石墨烯及其功能结构的可控制备和应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单层石墨烯(Graphene)是由一层碳原子组成的具有六重对称性的二维晶体结构材料,厚度仅为0.34nm,几何结构上被认为是组成其它碳纳米材料的基本单元。石墨烯具有许多优异的物理和化学性能,在基础研究和工业应用中拥有广阔的前景。由于结构决定性能,而性能又决定应用,石墨烯优异的性能发挥首要解决的问题是如何制备符合特定要求的石墨烯及其功能结构。本文基于氧化还原法和化学气相沉积法开展课题研究工作,详细的研究了石墨烯及其功能结构的可控制备;探索了制备掺杂石墨烯的新方法,并将所制备的石墨烯及其功能结构应用于气体检测和构造体材料等方面。
     首先对氧化还原法制备石墨烯进行了改进,合理选取前驱物和优化反应条件,制备出了尺寸大于100μm的单层氧化石墨烯。通过梯度离心技术成功分离了不同尺寸的氧化石墨烯片,为进一步应用提供了合适的原料。
     研究了化学气相沉积过程中催化剂的物性、反应装置几何形状、反应温度、碳源浓度、反应时间等参数对石墨烯生长的影响;优化反应参数,制备出了单晶尺寸达几十微米且厚度均一的大面积石墨烯薄膜。该薄膜具有较高的透光率(93.3%~96.5%)和较低的薄膜方阻(540.5~652.6Ω/sq),显著提高了石墨烯薄膜的透明和导电综合性能。研究了常压条件下以甲烷为碳源,石墨烯在铜箔表面的生长规律,结果发现:石墨烯的尺寸和层数随反应时间的延长而增加,铜箔表面出现的碳铜合金纳米颗粒为石墨烯生长提供碳源的新现象。基于本文的实验结果,提出了一种可能的石墨烯生长机理——高浓度碳源下石墨烯表面外延生长。
     发展了一种基于自由基反应的低温制备大面积掺杂石墨烯薄膜的新方法。通过该方法能在230℃下制备出掺杂量达7.3at%且分布均匀的单层氮掺杂石墨烯薄膜;首次制备出了掺硫量达1.54at%且分布均匀的单层硫掺杂石墨烯薄膜(反应温度300℃);所制备的掺杂石墨烯薄膜具有可调控的电学性能和优异的氧还原性能。该方法为低温下制备掺杂石墨烯提供了一种通用的技术。
     发展了一种基于软印刷技术批量制备图案化的氧化石墨烯薄膜阵列的新方法。通过在不同气氛中退火,实现了氧化石墨烯薄膜的还原改性并获得了不同性质的石墨烯薄膜;利用掩膜技术制备出了大规模集成的石墨烯薄膜场效应晶体管。应用石墨烯薄膜器件对氨气进行检测,检测下限可达10ppm,且具有良好的重复性。
     开发了基于化学气相沉积法制备的石墨烯与二氧化钛薄膜杂化形成的异质结的高性能氧气传感器,实现了常温常压下对氧气的快速高灵敏度检测。其响应时间和回复时间分别193s和135s;检测下极限可达0.0134vol%,且器件的响应率与氧气的浓度在0.0134~100vol%范围内保持良好的线性关系。
     设计并制备出了具有仿贝壳结构的聚乙烯醇(PVA)与石墨烯复合的高强度及高韧性纤维。采用干纺丝技术将PVA/石墨烯复合纤维纺成弹簧状。详细研究了PVA的含量对于石墨烯复合纤维的形貌和机械性能的影响,探索出当PVA含量约为66%时,石墨烯复合薄膜可纺成连续的具有弹簧结构的纤维。力学测试表明,66%PVA/石墨烯复合弹簧具有超高伸长率(160%~400%)和超强韧性(298.23~639.44J/g);比氧化石墨烯纤维的伸长率提高了约20~40倍,韧性提高了约30~60倍。最后,从复合弹簧的宏观和微观结构对其机械性能的提高进行了探索性的解释。
     本文的研究工作可为石墨烯及其功能结构的可控制备和应用研究提供一定的理论与技术支持。
Graphene, a two-dimensional nano-material comprises a single layer carbon atomsarranged in six-membered rings with the thickness of0.34nm. It is considered as anessence of cell of other carbon materials. It exhibits many excellent physical andchemical properties which can be used both in fundamental researches andindustrial applications. Since the the properties are strongly depended on thestructure, the first and the most important thing is preparation of graphene withspecial structure if we want to make the unique properties of graphene become areality. In this thesis, we have focused on the main technology of controllablesynthesis of graphene, chemcial derived graphite oxide (GO) method and chemcialvapor deposition (CVD). Further, we develop a new approach to synthesis of dopedgraphene. Thereby, as-synthesized graphene and its functional structures wereapplied for electrode materials, gas sensor and construction structures.
     Firstly, we have synthesized the GO by modified Hummers' method. The GOsheets with single-layer and more than100μm in lateral size were achieved byoptimization of the reaction parameters and precursors. Also, the different sizes ofGO sheets were separated via gradient centrifugation technology, which suppliedthe proper materials for its applications.
