palanichamy, B. Arabindoo, D. W. Bahnemann, V. Murugesan, Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst, Water Res.,2004,38,3001-3008.
    [73]X. Chen, S. S. Mao, Titanium dioxide nanomaterials:Synthesis, properties, modifications, and applications, Chem. Rev.,2007,107,2891-2959.
    [74]Q. Long, M. Cai, J. R. Li, H. L. Rong, L. Jiang, Improving the electrical catalytic activity of Pt/TiO2 nanocomposites by a combination of electrospinning and microwave irradiation, J Nanopart. Res.,2011,13,1655-1662.
    [75]E. Formo, E. Lee, D. Campbell, Y. N. Xia, Functionalization of electrospun TiO2 nanofibers with Pt nanoparticles and nanowires for catalytic applications, Nano Lett., 2008,8,668-672.
    [76]J. J. Wu, C. H. Tseng, Photocatalytic properties of nc-Au/ZnO nanorod composites, Appl. Catal. B:Environ.,2006,66,51-57.
    [77]J. G. Yu, J. F. Xiong, B. Cheng, S. W. Liu, Fabrication and characterization of Ag-TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity, Appl. Catal. B:Environ.,2005,60,211-221.
    [78]D. He, L. X. Yang, S. Kuang, Q. Cai, Fabrication and catalytic properties of Pt and Ru decorated TiO2/CNTs catalyst for methanol electrooxidation, Electrochem. Commun.,2007,9,2467-2472.
    [79]O. T. Alaoui, A. Herissan, C. Le Quoc, M. E. Zekri, S. Sorgues, H. Remita, C. Colbeau-Justin, Elaboration, charge-carrier lifetimes and activity of Pd-TiO2 photocatalysts obtained by gamma radiolysis, J. Photoch. Photobio. A,2012,242, 34-43
    [80]Y. A. Cao, X. T. Zhang, W. S. Yang, H. Y. Du, B. Bai, T. J. Li, J. N. Yao, A bicomponent TiO2/SnO2 particulate film for photocatalysis, Chem. Mater.,2000,12, 3445_3448.
    [81]Z. Y. He, Y. G. Li, Q. H. Zhang, H. Z. Wang, Capillary microchannel-based microreactors with highly durable ZnO/TiO2 nanorod arrays for rapid, high efficiency and continuous-flow photocatalysis, Appl. Catal. B:Environ.,2010,93,376-382.
    [82]M. Shahid, I. Shakir, S. J. Yang, D. J. Kang, Facile synthesis of core-shell SnO2/V2O5 nanowires and their efficient photocatalytic property, Mater. Chem. Phys., 2010,124,619-622.
    [83]S. Mathur, S. Barth, Molecule-based chemical vapor growth of aligned SnO2 nanowires and branched SnO2/V2O5 heterostructures, Small,2007,3,2070-2075.
    [84]M. Shang, W. Z. Wang, L. Zhang, S. M. Sun, L. Wang, and L. Zhou,3D Bi2WO6/TiO2 hierarchical heterostructure:controllable synthesis and enhanced visible photocatalytic degradation performances, J. Phys. Chem. C,2009,113,14727-14731.
    [85]H. M. Cao, Y. H. Zhu, X. Tan, H. G. Kang, X. L. Yang, C. Z. Li, Fabrication of TiO2/CdS composite fiber via an electrospinning method, New J. Chem.,2010,34, 1116-1119.
    [86]Z. Y. Zhang, C. L. Shao, X. H. Li, L. Zhang, H. M. Xue, C. H. Wang, Y. C. Liu, Electrospun nanofibers of ZnO-SnO2 heterojunction with high photocatalytic activity, J. Phys. Chem. C,2010,114,7920-7925.
    [87]T. P. Cao, Y. J. Li, C. H. Wang, Z. Y. Zhang, M. Y. Zhang, C. L. Shao, Y. C. Liu, Bi4Ti3O12 nanosheets/TiO2 submicron fibers heterostructures:in situ fabrication and high visible light photocatalytic activity, J. Mater. Chem.,2011,21,6922-6927.
    [88]M. Shang, W. Z. Wang, W. Z. Yin, J. Ren, S. M. Sun, L. Zhang, General strategy for a large-scale fabric with branched nanofiber-nanorod hierarchical heterostructure: controllable synthesis and applications, Chem. Eur. J.,2010,16,11412-11419.
    [1]H. Me, Y. Watanabe, K. Hashimoto, Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst, Chem. Lett.,2003,32,772-773.
    [2]B. O'Regan, M. Gratzel, A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films, Nature 1991,353,737-740.
    [3]J. Jiu, S. Isoda, F. Wang, M. Adachi, Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film, J. Phys. Chem. B,2006,110,2087-2092.
    [4]U. Diebold, The surface science of titanium dioxide, Surf. Sci. Rep.,2003,48, 53-229.
    [5]Q. H. Zhang, L. Gao, One-step preparation of size-defined aggregates of TiO2 nanocrystals with tuning of their phase and composition, J. Eur. Ceram. Soc.,2006, 26,1535-1545.
    [6]X. F. Yang, H. Konishi, H. F. Xu, M. M. Wu, Comparative sol-hydro(solvo)thermal synthesis of TiO2 nanocrystals, Eur. J. Inorg. Chem.2006, 2229-2235.
    [7]H. Uchiyama, K. Matsumoto, H. Kozuka, Preparation of titania spheres consisting of anatase nanocrystals via hydrolysis of chemically modified alkoxides under solvothermal conditions, Chem. Lett.,2010,39,445-447.
    [8]L. Zhang, Y. G. Li, Q. H. Zhang, G. Y. Shi, H. Z. Wang, Fast synthesis of highly dispersed anatase TiO2 nanocrystals in a microfluidic reactor, Chem. Lett.,2012,40, 1371-1373.
    [9]K. M. Sawicka, P. Gouma, Electrospun composite nanofibers for functional applications, J. Nanopart. Res.,2006,8,769-781.
    [10]M. Roso, S. Sundarrajan, D. Pliszka, S. Ramakrishna, M. Modesti, Multifunctional membranes based on spinning technologies:the synergy of nanofibers and nanoparticles, Nanotechnology,2008,19,285707.
    [11]H. R. Pant, M. P. Bajgai, K. T. Nam, Y. A. Seo, D. R. Pandeya, S. T. Hong, H. Y. Kim, Electrospun nylon-6 spider-net like nanofiber mat containing TiO2 nanoparticles:A multifunctional nanocomposite textile material, J. Hazard. Mater., 2011,185,124-130.
    [12]P. Zhao, J. Fan, Electrospun nylon 6 fibrous membrane coated with rice-like TiO2 nanoparticles by an ultrasonic-assistance method, J. Membr. Sci.,2010,355, 91-97.