     The effect of the parametres such as properties of catalyst, geometry of chamber,growth temperature, concentrate of carbon source and growth time on the graphenevia CVD, was investigated in detail. Large-scale graphene films with uniformthickness and tens of micrometers of single crystalline domains were synthesized.The graphene films exhibit high transparency (93.3%~96.5%at550nm) and lowsheet resistence (540.5~652.6Ω/sq), which achieved a tradeoffs betweentransparency and conductivity.
     The mechanism of grwoth graphene on Cu foil using methane as precursor by atmosphere pressure chemcial vapor deposition was investigated. The resultsshowed that the lateral size and layer number of graphene were increasing as growthtime. Meanwhile, we found for the first time that the C-Cu alloy particles suppliedthe carbon sources for the growth of graphene. The hypothesized mechanism,epitaxial graphene layer on the sub-layer under the high concentrate precursor, isproposed based on our experimental results.
     We have successfully developed a general approach for low temperature growthof large area doped graphene film. The approach involves a free radical reaction.High quality single layer N-doped graphene film with a high N content of7.3at%was successfully synthesized at230oC. S-doped graphene film with S content of1.54at%was also obtained at300oC using this low temperature growth technique.These doped graphenes exhibit controlled electrical properties and outstandingoxygen reduction reaction activity. Our approach also provides an efficient andscalable avenue to synthesize high level doped graphenes with characteristics of lowenergy consumption and low cost, which are key features needed forcommercialization
     Based on the as-synthesized GO, we have developed a method for fabrication ofpatterned GO thin films array using soft-lithography technique. The properties ofpatterned GO films can be regulated by annealing in different atmosphere. And theintegrated field effect transistors based on annealed GO films can be fabricatedsimply by evaporation of electrodes with shield mask. Then, the devices were usedto detect ammonia gas and achieved a quite good sensitivity of10ppm and stability.
     In addition, the titanium dioxide (TiO2) was hybrid with as-made graphene filmand formed a heterojunction device, and it was used as oxygen (O2) sensor. Thesensor could achieve a fast response and high sensitivity operated at atmospherepressure and room temperature, benefit by high carrier mobility in grapheme filmaccompany with photoelectric property of TiO2. In detail, the response and recovery time were estimated to be193s and135s, and the detected limitation was down to0.0134%. In addition, it has a quite good linear relationship between theresponsivity of the device and the concentration of O2in the range of0.0134%-100%.
     Graphene sheets with low defect were exfoliated by electrochemical method,and incorporated into poly(vinyl alcohol, PVA) to form a nacre-like composite film.And then, the PVA/graphene fibers were twist-spun from the composite films. Itwas found the content of PVA had an important effect on the mechanical propertiesof the fiber. When the content increased to~66%, a spring-like PVA/graphene fibercan be achieved. The spring-like fiber shows a super stretchable (160%~400%) andtoughness (298.23~639.44J/g). The elongation and toughness of the fiber haveincreased by20~40times and30~60times, respectively, comparing with those ofthe fiber derived from GO. At last, we have investigated the macro-and micro-structure of the PVA/graphene composite fiber to interpret the mechanism ofenhancement of the mechanical properties.
     The foundations and results in this thesis would provide some theoretical andtechnical support for synthesis of graphene and its applications.
引文
[1] K loto H W, Heath J R, O’Brien S C, Curl R F, Smalley R E. C60:Buckminsterfullerene [J]. Nature,1985,318:162-163.
    [2] Iijima S. Helical microtubules of grahite carbon [J]. Nature,1991,354:56-58.
    [3] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V,Grigorieva I V, Firsov A A. Electric Field Effect in Atomically Thin CarbonFilms [J]. Science,2004,306,666-669.
    [4] Peierls R E, Bemerkungen über Umwandlungstemperaturen [J]. Helv. Phys.Acta,1934,7,81-83.
    [5] Peierls R E, Quelques Proprietes Typiques Des corpses Solides [J]. Ann. Inst.Henri Poincare,1935,5,177-222.
    [6] Landau L D, Zur Theorie der Phasenumwandlungen II [J]. Phys. Z. Sowjetunion,1937,11,26-35.
    [7] Landau L D, Lifshitz E M, Statistical Physics Part I [M]. Oxford: PergamonPress,1980,137-138.
    [8] Mermin, N D. Crystalline Order in Two Dimensions [J]. Phys. Rev.,1968,176,250-254.
    [9] Wallace P R. The Band Theory of Graphite [J]. Phys. Rev.,1947,71,622-634.
    [10]Hummers W S, J R, Offeman R E. Preparation of Graphite Oxide [J].1958,1339.
    [11]Boehm H P, Clauss A, Fischer G O, Hofmann U. Thin Carbon Leaves [J]. Z.Naturforsch.,1962,17,150-153.
    [12]Berger C, Song Z M, Li T B, Li X B, Ogbazghi A Y, Feng R, Dai Z T,Marchenkov A N, Conrad E H, First P N, de Heer W A. Ultrathin EpitaxialGraphite:2D Electron Gas Properties and a Route Toward Graphene-basedNanoelectronics [J]. J. Phys. Chem. B,2004,108,19912-19916.
    [13]Enoki T, Kobayashi Y, Fukui K-I. Electronic Structures of Graphene Edges andNanographene [J]. Int. Rev. Phys. Chem.,2007,26,609-645.
    [14]Zhang Y, Tan Y W, Stormer H L, Kim P. Experimental Observation of theQuantum Hall Effect and Berry’s Phase in Graphene [J]. Nature,2005,438,201-204.