    [13]T. He, Z. Zhou, W. Xu, F. Ren, H. Ma, J. Wang, Preparation and photocatalysis of TiO2-fluoropolymer electrospun fiber nanocomposites, Polymer,2009,50, 3031-3036.
    [14]A. E. Deniz, A. Celebioglu, F. Kayaci, T. Uyar, Electrospun polymeric nanofibrous composites containing TiO2 short nanofibers, Mater. Chem. Phys.,2011, 129,701-704.
    [15]B. F. Cottam, S. Krishnadasan, A. J. deMello, J. C. deMello, M. S. P. Shaffer, Accelerated synthesis of titanium oxide nanostructures using microfluidic chips, Lab Chip,2007,7,167-169.
    [16]H. Z. Wang, H. Nakamura, M. Uehara, M. Miyazaki, H. Maeda, Preparation of titania particles utilizing the insoluble phase interface in a microchannel reactor, Chem. Commun.,2002,1462-1463
    [17]X. Jiang, T. Herricks, Y. Xia, Monodispersed spherical colloids of titania: synthesis, characterization, and crystallization, Adv. Mater.,2003,15,1205-1209.
    [18]T. Ohsaka, F. Izumi, Y. Fujiki, Raman-spectrum of anatase TiO2, J. Raman Spectrosc.,1978,7,321-324.
    [19]S. Kelly, F. H. Pollak, M. Tomkiewicz, Raman spectroscopy as a morphological probe for TiO2 aerogels, J. Phys. Chem. B,1997,101,2730-2734.
    [20]B. Smarsly, S. Polarz, M. Antonietti, Preparation of porous silica materials via sol-gel nanocasting of nonionic surfactants:A mechanistic study on the self-aggregation of amphiphiles for the precise prediction of the mesopore size, J. Phys. Chem. B,2001,105,10473-10483.
    [1]Z. C. Sun, D. H. Kim, M. Wolkenhauer, G. G. Bumbu, W. Knoll, J. S. Gutmann, Synthesis and photoluminescence of titania nanoparticle arrays templated by block-copolymer thin films, ChemPhysChem.,2006,7,370-378.
    [2]M. Z. Rong, M. Q. Zhang, Y. X. Zheng, Structure-property relationships of irradiation grafted nano-inorganic particle filled polypropylene composites, Polymer, 2001,42,167-183.
    [3]R. Sengupta, A. Bandyopadhyay, S. Sabharwal, T. K. Chaki, A. K. Bhowmick, Polyamide-6,6/in situ silica hybrid nanocomposites by sol-gel technique:synthesis, characterization and properties, Polymer,2005,46,3343-3354.
    [4]S. Borsacchi, M. Geppi, C. A. Veracini, A. Lazzeri, F. D. Cuia, C. Geloni, A multinuclear solid-state magnetic resonance study of the interactions between the inorganic and organic coatings of BaSO4 submicronic particles, Magn. Reson. Chem., 2008,46,52-57.
    [5]K. Q. Han, M. H. Yu, Study of the preparation and properties of UV-blocking fabrics of a PET/TiO2 nanocomposite prepared by in situ polycondensation, J. Appl. Polym. Sci.,2006,100,1588-1593.
    [6]C. X. Ye, H. Q. Li, A. Cai, Q. Z. Gao, X. R. Zeng, Preparation and characterization of organic nano-titanium dioxide/acrylate composite emulsions by in-situ emulsion polymerization, J. Macromol. Sci., A,2011,48,309-314.
    [7]M. Yoshida, M. Lal, N. D. Kumar, P. N. Prasad, TiO2 nano-particle-dispersed polyimide composite optical waveguide materials through reverse micelles, J. Mater. Sci.,1997,32,4047-4051.
    [8]A. S. Barnard, L. A. Curtiss, Prediction of TiO2 nanoparticle phase and shape transitions controlled by surface chemistry, Nano Lett.,2005,5,1261-1266.
    [9]S. W. Liu, J. G. Yu, S. Mann, Spontaneous construction of photoactive hollow TiO2 microspheres and chains, Nanotechnology,2009,20,325606.
    [10 X. F. Song, L. Gao, Fabrication of hollow hybrid microspheres coated with silica/titania via sol-gel process and enhanced photocatalytic activities, J. Phys. Chem. C,2007,111,8180-8187.
    [11]Y. Zhou, M. Antonietti, Synthesis of very small TiO2 nanocrystals in a room-temperature ionic liquid and their self-assembly toward mesoporous spherical aggregates, J. Am. Chem. Soc.,2003,125,14960-14961.
    [12]A. E. Deniz, A. Celebioglu, F. Kayaci, T. Uyar, Electrospun polymeric nanofibrous composites containing TiO2 short nanofibers, Mater. Chem. Phys.,2011, 129,701-704.
    [13]L. Zhang, Y. G. Li, Q. H. Zhang, G. Y. Shi, H. Z. Wang, Fast synthesis of highly dispersed anatase TiO2 nanocrystals in a microfluidic reactor, Chem. Lett.,2012,40, 1371-1373.
    [14]H. Althues, J. Henle, S. Kaskel, Functional inorganic nanofillers for transparent polymers, Chem. Soc. Rev.,2007,36,1454-1465.
    [15]P. C. Chiang, W. T. Whang, The synthesis and morphology characteristic study of BAO-ODPA polyimide/TiO2 nano hybrid films, Polymer,2003,44,2249-2254.
    [16]W. Feng, E. Sun, A. Fujii, H. Wu, K. Niihara, K. Yoshino, Synthesis and characterization of photoconducting polyaniline-TiO2 nanocomposite, B. Chem. Soc. Jpn.,2000,73,2627-2633.
    [17]H. X. Shen, L. Chen, S. Chen, Facile bulk synthesis of homogeneous and transparent nanocrystals hybrids via in situ transformation of ionomers into CdS quantum-dot-polymer, J. Inorg. Organomet. P.,2009,19,374-381.
    [18]Z. Y. Liu, D. D. Sun, P. Guo, J. O. Leckie, An efficient bicomponent TiO2/SnO2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method, Nano Lett.,2007,7,1081-1085.
    [19]Y. Q. Dai, C. M. Cobley, J. Zeng, Y. M. Sun, Y. N. Xia, Synthesis of anatase TiO2 nanocrystals with exposed{001} facets, Nano Lett.,2009,9,2455-2459.
    [20]Y. D. Yang, L. T. Qu, L. M. Dai, T. S. Kang, M. Durstock, Electrophoresis coating of titanium dioxide on aligned carbon nanotubes for controlled syntheses of photoelectronic nanomaterials, Adv. Mater.,2007,19,1239-1243.
    [21]C. Wang, Y. B. Tong, Z. Y. Sun, Y. Xin, E. Y. Yan, Z. H. Hang, Preparation of one-dimensional TiO2 nanoparticles within polymer fiber matrices by electrospinning, Mater. Lett.,2007,61,5125-5128.