    [15]Zhang Y, Small J P, Amori M E S, Kim P. Electric Field Modulation ofGalvanomagnetic Properties of Mesoscopic Graphite [J]. Phys. Rev. Lett.,2005,94,176803-176806.
    [16]Partoens B, Peeters F M. From Graphene to Graphite: Electronic Structurearound the K point [J]. Phys. Rev. B,2006,74,075404.
    [17]Geim A K, Novoselov K S. The Rise of Graphene [J]. Nat. Mater.,2007,6,183-191.
    [18]Rao C N R, Biswas K, Subrahmanyam K S, Govindaraj A. Graphene, the NewNanocarbon[J]. J. Mater. Chem.,2009,19,2457-2469.
    [19]Chae H K, Siberio P D Y, Kim J. A Route to High Surface Area, Porosity andInclusion of Large Molecules in Crystals [J]. Nature,2004,427,523-527.
    [20]Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva IV, Dubonos S V, Firsov A A. Two-dimensional Gas of Massless Dirac Fermionsin Graphene [J]. Nature,2005,438,197-200.
    [21]Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan JC, Boebinger G S, Kim P, Geim A K. Room-temperature Quantum Hall Effect inGraphene [J]. Science,2007,315,1379.
    [22]Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, PeresN M R, Geim A K. Fine Structure Constant Defines Visual Transparency ofGraphene [J]. Science,2008,320,1308.
    [23]Casiraghi C, Hartschuh A, Lidorikis E, Qian H, Harutyunyan H, Gokus T,Novoselov K S, Ferrari A C. Rayleigh Imaging of Graphene and GrapheneLayers [J]. Nano Lett.,2007,7,2711-2717.
    [24]Bonaccorso F, Sun Z, Hasan T, Ferrari A C. Graphene Photonics andOptoelectronics [J]. Nat. Photonics,2010,4,611-622.
    [25]Lee C, Wei X D, Kysar J W, Hone J. Measurement of the Elastic Properties andIntrinsic Strength of Monolayer Graphene [J]. Science,2008,321,385-389.
    [26]Stoller M D, Park S J, Zhu Y W, An J, Ruoff R S. Graphene-BasedUltracapacitors [J]. Nano Lett.,2008,8,3498-3502.
    [27]Sehedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I,Novoselov K S. Detection of Individual Gas Molecules Adsorbed on Graphene[J]. Nat. Mater.,2007,6,652-655.
    [28]Ghosh S, Calizo I, Teweldebrhan D, Pokatilov E P, Nika D L, Balandin A A,Bao W, Miao F, Lau C N. Extremely High Thermal Conductivity of Graphene:Prospects for Thermal Management Applications in Nanoelectronic Circuits [J].Appl. Phys. Lett.,2008,92,151911-151913.
    [29]Lin Y M, Avouris P. Strong Suppression of Electrical Noise in Bilayer GrapheneNanodevices [J]. Nano Lett.,2008,8,2119-2125.
    [30]Heersche H B, Jarillo-Herrero P, Oostinga J B, Vandersypen L M K, MorpurgoA F. Bipolar Supercurrent in Graphene [J]. Nature,2007,446,56-59.
    [31]Wright A R, Cao J C, Zhang C. Enhanced Optical Conductivity of BilayerGraphene Nanoribbons in the Terahertz Regime [J]. Phy. Rev. Lett.,2009,103,207401.
    [32]Geim A K. Graphene: Status and Prospects [J]. Science,2009,324,1530-1534.
    [33]Meyer J C, Geim A K, Katsnelson M I, Novoselov K S, Booth T J, Roth S. TheStructure of Suspended Graphene Sheets [J]. Nature,2007,446,60-63.
    [34]Badami D V. Graphitization of Alpha-silicon Carbide [J]. Nature,1962,193,569-570.
    [35]Shang N G, Papakonstantinou P, McMullan M, Chu M, Stamboulis A, Potenza A,Dhesi S S, Marchetto H. Catalyst-free Efficient Growth, Orientation andBiosensing Properties of Multilayer Graphene Nanoflake Films with Sharp EdgePlanes [J]. Adv. Funct. Mater.,2008,18,3506-3514.
    [36]Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T B,Hass J, Marchenkov A N, Conrad E H, First P N, de Heer W A. ElectronicConfinement and Coherence in Patterned Epitaxial Graphene[J]. Science,2006,312,1191-1196.
    [37]Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E. Controlling the ElectronicStructure of Bilayer Graphene [J]. Science,2006,313,951-954.
    [38]Kim K J, Hangil L, J-H Choi, Lee J-H, Kang T-H, Kim B, Kim S. TemperatureDependent Structural Changes of Graphene Layers on6H-SiC(0001) Surfaces[J]. J. Phys. Condens. Matter.,2008,20,225017.
    [39]Sutter P W, Flege J I, Sutter E A. Epitaxial Graphene on Ruthenium [J]. Nat.Mater.,2008,7,406-411.
    [40]Sutter E, Acharya D P, Sadowski J T, Sutter P. Scanning Tunneling Microscopyon Epitaxial Bilayer Graphene on Ruthenium (0001)[J]. Appl. Phys. Lett.,2009,94,133101.
    [41]Li D, Müller M B, Gilje S, Kaner R B, Wallace G G. Processable AqueousDispersions of Graphene Nanosheets [J]. Nat. Nanotechnol.,2008,3,101-105.