    [22]Z. Y. Zhang, C. L. Shao, F. Gao, X. H. Li, Y. C. Liu, Enhanced ultraviolet emission from highly dispersed ZnO quantum dots embedded in poly(vinyl pyrrolidone) electrospun nanofibers, J. Colloid. Interf. Sci.,2010,347,215-220.
    [23]P. C. Yu, R. J. Yang, Y. Y. Tsai, W. Sigmund, F. S. Yen, Growth mechanism of single-crystal alpha-Al2O3 nanofibers fabricated by electrospinning techniques, J. Eur. Ceram. Soc.,2011,31,723-731.
    [24]S. Cavaliere, S. Subianto, L. Chevallier, D. J. Jones, J. Roziere, Single step elaboration of size-tuned Pt loaded titania nanofibres, Chem. Commun.,2011,47, 6834-6836.
    [25]J. Ovenstone, K. Yanagisawa, Effect of hydrothermal treatment of amorphous titania on the phase change from anatase to rutile during calcination, Chem. Mater., 1999,11,2770-2774.
    [26]A. H. Yuwono, Y. Zhang, J. Wang, X. H. Zhang, H. Fan, W. Ji, Diblock copolymer templated nanohybrid thin films of highly ordered TiO2 nanoparticle arrays in PMMA matrix, Chem. Mater.,2006,18,5876-5889.
    [27]T. Ohsaka, Temperature dependence of the Raman spectrum in anatase TiO2, J. Phys. Soc. Jpn.,1980,48,1661-1668.
    [28]T. Ohsaka, F. Izumi, Y. Fujiki, Raman-spectrum of anatase TiO2, J. Raman Spectrosc.,1978,7,321-324.
    [29]S. Kelly, F. H. Pollak, M. Tomkiewicz, Raman spectroscopy as a morphological probe for TiO2 aerogels, J. Phys. Chem. B,1997,101,2730-2734.
    [30]A. Pottier, S. Cassaignon, C. Chaneac, F. Villain, E. Tronc, J. P. Jolivet, Size tailoring of TiO2 anatase nanoparticles in aqueous medium and synthesis of nanocomposites. Characterization by Raman spectroscopy, J. Mater. Chem.,2003,13, 877-882.
    [31]Y. V. Kolen'ko, K. A. Kovnir, A. I. Gavrilov, A. V. Garshev, J. Frantti, O. I. Lebedev, B. R. Churagulov, G. Van Tendeloo, M. Yoshimura, Hydrothermal synthesis and characterization of nanorods of various titanates and titanium dioxide, J. Phys. Chem. B,2006,110,4030-4038.
    [32]Q. H. Zhang, L. Gao, Preparation of oxide nanocrystals with tunable morphologies by the moderate hydrothermal method:Insights from rutile TiO2, Langmuir,2003,19,967-971.
    [33]R. L. Penn, J. F. Banfield, Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions:Insights from titania, Geochim. Cosmochim. Ac.,1999,63,1549-1557.
    [34]D. Jiang, Y. Xu, B. Hou, D. Wu, Y. H. Sun, A simple non-aqueous route to anatase TiO2, Eur. J. Inorg. Chem.,2008,8,1236-1240.
    [35]H. Wang, M. F. Zhu, Y. G. Li, Q. H. Zhang, H. Z. Wang, Mechanical properties of dental resin composites by co-filling diatomite and nanosized silica particles, Mat. Sci.Eng. C,2011,31,600.
    [36]X. Lu, D. Zhang, Q. Zhao, C. Wang, W. Zhang, Y. Wei, Large-scale synthesis of necklace-like single-crystalline PbTiO3 nanowires, Macromol. Rapid Comm.,2006, 27,76-80.
    [37]S, Doeuff, M. Henry, C. Sanchez, J. Livage, Hydrolysis of titanium alkoxides-modification of the molecular precursor by acetic-acid, J. Non-Cryst, Solids, 1987,89,206-216.
    [38]W. Nuansing, S. Ninmuang, W. Jarernboon, S. Maensiri, S. Seraphin, Structural characterization and morphology of electrospun TiO2 nanofibers, Mat. Sci. Eng. B, 2006,131,147-155.
    [1]B. H. Wilson, J. T. Wilson, D. H. Kampbell, B. E. Bledsoe, J. M. Armstrong, Biotransformation of monoaromatic and chlorinated hydrocarbons at an aviation gasoline spill site, Geomicrobiol. J.,1990,8,225-240.
    [2]C. L. Burnett, W. F. Bergfeld, D. V. Belsito, C. D. Klaassen, J. G. Marks, R. C. Shank, T. J. Slaga, P. W. Snyder, F. A. Andersen, Final amended report of the safety assessment of toluene-2,5-diamine, toluene-2,5-diamine sulfate, and toluene-3,4-diamine as used in cosmetics, Int. J. Toxicol.,2010,29,61S-83S.
    [3]R. Font, M. C. Sabater, M. A. Martinez, Leaching of toluene-neoprene adhesive wastes, Environ. Sci. Technol.,2001,35,977-983.
    [4]V. Augugliaro, S. Coluccia, V. Loddo, L. Marchese, G. Martra, L. Palmisano, M. Schiavello, Photocatalytic oxidation of gaseous toluene on anatase TiO2 catalyst: mechanistic aspects and FT-IR investigation, Appl. Catal. B:Environ.,1999,20, 15-27.
    [5]M. Jin, X. T. Zhang, H. T. Pu, S. Nishimoto, T. Murakami, A. Fujishima, Photochromism-based detection of volatile organic compounds by W-doped TiO2 nanofibers, J. Colloid Interf. Sci.,2011,362,188-193.
    [6]Y. J. Tham, P. A. Latif, A. M. Abdullah, A. Shamala-Devi, Y. H. Taufiq-Yap, Performances of toluene removal by activated carbon derived from durian shell, Bioresource Technol.,2011,102,724-728.
    [7]A. Fujishima, X. T. Zhang, Titanium dioxide photocatalysis:present situation and future approaches, C. R. Chim.,2006,9,750-760.
    [8]J. H. Mo, Y. P. Zhang, Q. J. Xu, J. J. Lamson, R. Y. Zhao, Photocatalytic purification of volatile organic compounds in indoor air:A literature review, Atmos. Environ.,2009,43,2229-2246.
    [9]M. R. Hoffmann, S. T. Martin, W. Y. Choi, D. W. Bahnemann, Environmental application of semiconductor photocatalysis, Chem. Rev.,1995,95,69-96.
    [10]R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science,2001,293,269-271.
    [11]H. Y. Xie, Y. N. Zhang, Q. L. Xu, Photodegradation of VOCs by C_TiO2 nanoparticles produced by flame CVD process, J. Nanosci. Nanotechnol.,2010,10, 5445-5450.
    [12]A. Fuerte, M. D. Hernandez-Alonso, A. J. Maira, A. Martinez-Arias, M. Fernandez-Garcia, J. C. Conesa, J. Soria, Visible light-activated nanosized doped-TiO2 photocatalysts, Chem. Commun.,2001,2178-2179.
    [13]A. Fuerte, M. D. Hernandez-Alonso, A. Iglesias-Juez, A. Martinez-Arias, J. C. Conesa, J. Soria, M. Fernandez-Garcia, Influence of preparation method on surface and bulk properties of sunlight-active Ti-W mixed oxide photocatalysts, Phys. Chem. Chem. Phys.,2003,5,2913-2921.
    [14]D. Li, Y. N. Xia, Electrospinning of nanofibers:Reinventing the wheel? Adv. Mater.,2004,16,1151-1170.
    [15]X. M. Sui, C. L. Shao, Y. C. Liu, Photoluminescence of polyethylene oxide-ZnO composite electrospun fibers Polymer,2007,48,1459-1463.
    [16]D. Li, Y. N. Xia, Fabrication of titania nanofibers by electrospinning, Nano Lett., 2003,3,555-560.
    [17]X. F. Lu, X. C. Liu, W. J. Zhang, C. Wang, Y. Wei, Large-scale synthesis of tungsten oxide nanofibers by electrospinning, J. Colloid Interf. Sci.,2006,298, 996-999.
    [18]N. Couselo, F. S. G. Einschlag, R. J. Candal, M. Jobbagy, Tungsten-doped TiO2 vs pure TiO2 photocatalysts:Effects on photobleaching kinetics and mechanism, J. Phys. Chem. C,2008,112,1094-1100.
    [19]L. Zhang, Y. G. Li, Q. H. Zhang, G. Y. Shi, H. Z. Wang, Formation of the modified ultrafine anatase TiO2 nanoparticles using the nanofiber as a microsized reactor, Chem. Lett.,2011,40,1371.
    [20]T. Okumura, Y. Kinoshita, H. Uchiyama, H. Imai, Photoluminescence of nitrogen-doped anatase, Mater. Chem. Phys.,2008,111,486-490.
    [21]R. D. Shannon, C. T. Prewitt, Effective ionic radii in oxides and fluorides, Acta Crystallogr.,1969, B25,925-945.
    [22]C. H. Wang, C. L. Shao, X. T. Zhang, Y. C. Liu, SnO2 nanostructures-TiO2 nanofibers heterostructures:controlled fabrication and high photocatalytic properties, Inorg. Chem.,2009,48,7261-7268.
    [23]M. Penza, M. A. Tagliente, L. Mirenghi, C. Gerardi, C. Martucci, G. Cassano, Tungsten trioxide (WO3) sputtered thin films for a NOx gas sensor, Sensor. Actuat. B: Chem.,1998,50,9-18.
    [24]Y. P. He, Z. Y. Wu, L. M. Fu, C. R. Li, Y. M. Miao, L. Cao, H. M. Fan, B. S. Zou, Photochromism and size effect of WO3 and WO3-TiO2 aqueous sol, Chem. Mater.,2003,15,4039-4045.
    [25]J. K. Burdett, T. Hughbanks, G. J. Miller, J. W. Richardson, J. V. Smith, Structural electronic relationships in inorganic solids-powder neutron-diffraction studies of the rutile and anatase polymorphs of titanium-dioxide at 15 and 295-K, J. Am. Chem. Soc.,1987,109,3639-3646.
    [26]B. Smarsly, S. Polarz, M. Antonietti, Preparation of porous silica materials via sol-gel nanocasting of nonionic surfactants:A mechanistic study on the self-aggregation of amphiphiles for the precise prediction of the mesopore size, J. Phys. Chem. B,2001,105,10473-10483.
    [27]K. S. W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Provisional), Pure Appl. Chem.,1982,54,2201-2218.
    [28]K. C. Christoforidis, S. J. A. Figueroa, M. Fernandez-Garcia, Iron-sulfur codoped TiO2 anatase nano-materials:UV and sunlight activity for toluene degradation Appl. Catal. B:Environ.,2012,117,310-316.
    [29]N. Zhang, S. Q. Liu, X. Z. Fu, Y. J. Xu, Synthesis of M@TiO2 (M= Au, Pd, Pt) Core-shell nanoconnposites with tunable photoreactivity, J. Phys. Chem. C,2011,115, 9136-9145.
    [30]J. Yang, C. C. Chen, H. W. Ji, W. H. Ma, J. C. Zhao, Mechanism of TiO2-assisted photocatalytic degradation of dyes under visible irradiation: Photoelectrocatalytic study by TiO2-film electrodes, J. Phys. Chem. B,2005,109, 21900-21907.
    [31]L. R. Zheng, Y. H. Zheng, C. Q. Chen, Y. Y. Zhan, X. Y. Lin, Q. Zheng, K. M. Wei, J. F. Zhu, Network structured SnO2/ZnO heterojunction nanocatalyst with high photocatalytic activity, Inorg. Chem.,2009,48,1819-1825.
    [32]H. C. Yatmaz, A. Akyol, M. Bayramoglu, Kinetics of the photocatalytic decolorization of an Azo reactive dye in aqueous ZnO suspensions, Ind. Eng. Chem. Res.,2004,43,6035-6039.
    [33]O. Legrini, E. Oliveros, A. M. Braun, Photochemical processes for water-treatment, Chem. Rev.,1993,93,671-698.
    [34]J. Xu, W. Z. Wang, M. Shang, E. P. Gao, Z. J. Zhang, J. Ren, Electrospun nanofibers of Bi-doped TiO2 with high photocatalytic activity under visible light irradiation, J. Hazard. Mater.,2011,196,426-430.
    [35]S. Yurdakal, G. Palmisano, V. Loddo, V. Augugliaro, L. Palmisano, Nanostructured rutile TiO2 for selective photocatalytic oxidation of aromatic alcohols to aldehydes in water, J. Am. Chem. Soc.,2008,130,1568-1569.
    [1]M. R. Hoffmann, S. T. Martin, W. Y. Choi, D. W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev.,1995,95,69-96.
    [2]J. L. Yang, S. J. An, W. I. Park, G. C. Yi, W. Choi, Photocatalysis using ZnO thin films and nanoneedles grown by metal-organic chemical vapor deposition, Adv. Mater.,2004,16,1661-1664.
    [3]Q. H. Zhang, L. Gao, J. K. Guo, Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis, Appl. Catal. B: Environ.,2000,26,207.-215
    [4]C. H. Wang, C. L. Shao, L. J. Wang, L. N. Zhang, X. H. Li, Y. C. Liu, Electrospinning preparation, characterization and photocatalytic properties of Bi2O3 nanofibers, J. Colloid Interf. Sci.,2009,333,242-248.