    [42]Y31-Zhou X F, Liu Z P. A Scalable, Solution-phase Processing Route toGraphene Oxide and Graphene Ultralarge Sheets [J]. Chem. Commun.,2010,46,2611-2613.
    [43]Wu Z-S, Ren W C, Gao L B, Liu B L, Jiang C B, Chen H-M. Synthesis ofHigh-quality Graphene with a Pre-determined Number of Layers [J]. Carbon,2009,47,493-499.
    [44]Reina A, Jia X T, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M S, Kong J.Large Area, Few-Layer Graphene Films on Arbitrary Substrates by ChemicalVapor Deposition [J]. Nano. Lett.,2009,9,30-35.
    [45]Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J-H, Kim P, ChoiJ-Y, Hong B H. Large-scale Pattern Growth of Graphene Films for StretchableTransparent Electrodes [J]. Nature,2009,457,706-710.
    [46]Ler J J, Kern H E, Beach A L. Solubility and Diffusion Coefficient of Carbon inNickel: Reaction Rates of Nickel Carbon Alloys with Barium Oxide [J]. J. Appl.Phys.,1952,23,1305-1309.
    [47]Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A,Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S. Large-area Synthesis ofHigh-quality and Uniform Graphene Films on Copper Foils [J]. Science,2009,324,1312-1314.
    [48]Li X S, Cai W W, Colombo L Ruoff R S. Evolution of Graphene Growth on Niand Cu by Carbon Isotope Labeling [J]. Nano Lett.,2009,9,4268-4272.
    [49]Li X S, Magnuson C M, Venugopal A, An J, Suk J W, Han B, Borysiak M, CaiW W, Velamakanni A, Zhu Y W, Fu L F, Vogel E M, Voelkl E, Colombo L,Ruoff R S. Graphene Films with Large Domain Size by a Two-Step ChemicalVapor Deposition Process [J]. Nano Lett.,2010,10,4328-4334.
    [50]Li X S, Magnuson C W, Venugopal A Tromp R M, Hannon J B, Vogel E M,Colombo L, Ruoff R S. Large-Area Graphene Single Crystals Grown byLow-Pressure Chemical Vapor Deposition of Methane on Copper [J]. J. Am.Chem. Soc.,2011,133,2816-2819.
    [51]Yan Z, Lin J, Peng Z W, Sun Z Z, Zhu Y, Li L, Xiang C S, Samuel E L, KittrellC, Tour J M. Toward the Synthesis of Wafer-Scale Single-Crystal Graphene onCopper Foils [J]. ACS nano,2012,6,9110-9117.
    [52]Bae S, Kim H, Lee Y, Xu X F, Park J-S, Zheng Y, Balakrishnan J, Lei T, Kim HR, Song Y, Kim Y-J, Kim K S, zyilmaz B, Ahn J-H, Hong B H, Iijima S.Roll-to-roll Production of30-inch Graphene Films for Transparent Electrodes[J]. Nat. Nanotechol.,2010,5,574-578.
    [53]http://bbs.tianya.cn/post-333-275274-1.shtml
    [54]Kwon S-Y, Ciobanu C V, Petrova V, Shenoy V B, Bareno J, Gambin V, Petrov I,Kodambaka S. Growth of Semiconducting Graphene on Palladium [J]. NanoLett.,2009,9,3985-3990.
    [55]Nandamuri G, Roumimov S, Solanki R. Chemical Vapor Deposition ofGraphene Films [J]. Nanotechnology,2010,21,145604.
    [56]Guermoune A, Chari T, Popescu F, Sabri S S, Guillemette J, Skulason H S,Szkopek T, Siaj M. Chemical Vapor Deposition Synthesis of Graphene onCopper with Methanol, Ethanol, and Propanol Precursors [J]. Carbon,2011,49,4204-4210.
    [57]Li Z C, Wu P, Wang C X, Fan X D, Zhang W H, Zhai X F, Zeng C G, Li Z Y,Yang J L, Hou J G. Low-Temperature Growth of Graphene by Chemical VaporDeposition Using Solid and Liquid Carbon Sources [J]. ACS nano,2011,5,3385-3390.
    [58]Tan Y Y, Jayawardena K D G I, Adikaari A A D T, Tan L W, Anguita J V, HenleyS J, Stolojan V, Carey J D, Silva S R P. Photo-thermal Chemical VaporDeposition Growth of Graphene [J]. Carbon,2012,50,668-673.
    [59]Srivastava A, Galande C, Ci L J, Song L, Rai C, Jariwala D, Kelly K F, AjiayanP M. Novel Liquid Precursor-Based Facile Synthesis of Large-Area Continuous,Single, and Few-Layer Graphene Films [J]. Chem. Mater.2010,22,3457-3461.
    [60]Sun Z Z, Yan Z, Yao J, Beitler E, Zhu Y, Tour J M. Growth of Graphene fromSolid Carbon Sources [J]. Nature,2010,468,549-553.
    [61]Ruan G D, Sun Z Z, Peng Z W, Tour J M. Growth of Graphene from Food,Insects, and Waste [J]. ACS nano,2011,5,7601-7607.
    [62]Yamada T, Kim J, Ishihara M, Hasegawa M. Low-Temperature GrapheneSynthesis Using Microwave Plasma CVD [J]. J. Phys. D: Appl. Phys.,2013,46,063001.