    [5]S. S. Wu, H. Q. Cao, S. F. Yin, X. W. Liu, X. R. Zhang, Amino Acid-Assisted Hydrothermal Synthesis and Photocatalysis of SnO2 Nanocrystals, J. Phys. Chem. C, 2009,113,17893-17898.
    [6]H. Honda, A. Ishizaki, R. Soma, K. Hashimoto, A. J. Fujishima, Application of photocatalytic reactions caused by TiO2 film to improve the maintenance factor of lighting systems, J. Illum. Eng. Soc.,1998,27,42-49.
    [7]B. Levy, W. Liu, S. Gilbert, Directed photocurrents in nanostructured TiO2SnO2 heterojunction diodes, J. Phys. Chem. B,1997,101,1810-1816.
    [8]Y. Cao, X. T. Zhang, W. S. Yang, H. Y. Du, B. Bai, T. J. Li, J. N. Yao, A bicomponent TiO2/SnO2 particulate film for photocatalysis, Chem. Mater.,2000,12, 3445-3448.
    [9]Z. Y. He, Y. G. Li, Q. H. Zhang, H. Z. Wang, Capillary microchannel-based microreactors with highly durable ZnO/TiO2 nanorod arrays for rapid, high efficiency and continuous-flow photocatalysis, Appl. Catal. B:Environ.,2010,93,376-382.
    [10]M. Shahid, I. Shakir, S. J. Yang, D. J. Kang, Facile synthesis of core-shell SnO2/V2O5 nanowires and their efficient photocatalytic property, Mater. Chem. Phys., 2010,124,619-622.
    [11]S. Mathur, S. Barth, Molecule-based chemical vapor growth of aligned SnO2 nanowires and branched SnO2/V2O5 heterostructures, Small,2007,3,2070-2075.
    [12]L. Zheng, Y. Zheng, C. Chen, Y. Zhan, X. Lin, Q. Zheng, K. Wei, J. Zhu, Network structured SnO2/ZnO heterojunction nanocatalyst with high photocatalytic activity, Inorg. Chem.,2009,48,1819-1825.
    [13]C. Cheng, B. Liu, H. Yang, W. Zhou, L. Sun, R. Chen, S. F. Yu, J. Zhang, H. Gong, H. Sun, H. J. Fan, Hierarchical assembly of ZnO nanostructures on SnO2 backbone nanowires:low-temperature hydrothermal preparation and optical properties, ACS Nano,2009,3,3069-3076.
    [14]W. W. Wang, Y. J. Zhu, L. X. Yang, ZnO-SnO2 hollow spheres and hierarchical nanosheets:Hydrothermal preparation, formation mechanism, and photocatalytic properties, Adv. Funct. Mater.,2007,17,59-64.
    [15]M. Gratzel, Photoelectrochemical cells, Nature,2001,414,338-344.
    [16]K. Dick, K. Deppert, M. W. Larsson, T. Martensson, W. Seifert, L. R. Wallenberg, L. Samuelson, Synthesis of branched 'nanotrees' by controlled seeding of multiple branching events, Nat. Mater.,2004,3,380-384.
    [17]W. I. Park, G. C. Yi, M. Kim, S. J. Pennycook, Quantum confinement observed in ZnO/ZnMgO nanorod heterostructures, Adv. Mater.,2003,15,526-529.
    [18]J. Hu, Y. Bando, Z. Liu, D. Golberg, J. Zhan, Epitaxial heterostructures: side-to-side Si-ZnS, Si-ZnSe biaxial nanowires, and sandwichlike ZnS-Si-ZnS triaxial nanowires, J. Am. Chem. Soc.,2003,125,11306-11313.
    [19]S. H. Hwang, C. Kim, J. Jang, SnO2 nanoparticle embedded TiO2 nano fibers-highly efficient photocatalyst for the degradation of rhodamine B, Catal. Commun., 2011,12,1037-1041.
    [20]Z. Y. Liu, D. D. Sun, P. Guo, J. O. Leckie, An efficient bicomponent TiO2/SnO2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method, Nano Lett.,2007,7,1081-1085.
    [21]G. Rothenberger, J. Moser, M. Gratzel, N. Serpone, D. K. Sharma, Charge carrier trapping and recombination dynamics in small semiconductor particles, J. Am. Chem. Soc,1985,107,8054-8059.
    [22]T. Sakata, T. Kawai, K. Hashimoto, Photochemical diode model of Pt/TiO2 particle and its photocatalytic activity, Chem. Phys. Lett.,1982,88,50-54.
    [23]J. Abrahams, R. S. Davidson, C. Morrison, Optimization of the photocatalytic properties of titanium-dioxide, J Photochem. Photobiol. A:Chem.,1985,29,353-361.
    [24]X. Chen, S. S. Mao, Titanium dioxide nanomaterials:Synthesis, properties, modifications, and applications, Chem. Rev.,2007,107,2891-2959.
    [25]S. Sakthivel, M. V. Shankar, M. Palanichamy, Banumathi Arabindoo, D. W. Bahnemann, V. Murugesan, Enhancement of photocatalytic activity by metal deposition:characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst, Water Res.,2004,38,3001-3008.
    [26]Y. L. Liu, L. Zhong, Z. Y. Peng, Y. Cai, Y. B. Song, W. Chen, Self-assembly of Pt nanocrystals/one-dimensional titanate nanobelts heterojunctions and their great enhancement of photocatalytic activities, CrystEngComm,2011,13,5467-5473.
    [27]D. Li, Y. N. Xia, Fabrication of titania nanofibers by electrospinning, Nano Lett., 2003,3,555-560.
    [28]P. Gupta, G. L. Wilkes, Some investigations on the fiber formation by utilizing a side-by-side bicomponent electrospinning approach, Polymer,2003,44,6353-6359.
    [29]Y. Q. Dai, B. Lim, Y. Yang, C. M. Cobley, W. Y. Li, E. C. Cho, B. Grayson, P. T. Fanson, C. T. Campbell, Y. M. Sun, Y. N. Xia, A sinter-resistant catalytic system based on platinum nanoparticles supported on TiO2 nanofibers and covered by porous silica, Angew. Chem. Int. Ed.,2010,49,8165-8168.
    [30]Q. H. Zhang, L. Gao, Ta3N5 nanoparticles with enhanced photocatalytic efficiency under visible light irradiation, Langmuir,2004,20,9821-9827.
    [31]Q. H. Zhang, W. G. Fan, L. Gao, Anatase TiO2 nanoparticles immobilized on ZnO tetrapods as a highly efficient and easily recyclable photocatalyst, Appl. Catal. B: Environ.,2007,76,168-173.
    [32]H. Wu, W. Pan, Preparation of zinc oxide nanofibers by electrospinning, J. Am. Ceram. Soc.,2006,89,699-701.