    [63]Julio A. Manzo R, Huu C P, Banhart F. Graphene Growth by a Metal-CatalyzedSolid-State Transformation of Amorphous Carbon [J]. ACS nano,2011,5,1529-1534.
    [64]Juang Z-Y, Wu C-Y, Lo C-W, Chen W-Y, Huang C-F, Hwang J-C, Chen F-R,Leou K-C, Tsai C-H. Synthesis of Graphene on Silicon Carbide Substrates atLow Temperature [J]. Carbon,2009,47,2026-2031.
    [65]Wu Z S, Ren W C, Gao L B, Zhao J P, Chen Z P, Liu B L, Tang D M, Yu B,Jiang C B, Chen H-M. Synthesis of Graphene Sheets with High ElectricalConductivity and Good Thermal Stability by Hydrogen Arc DischargeExfoliation [J]. ACS nano,2009,3,411-417.
    [66]Qian W, Hao R, Hou Y L, Tian Y, Shen C M, Gao H J, Liang X L.Solvothermal-Assisted Exfoliation Process to Produce Graphene with HighYield and High Quality [J]. Nano Research,2009,2,706-712.
    [67]Su C-Y, Lu A-Y, Xu Y P, Chen F-R, Khlobystov A N, Li L-J. High-Quality ThinGraphene Films from Fast Electrochemical Exfoliation [J]. ACS nano,2012,5,2332-2339.
    [68]Srivastava A, Galande C, Ci L J, Song L, Rai C, Jariwala D, Kelly K F, AjiayanP M. Novel Liquid Precursor-Based Facile Synthesis of Large-Area Continuous,Single, and Few-Layer Graphene Films [J]. Chem. Mater.2010,22,3457-3461.
    [69]Becerril H A, Mao J, Liu Z F, Stoltenberg R M, Bao Z N, Chen Y S. Evaluationof Solution-Processed Reduced Graphene Oxide Films as TransparentConductors [J]. ACS Nano,2008,2,463-470.
    [70]Sun P Z, Ma R Z, Wang K L, Zhong M L, Wei J Q, Wu D H, Sasaki T, Zhu H W.Suppression of the Coffee-ring Effect by Self-assembling Graphene Oxide andMonolayer Titania [J]. Nanotechology,2013,24,075601.
    [71]Dikin D A, Stankovich S, Zimney E J, Piner R D, Dommett G H B, EvmenenkoG, Nguyen S T, Ruoff R S. Preparation and Characterization of Graphene OxidePaper [J]. Nature,2007,448,457-460.
    [72]Kim F, Cote L J, Huang J X. Graphene Oxide: Surface Activity andTwo-Dimensional Assembly [J]. Adv. Mater.,2010,22,1954-1958.
    [73]Cote L J, Kim F, Huang J X. Langmuir-Blodgett Assembly of Graphite OxideSingle Layers [J]. J. Am. Chem. Soc.2009,131,1043-1049.
    [74]Mohammad, Thordarson P, John A. Gram-scale production of graphene basedon solvothermal synthesis and sonication [J]. Nat. nanotech.,2009,4,30-33.
    [75]Son Y W, Cohen M L, louie S G. Energy gaps in graphene nanoribbon [J]. Phy.Rew. Lett.,2006,97,216803.
    [76]Han M Y, zyilmaz B, Zhang Y B, et al. Energy band-gap engineering ofgraphene nanoribbon [J]. Phy. Rew. Lett.,2007,98,206805.
    [77]Barone V, Hod O, Scuseria G E. Electronic structure and stability ofsemiconducting Graphene nanoribbon [J]. Nano Lett.,2006,6,2748-2754.
    [78]Chen Z H, Lin Y M, Rocks M J, Avouris P. Graphene Nano-Ribbon Electronics[J]. Physica E,2007,40,228-232.
    [79]Li X L, Wang X R, Zhang L, Lee S, Dai H. Chemically Drived UltrasmoothGraphene Nanoribbon Semiconductors [J]. Science,2008,319,1229-1233.
    [80]Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price BK, Tour J M. Longitudinal Unzipping of Carbon Nanotubes to form GrapheneNanoribbons [J]. Nature,2009,458,872-877.
    [81]Jiao L Y, Zhang L, Wang X R, Diankov G, Dai H. Narrow GrapheneNanoribbons from Carbon Nanotubes [J]. Nature,458,877-879.
    [82]Elías A L, Botello-Méndez A R, Meneses-Rodríguez D, González V J,Ramírez-González D, Ci L, Muňoz-Sandoval E, Ajayan P M, Terrones H,Terrones M. Longitudinal Cutting of Pure and Doped Carbon Nanotubes toForm Graphitic Nanoribbons Using Metal Clusters as Nanoscalpels [J]. NanoLett.,2010,10,366-372.
    [83]Wei D C, Liu Y Q, Zhang H L,Huang L, Wu B, Chen J, Yu G. Scalable Synthesisof Few-Layer Graphene Ribbons with Controlled Morphologies by a TemplateMethod and Their Applications in Nanoelectromechanical Switches [J]. J. Am.Chem. Soc.,2009,131:11147-11154.
    [84]Wang R, Hao Y F, Wang Z Q, Gong H, Thong J T L. Large-Diameter GrapheneNanotubes Synthesized Using Ni Nanowire Templates [J]. Nano Lett.,2010,10,4844-4850.
    [85]Yu W J, Chao S H, Perello D, Lee S Y, Han G H, Yun M, Lee Y H. Synthesis ofEdge-Closed Graphene Nanoribbons with Enhanced Conductivity [J]. ACS nano,2010,4,5480-5486.
    [86]Ye X A, Qi L M. Two-Dimensionally Patterned Nanostructures based onMonolayer Colloidal Crystals: Controllable Fabrication, Assembly, andApplications [J]. Nanotoday,2011,6,208-631.
    [87]Lee W-K, Robinson J T, Gunlycke D, Stine R R, Tamanaha C R, King W P,Sheehan P E. Chemically Isolated Graphene Nanoribbons Reversibly Formed inFluorographene Using Polymer Nanowire Masks [J]. Nano Lett.,2011,11(12):5461-5464.
    [88]Lai L F, Potts J R, Zhan D, Wang L, Poh C K, Tang C H, Gong H, Shen Z X,Jiangyi L Y, Rouff R S. Exploration of the Active Center Structure ofNitrogen-Doped Graphene-based Catalysts for Oxygen Reduction Reaction [J].Energy Environ. Sci.,2012,5:7936-7942.
    [89]Yang Z, Yao Z, Li G F, Fang G Y, Nie H G, Liu Z, Zhou X M, Chen X, Huang SM. Sulfur-doped Graphene as an Efficient Metal-Free Cathode Catalyst forOxygen Reduction [J]. ACS Nano,2012,6:205-211.
    [90]C. Z. Zhang, M. Mahmood, H. Yin, F. Liu, Y. L. Hou, Adv. Mater.2013,25,4932-4937.
    [91]Han J, Zhang L L, Lee S, Oh J, Lee K-S, Potts J R, Ji J, Zhao X, Rouff R S, ParkS. Generation of B-Doped Graphene Nanoplatelets Using a Solution Processand Their Supercapacitor Applications [J]. ACS Nano,2013,7,19-26.
    [92]Wang Y, Shao Y, Matson D W, Li J, Lin Y. Nitrogen-Doped Graphene and ItsApplication in Electrochemical Biosensing [J]. ACS Nano,2010,4,1790-1798.
    [93]Jeong H. M, Lee J. W, Shin W. H, Choi Y. J, Shin H. J, Kang J. K, Choi J W.Nitrogen-Doped Graphene for High-Performance Ultracapacitors and theImportance of Nitrogen-Doped Sites at Basal Planes [J]. Nano Lett.2011,11,2472-2477.
    [94]Lin Y C, Lin C Y, Chiu P W. Controllable Graphene N-doping with AmmoniaPlasma [J]. Appl. Phys. Lett.,2010,96,133110.
    [95]Wei D C, Liu Y Q, Wang Y, Zhang H L, Huang L P, Yu G. Synthesis of N-dopedGraphene by Chemical Vapor Deposition and its Electrical Properties [J]. NanoLett.,2009,9,1752-1758.
    [96]Xue Y Z, Wu B, Jiang L, Guo Y L, Huang L P, Chen J Y, Tan J H, Geng D G,Luo B R,Hu W P. Low Temperature Growth of Highly Nitrogen-doped SingleCrystal Graphene Arrays by Chemical Vapor Deposition p [J]. J. Am. Chem.Soc.,2012,134,11060-11063.
    [97]Qu L T, Liu Y, Baek J B, Dai L M. Nitrogen-doped Graphene as EfficientMetal-free Electrocatalyst for Oxygen Reduction in Fuel cells [J]. ACS Nano,2010,4,1321-1326.
    [98]Gao H, Liu Z, Song L,Guo W H, Gao W, Ci L J, Rao A, Quan W J, Vajtal R,Ajayan R M. Synthesis of S-doped Graphene by Liquid Precursor [J].Nanotechnology,2012,23,275605.
    [99]Liang J, Jiao Y, Jaroniec M, Qiao S Z. Sulfur and Nitrogen Dual-DopedMesoporous Graphene Electrocatalyst for Oxygen Reduction withSynergistically Enhanced Performancs [J]. Angew. Chem. Int. Ed.2012,51,11496-11500.
    [100] Yu D S, Xue Y H, Dai L M. Vertically Aligned Carbon Nanotube ArraysCo-doped with Phosphorus and Nitrogen as Efficient Metal-FreeElectrocatalysts for Oxygen Reduction [J]. J. Phys. Chem. Lett.,2012,3,2863-2870.
    [101] Xu Z, Gao C. Graphene Chiral Liquid Crystals and Macroscopic AssembledFibres [J]. Nat. Commun.,2011,2,571-579.
    [102] Cong H P, Ren X C, Wang P, Yu S H. Wet-spinning Assembly of Continuous,Neat, and Macroscopic Graphene Fibers [J]. Scientific Reports,2011,2,613-618.
    [103] Dong Z L, Jiang C C, Cheng H H, Zhao Y, Shi G Q, Jiang L, Qu L T. FacileFabrication of Light, Flexible and Multifunctional Graphene Fibers [J]. Adv.Mater.,2012,24,1856-1861.
    [104] Zhao Y, Jiang C C, Hu C G, Dong Z L, Xue J L, Meng Y N, Zheng N, ChenP W, Qu L T. Large-Scale Spinning Assembly of Neat, Morphology-Defined,Graphene-Based Hollow Fibers [J]. ACS nano,2013,7,2406-2412.