    [33]B. Lim, M. Jiang, P. H. C. Camargo, E. C. Cho, J. Tao, X. Lu, Y. Zhu, Y. Xia, Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction, Science,2009, 324,1302-1305.
    [34]Y. J. Liu, R.O. Claus, Blue light emitting nanosized TiO2 colloids, J. Am. Chem. Soc.,1997,119,5273-5274.
    [35]M. A. Butler, Photoelectrolysis and physical properties of the semiconducting electrode WO2, J. Appl. Phys.,1977,48,1914-1920.
    [36]L. Q. Jing, H. G. Fu, B. Q. Wang, B. F. Xin, S. D. Li, J. Z. Sun, Effects of Sn dopant on the photoinduced charge property and photocatalytic activity of TiO2 nanoparticles, Appl. Catal. B:Environ.,2006,62,282-291.
    [37]K. S. W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Provisional), Pure Appl. Chem.,1982,54,2201-2218.
    [38]Y. Xu, C. H. Langford, UV-or visible-light-induced degradation of X3B on TiO2 nanoparticles:The influence of adsorption, Langmuir,2001,17,897-902.
    [39]X. Li, K. Lv, K. Deng, J. Tang, R. Su, J. Sun, L. Chen, Synthesis and characterization of ZnO and TiO2 hollow spheres with enhanced photoreactivity, Mater. Sci. Eng. B,2009,158,40-47.
    [40]N. Zhang, S. Q. Liu, X. Z. Fu, Y. J. Xu, Synthesis of M@TiO2 (M= Au, Pd, Pt) Core-shell nanoconnposites with tunable photoreactivity, J. Phys. Chem. C,2011,115, 9136-9145.
    [41]J. Yang, C. C. Chen, H. W. Ji, W. H. Ma, J. C. Zhao, Mechanism of TiO2-assisted photocatalytic degradation of dyes under visible irradiation: Photoelectrocatalytic study by TiO2-film electrodes, J. Phys. Chem. B,2005,109, 21900-21907.
    [42]H. C. Yatmaz, A. Akyol, M. Bayramoglu, Kinetics of the photocatalytic decolorization of an Azo reactive dye in aqueous ZnO suspensions, Ind. Eng. Chem. Res.,2004,43,6035-6039.
    [43]O. Legrini, E. Oliveros, A. M. Braun, Photochemical processes for water-treatment, Chem. Rev.,1993,93,671-698.
    [1]A. Fujishima, X. T. Zhang, Titanium dioxide photocatalysis:present situation and future approaches, C. R. Chim.,2006,9,750-760.
    [2]J. H. Mo, Y. P. Zhang, Q. J. Xu, J. J. Lamson, R. Y. Zhao, Photocatalytic purification of volatile organic compounds in indoor air:A literature review, Atmos. Environ.,2009,43,2229-2246.
    [3]M. R. Hoffmann, S. T. Martin, W. Y. Choi, D. W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev.,1995,95,69-96.
    [4]R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, T. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science,2001,293,269-271.
    [5]H. Y. Xie, T. N. Zhang, Q. L. Xu, Photodegradation of VOCs by C_TiO2 Nanoparticles produced by flame CVD process, J. Nanosci. Nanotechnol.,2010,10, 5445-5450.
    [6]S. Klosek, D. Raftery, Visible light driven V-doped TiO2 photocatalyst and its photooxidation of ethanol, J. Phys. Chem. B,2001,105,2815-2819.
    [7]H. Yamashita, M. Harada, J. Misaka, M. Takeuchi, K. Ikeue, M. Anpo, Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts, J. Photoch. Photobio. A,2002,148, 257-261.
    [8]Y. Sakata, T. Yamamoto, T. Okazaki, H. Imamura, S. Tsuchiya, Generation of visible light response on the photocatalyst of a copper ion containing TiO2, Chem. Lett.,1998,12,1253-1254.
    [9]A. Fuerte, M. D. Hernandez-Alonso, A. J. Maira, A. Martinez-Arias, M. Fernandez-Garcia, J. C. Conesa, J. Soria, Visible light-activated nanosized doped-TiO2 photocatalysts, Chem. Commun.,2001,2178-2179.
    [10]A. L. Linsebigler, G. Lu, J. T. Yates Jr., Photocatalysis on TiO2 surfaces-principles, mechanisms, and selected results, Chem. Rev.,1995,95,735-758.
    [11]H. Tong, S. X. Ouyang, Y. P. Bi, N. Umezawa, M. Oshikiri, J. H. Ye, Nano-photocatalytic materials:possibilities and challenges, Adv. Mater.,2012,24, 229-251.
    [12]A. Naldoni, M. D'Arienzo, M. Altomare, M. Marelli, R. Scotti, F. Morazzoni, E. Selli, V. Dal Santo, Pt and Au/TiO2 photocatalysts for methanol reforming:Role of metal nanoparticles in tuning charge trapping properties and photoefficiency, Appl. Catal. B:Environ.,2013,130,239-248.
    [13]A. Naldoni, M. Allieta, S. Santangelo, M. Marelli, F. Fabbri, S. Cappelli, C. L. Bianchi, R. Psaro, V. Dal Santo, Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles, J. Am. Chem. Soc.,2012,134,7600-7603.
    [14]H. M. Cao, Y. H. Zhu, X. Tan, H. G. Kang, X. L. Yang, C. Z. Li, Fabrication of TiO2/CdS composite fiber via an electrospinning method, New J. Chem.,2010,34, 1116-1119.
    [15]T. P. Cao, Y. J. Li, C. H. Wang, Z. Y. Zhang, M. Y. Zhang, C. L. Shao, Y. C. Liu, Bi4Ti3O12 nanosheets/TiO2 submicron fibers heterostructures:in situ fabrication and high visible light photocatalytic activity, J. Mater. Chem.,2011,21,6922-6927.
    [16]L. H. Tian, L. Q. Ye, J. Y. Liu, L. Zan, Solvothermal synthesis of CNTs-WO3 hybrid nanostructures with high photocatalytic activity under visible light, Catal. Commun.,2012,17,99-103.
    [17]K. K. Akurati, A. Vital, J. P. Dellemann, K. Michalow, T. Graule, D. Ferri, A. Baiker, Flame-made WO3/TiO2 nanoparticles:Relation between surface acidity, structure and photocatalytic activity, Appl. Catal. B:Environ.,2008,79,53-62.
    [18]S. A. K. Leghari, S. Sajjad, F. Chen, J. L. Zhang, WO3/TiO2 composite with morphology change via hydrothermal template-free route as an efficient visible light photocatalyst, Chem. Eng. J.,2011,166,906-915.
    [19]A. K. L. Sajjad, S. Shamaila, J. L. Zhang, Tungstate/titanate composite nanorod as an efficient visible light photo catalyst, J. Hazard. Mater.,2012,235,307-315.
    [20]E. Formo, E. Lee, D. Campbell, Y. N. Xia, Functionalization of electrospun TiO2 nanofibers with Pt nanoparticles and nanowires for catalytic applications, Nano Lett., 2008,8,668-672.
    [21]N. X. Wang, C. H. Sun, Y. Zhao, S. Y. Zhou, P. Chen, L. Jiang, Fabrication of three-dimensional ZnO/TiO2 heteroarchitectures via a solution process, J. Mater. Chem.,2008,18,3909-3911.
    [22]M. Shang, W. Z. Wang, L. Zhang, S. M. Sun, L. Wang, L. Zhou,3D Bi2WO6/TiO2 hierarchical heterostructure:controllable synthesis and enhanced visible photocatalytic degradation performances, J. Phys. Chem. C,2009,113,14727-14731.
    [23]M. Shang, W. Z. Wang, W. Z. Yin, J. Ren, S. M. Sun, L. Zhang, General strategy for a large-scale fabric with branched nanofiber-nanorod hierarchical heterostructure: controllable synthesis and applications, Chem. Eur. J.,2010,16,11412-11419.
    [24]Z. Y. Liu, H. W. Bai, D. D. Sun, Hierarchical CuO/ZnO membranes for environmental applications under the irradiation of visible light, Int. J. Photoenergy, 2012, doi:10.1155/2012/804840.
    [25]L. Zhang, Y. G. Li, Q. H. Zhang, H. Z. Wang, Formation of the modified ultrafine anatase TiO2 nanoparticles using the nanofiber as a microsized reactor, CrystEngComm,2013,15,1607-1613.
    [26]Q. H. Zhang, L. Gao, J. K. Guo, Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis, Appl. Catal. B: Environ.,2000,26,207-215.
    [27]B. Yang, Y. J. Zhang, E. Drabarek, P. R. F. Barnes, V. Luca, Enhanced photoelectrochemical activity of sol-gel tungsten trioxide films through textural control, Chem. Mater.,2007,19,5664-5672.
    [28]X. L. Li, T. J. Lou, X. M. Sun, Y. D. Li, Highly sensitive WO3 hollow-sphere gas sensors, Inorg. Chem.,2004,43,5442-5449.
    [29]G. C. Xi, B. Yue, J. Y. Cao, J. H. Ye, Fe3O4/WO3 hierarchical core-shell structure:high-performance and recyclable visible-light photocatalysis, Chem. Eur. J., 2011,17,5145-5154.
    [30]C. H. Wang, C. L. Shao, X. T. Zhang, Y. C. Liu, SnO2 nanostructures-TiO2 nanofibers heterostructures:controlled fabrication and high photocatalytic properties, Inorg. Chem.,2009,48,7261-7268.
    [31]M. Penza, M. A. Tagliente, L. Mirenghi, C. Gerardi, C. Martucci, G. Cassano, Tungsten trioxide (WO3) sputtered thin films for a NOx gas sensor, Sensor. Actuat. B: Chem.,1998,50,9-18.
    [32]Y. J. Liu, R. O. Claus, Blue light emitting nanosized TiO2 colloids, J. Am. Chem. Soc.,1997,119,5273-5274.
    [33]C. F. Lin, C. H. Wu, Z. N. Onn, Degradation of 4-chlorophenol in TiO2, WO3, SnO2, TiO2/WO3 andTiO2/SnO2 systems, J. Hazard. Mater.,2008,154,1033-1039.
    [34]K. S. W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Provisional), Pure Appl. Chem.,1982,54,2201-2218.
    [35]Z. H. Jiao, X. W. Sun, J. M. Wang, L. Ke, H. V. Demir, Hydrothermally grown nanostructured WO3 films and their electrochromic characteristics, J. Phys. D:Appl. Phys.,2010,43,285501.
    [36]V. Keller, P. Bernhardt, F. Garin, Photocatalytic oxidation of butyl acetate in vapor phase on TiO2, Pt/TiO2 and WO3/T1O2 catalysts, J. Catal.,2003,215,129-138.
    [37]N. Zhang, S. Q. Liu, X. Z. Fu, Y. J. Xu, Synthesis of M@TiO2 (M= Au, Pd, Pt) core-shell nanoconnposites with tunable photoreactivity, J. Phys. Chem. C,2011,115, 9136-9145.
    [38]L. R. Zheng, Y. H. Zheng, C. Q. Chen, Y. Y. Zhan, X. Y. Lin, Q. Zheng, K. M. Wei, J. F. Zhu, Network structured SnO2/ZnO heterojunction nanocatalyst with high photocatalytic activity, Inorg. Chem.,2009,48,1819-1825.
    [39]O. Legrini, E. Oliveros, A. M. Braun, Photochemical processes for water-treatment, Chem. Rev.,1993,93,671-698.
    [40]L. Jing, H. Fu, B. Wang, D. Wang, B. Xin, S. Li, J. Sun, Effects of Sn dopant on the photoinduced charge property and photocatalytic activity of TiO2 nanoparticles, Appl. Catal. B:Environ.,2006,62,282-291.
    [41]N. D. Abazovic, M. I. Comor, M. D. Dramicanin, D. J. Jovanovic, S. P. Ahrenkiel, J. M. Nedeljkovic, Photoluminescence of anatase and rutile TiO2 particles, J. Phys. Chem. B,2006,110,25366-25370.
    [42]B. S. Liu, X. J. Zhao, L. P. Wen, The structural and photoluminescence studies related to the surface of the TiO2 sol prepared by wet chemical method, Mater. Sci. Eng.,B,2006,134,27-31.
    [43]C. Y. Su, H. C. Lin, Direct route to tungsten oxide nanorod bundles: microstructures and electro-optical properties, J. Phys. Chem. C,2009,113, 4042-4046.
    [44]J. Ha, P. Muralidharan, D. K. Kim, Hydrothermal synthesis and characterization of self-assembled h-WO3 nanowires/nanorods using EDTA salts, J. Alloy. Compd., 2009,475,446-451.
    [1]M. Y. Han, B. Ozyilmaz, Y. B. Zhang, P. Kim, Energy band-gap engineering of graphene nanoribbons, Phys. Rev. Lett.,2007,98,206805.
    [2]S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, A. K. Geim, Giant intrinsic carrier mobilities in graphene and its bilayer, Phys. Rev. Lett.,2008,100,016602.
    [3]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric field effect in atomically thin carbon films, Science,2004,306,666-669.
    [4]K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, A. K. Geim, Room-temperature quantum hall effect in graphene, Science,2007,315,1379-1379.
    [5]C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, A. Govindaraj, Graphene:The new two-dimensional nanomaterial, Angew. Chem.,Int. Ed.,2009,48,7752-7777.
    [6]C. Lee, X. D. Wei, J. W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science,2008,321,385-388.