    [105] Wang R R, Sun J, Gao L, Xu C H, Zhang J. Fibrous Nanocomposites ofCarbon Nanotubes and Graphene-oxide with Synergetic Mechanical andActuative Performance [J]. Chem. Commun.,2011,47,8650-8652.
    [106] Shin M K, Lee B, Kim S H, Lee J A, Spinks G M, Gambhir S, Wallace G G,Kozlov M E, Baughman R H, Kim S J. Synergistic Toughening of CompositeFibres by Self-alignment of Reduced Graphene Oxide and Carbon Nanotubes [J].Nat. Commun.,2011,3,650-657.
    [107] Li X M, Zhao T S, Wang K L, Yang Y, Wei J Q, Kang F Y, Wu D H, Zhu HW. Directly Drawing Self-Assembled, Porous, and Monolithic Graphene Fiberfrom Chemical Vapor Deposition Grown Graphene Film and Its ElectrochemicalProperties [J]. Langmuir,2011,27,12164-12171.
    [108] http://hi.baidu.com/luoluociweitou/item/7db318140d3053d7be90421f
    [109] Wang X R, Ouyang Y, Li X L, Wang H L, Guo J, Dai H J.Room-Temperature All-Semiconducting Sub-10-nm Graphene NanoribbonField-Effect Transistors [J]. Phys. Rev. Lett.,2008,100,206803.
    [110] http://www.zcom.com/article/3265/
    [111] Lee Y B, Bae S, Jang H, Jang S, Zhu S-E, Sim S H, Song Y I, Hong B H,Ahn J-H. Wafer-Scale Synthesis and Transfer of Graphene Films [J]. Nano Lett.,2010,10,490-493.
    [112] Wu Y Q, Lin Y-M, Bol A A, Jenkins K A, Xia F N, Farmer D B, Zhu Y,Avouris P. High-frequency, Scaled Graphene Transistors on Diamond-likeCarbon [J]. Nature,2011,472,74-78.
    [113] Johnson J L, Behnam A, An Y B, Pearton S J, Ural A. Experimental Studyof Graphitic Nanoribbon Films for Ammonia Sensing [J]. J. Appl. Phys.,2011,109,124301.
    [114] Ao Z M, Yang J, Li S, Jiang Q. Enhancement of CO detection in Al dopedGraphene [J]. Chem. Phys. Lett.,2008,461,276-279.
    [115] Ghosh A, Late D J, Panchakarla L S, Govindaraj A, Rao C N R. NO2andHumidity Sensing Characteristics of Few-layer Graphene [J]. Chem. Phys.,2009,4,313-322.
    [116] Ohno Y, Maehashi K, Yamashiro Y, Matsumoto K. Electrolyte-GatedGraphene Field-Effect Transistors for Detecting pH and Protein Adsorption [J].Nano. Lett.,2009,9,3318-3322.
    [117] Cohen-Karni T, Qing Q, Li Q, Fang Y, Lieber C M. Graphene and NanowireTransistors for Cellular Interfaces and Electrical Recording [J]. Nano Lett.,2010,10,1098-1102.
    [118] Dong X C, Shi Y M, Huang W, Chen P, Li L-J. Electrical Detection of DNAHybridization with Single-Base Specificity Using Transistors Based onCVD-Grown Graphene Sheets [J]. Adv. Mater.,2010,22,1-5.
    [119] Wassei J K, Kaner R B. Graphene, a Promising Transparent Conductor [J].Mater. Today,2010,13,52-59.
    [120] Tung V C, Chen L-M, Allen M J, Wassei J K, Nelson K, Kaner R B,Yang Y.Low-Temperature Solution Processing of Graphene-Carbon Nanotube HybridMaterials for High-Performance Transparent Conductors [J]. Nano Lett.,2009,9,1949-1955.
    [121] Li X S, Zhu Y W, Cai W W, Borysiak M, Han M, Chen D, Piner R D,Colombo L, Ruoff R S. Transfer of Large-Area Graphene Films forHigh-Performance Transparent Conductive Electrodes [J]. Nano Lett.,2009,9,4359-4363.
    [122] Huang X, Qi X Y, Boey F, Zhang H. Graphene-based Composite [J]. Chem.Soc. Rev.,2012,41,666-686.
    [123] Shih C-J, Vijayaraghavan A, Krishnan R, Sharma R, Han J-H, Ham M-H,Jin Z, Lin S C, Paulus G L C, Reuel N F, Wang Q H, Blankschtein D, Strano MS. Bi-and Trilayer Graphene solutions [J]. Nat. Nanotechnol.,2011,6,439-445.
    [124] Green A A, Hersam M C. Solution Phase Production of Graphene withControlled Thickness via Density Differentiation [J]. Nano Lett.,2009,9,4031-4036.
    [125] Ni Z H, Wang H M, Kasim J, Fan H M, Yu T, Wu Y H, Feng Y P, Shen Z X.Graphene Thickness Determination Using Reflection and Contrast Spectroscopy[J]. Nano Lett.,2007,7,2758-2763.
    [126] Chen Y-F, Liu D, Wang Z-G, Li P-J, Hao X, Cheng K, Fu Y, Huang L-X, LiuX-Z, Zhang W-L, Li Y-R. Rapid Determination of the Thickness of GrapheneUsing the Ratio of Color Difference [J]. J. Phys. Chem. C,2011,115,6690-6693.