    [7]W. Gao, L. B. Alemany, L. J. Ci, P. M. Ajayan, New insights into the structure and reduction of graphite oxide, Nat. Chem.,2009,1,403-408.
    [8]R. Muszynski, B. Seger, P. V. Kamat, Decorating graphene sheets with gold nanoparticles, J. Phys. Chem. C,2008,112,5263-5266.
    [9]R. Pasricha, S. Gupta, A. K. Srivastava, A facile and novel synthesis of Ag-graphene-based nanocomposites, Small,2009,5,2253-2259.
    [10]G. M. Scheuermann, L. Rumi, P. Steurer, W. Bannwarth, R. Mulhaupt, Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki-Miyaura coupling reaction, J. Am. Chem. Soc.,2009, 131,8262-8270.
    [11]B. Seger, P. V. Kamat, Electrocatalytically active graphene-platinum nanocomposites. Role of 2-D carbon support in PEM fuel cells, J. Phys. Chem. C, 2009,113,7990-7995.
    [12]A. Cao, Z. Liu, S. Chu, M. Wu, Z. Ye, Z. Cai, Y. Chang, S. Wang, Q. Gong, Y. Liu, A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials, Adv. Mater.2010,1,103-106.
    [13]C. Xu, X. Wang, L. Yang, Y. Wu, Fabrication of a graphene-cuprous oxide composite, J. Solid State Chem.,2009,182,2486-2490.
    [14]D. Wang, D. Choi, J. Li, Z. Yang, Z. Nie, R. Kou, D. Hu, C. Wang, L. Saraf, J. Zhang, Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion, ACS Nano,2009,3,907-914.
    [15]J. S. Chen, Z. Wang, X. C. Dong, P. Chen, X. W. D. Lou, Graphene-wrapped TiO2 hollow structures with enhanced lithium storage capabilities, Nanoscale,2011,3, 2158-2161.
    [16]S. Ding, J. S. Chen, D. Luan, F. Y. C. Boey, S. Madhavi, X. W. D.Lou, Graphene-supported anatase TiO2 nanosheets for fast lithium storage, Chem. Commun. 2011,47,5780-5782.
    [17]Y. Tang, C. Lee, J. Xu, Z. Liu, Z. Chen, Z. He, Y. Cao, G. Yuan, H. Song, L. Chen, Incorporation of graphenes in nanostructured TiO2 films via molecular grafting for dye-sensitized solar cell application, ACS Nano,2010,4,3482-3488.
    [18]S. R. Sun, L. Gao, Y. Q. Liu, Enhanced dye-sensitized solar cell using graphene-TiO2 photoanode prepared by heterogeneous coagulation, Appl. Phys. Lett., 2010,96,083113.
    [19]J. C. Liu, H. W. Bai, Y. J. Wang, Z. Y. Liu, X. W. Zhang, D. D. Sun, Self-assembling TiO2 nanorods on large graphene oxide sheets at a two-phase interface and their anti-recombination in photocatalytic applications, Adv. Funct. Mater.,2010,20,4175-4181.
    [20]W. Q. Peng, Z. M. Wang, N. Yoshizawa, H. Hatori, T. Hirotsu, K. Miyazawa, Fabrication and characterization of mesoporous carbon nanosheets-1D TiO2 nanostructures, J. Mater. Chem.,2010,20,2424-2431.
    [21]N. Li, G. Liu, C. Zhen, F. Li, L. Zhang, H. M. Cheng, Battery performance and photocatalytic activity of mesoporous anatase TiO2 nanospheres/graphene composites by template-free self-assembly, Adv. Funct. Mater.,2011,21,1717-1722.
    [22]W. Q. Fan, Q. H. Lai, Q. H. Zhang, Y. Wang, Nanocomposites of TiO2 and reduced graphene oxide as efficient photocatalysts for hydrogen evolution, J. Phys. Chem. C,2011,115,10694-10701.
    [23]X. Feng, K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa, C. A. Grimes, Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass:synthesis details and applications, Nano Lett.,2008,8, 3781-3786.
    [24]Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, H. Xu, Large oriented arrays and continuous films of TiO2-based nanotubes, J. Am. Chem. Soc.,2003,125, 12384-12385.
    [25]B. Tan, Y. Wu, Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites, J. Phys. Chem. B,2006,110,15932-15938.
    [26]M. Y. Song, D. K. Kim, S. M. Jo, D. Y. Kim, Enhancement of the photocurrent generation in dye-sensitized solar cell based on electrospun TiO2 electrode by surface treatment, Synth. Met.,2005,155,635-638.
    [27]K. Zhu, N. R. Neale, A. Miedaner, A. J. Frank, Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays, Nano Lett.,2007,7,69-74.
    [28]G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells, Nano Lett.,2006,6, 215-218.
    [29]Y. Q. Dai, Y. Jing, J. Zeng, Q. Qi, C. L. Wang, D. Goldfeld, C. H. Xu, Y. P. Zheng, Y. M. Sun, Nanocables composed of anatase nanofibers wrapped in UV-light reduced graphene oxide and their enhancement of photoinduced electron transfer in photoanodes, J. Mater. Chem.,2011,21,18174-18179.
    [30]P. N. Zhu, N. A. Sreekumaran, S. J. Peng, S. Y. Yang, R. Seeram, Facile fabrication of TiO2-graphene composite with enhanced photovoltaic and photocatalytic properties by electrospinning, ACS Appl. Mater. Interfaces,2012,4, 581-585.
    [31]M. Gratzel, S. Ito, P. Chen, P. Comte, M. K. Nazeeruddin, P. Liska, P. Pechy, Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells, Prog. Photovolt.,2007,15,603-612.
    [32]P. Wang, P. Gong, Y. Lin, Y. L. Qu, J. D. Li, X. L. Kong, Z. Q. Chen, Y. Man, Nanofibrous electrospun barrier membrane promotes osteogenic differentiation of human mesenchymal stem cells, J. Bioact. Compat. Pol.,2011,26,607-618.
    [33]L. Zhang, Y. G. Li, Q. H. Zhang, H. Z. Wang, Formation of the modified ultrafine anatase TiO2 nanoparticles using the nanofiber as a microsized reactor, CrystEngComm,2013,15,1607-1612.
    [34]C. Chen, W. M. Cai, M. C. Long, B. X. Zhou, Y. H. Wu, D. Y. Wu, Y. J. Feng, Synthesis of visible-light responsive graphene oxide/TiO2 composites with p/n heterojunction, ACS Nano,2010,4,6425-6432.
    [35]L. Jing, H. Fu, B. Wang, D. Wang, B. Xin, S. Li and J. Sun, Effects of Sn dopant on the photoinduced charge property and photocatalytic activity of TiO2 nanoparticles, Appl. Catal. B:Environ.,2006,62,282-291.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700