    [127] Lewis A M, Derby B, Kinloch I A. Influence of Gas Phase Equilibria on theChemical Vapor Deposition of Graphene [J]. ACS nano,2013,7,3104-3117.
    [128] Bhaviripudi S, Jia X T, Dresselhaus M S, Kong J. Role of Kinetic Factors inChemical Vapor Deposition Synthesis of Uniform Large Area Graphene UsingCopper Catalyst [J]. Nano Lett.,2010,10,4128-4133.
    [129] Kim H K, Kim K S, Kang J, Park Y C, Chun K-Y, Boo J-H, Kim Y-J, HongB H, Choi, J-B. Flow-Dependent Directional Growth of Carbon NanotubeForests by Chemical Vapor Deposition [J]. Nanotechnology,2011,22,095303.
    [130] Laidler K J. Chemical Kinetic [M]. Third edition, Harper&Row,1987,42.
    [131] Yu Q K, Jauregui L A, Wu W, Colby R, Tian J F, Su Z H, Cao H L, Liu Z H,Pandey D, Wei D G, Chung T F, Peng P, Guisinger N P, Stach E A, Bao J M, PeiS-S, Chen Y P. Control and Characterization of Individual Grains and GrainBoundaries in Graphene Grown by Chemical Vapour Deposition [J]. Nat. Mater.,2011,10,443-452.
    [132] Koepke J C, Wood J D, Estrada D, Ong Z-Y, He K T, Pop E, Lyding J W.Atomic-Scale Evidence for Potential Barriers and Strong Carrier Scattering atGraphene Grain Boundaries: A Scanning Tunneling Microscopy Study [J]. ACSnano,2013,7,75-86.
    [133] Robertson A W, Warner J H. Hexagonal Single Crystal Domians ofFew-layer Graphene on Copper Foils [J]. Nano Lett.,2011,11,1182-1189.
    [134] Rasool H I, Song E B, Allen M J, Wassei J K, Kaner R B, Wang K L,Weiller B H, Gimzewski J K. Continuity of Graphene on Polycrystalline Copper[J]. Nano Lett.,2011,11,251-256.
    [135] Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F,Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K. Raman Spectrum ofGraphene and Graphene Layers [J]. Phys. Rev. Lett.,2006,97,187401.
    [136] Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C, Wirtz L.Spatially Resolved Raman Spectroscopy of Single-and Few-Layer Graphene [J].Nano Lett.,2007,7,238-242.
    [137] Yan K, Peng H L, Zhou Y, Li H, Liu Z F. Formation of Bilayer BernalGraphene: Layer-by-Layer Epitaxy via Chemical Vapor Deposition [J]. NanoLett.,2011,11,1106-1110.
    [138] Wu P, Zhang W H, Li Z Y, Yang J L, Hou J G. Communication: Coalescenceof Carbon Atoms on Cu(111) Surface: Emergence of a Stable Bridging-metalStructure Motif [J]. J. Chem. Phys.,2010,133,071101.
    [139] Uozumil Y, Nakajima T, Matsumura T, Yoshimizu Y, Tomita H.Development of an Eco-friendly Copper Interconnect Cleaning Process [J].IEEE,2007,25-27.
    [140] Wagner C D, Riggs W M, Davis L E, Moulder J F. Handbook of X-rayPhotoelectron Spectroscopy [M]. Eden Prairie, MN,1979.
    [141] Pan F M, Horng S R, Yang T D, Tang V. Studies of the Interface betweenthe Epoxy Molding Compound and the Copper Leadframe by X-rayPhotoelectron Spectroscopy, Auger Electron Spectroscopy, and SecondaryElectron Microscopy [J]. J. Vac. Sci. Technol. A,1990,8,4074-4078.
    [142] Lv R, Terrones M. Towards New Graphene Materials: Doped GrapheneSheets and Nanoribbons [J]. Mater. Lett.,2012,78,209-218.
    [143] Grushin A G, Valenzuela B, Vozmediano M A H. Efect of CoulombInteractions on the Optical Properties of Doped Graphene [J]. Phys. Rev. B,2009,80,155417.
    [144] Cruz-Silva E, Barnett Z M, Sumpter B G, Meunier V. Structural, Agnetic,and Transport Properties of Substitutionally Doped Graphene Nanoribbons fromFirst Principles [J]. Phys. Rev. B,2011,83,155445.
    [145] Poh H L, imek P, Sofer Z, Pumera M. Sulfur-Doped Graphene via ThermalExfoliation of Graphite Oxide in H2S, SO2, or CS2gas [J]. ACS Nano,2013,7,5262-5672.
    [146] Yan K, Peng H L, Zhou Y, Li H, Liu Z F. Formation of Bilayer BernalGraphene: Layer-by-Layer Epitaxy via Chemical Vapor Deposition [J]. NanoLett.,2011,11,1106-1110.
    [147] Dresselhaus M S, Dresselhaus G, Hofmann M. Raman Spectroscopy as aProbe of Graphene and Carbon Nanotubes [J]. Phil. Trans. R. Soc. A.,2008,366,231-236.
    [148] Tuinstra F, Koenig J L. Raman Spectrum of Graphite [J]. J. Chem. Phys.,1970,53,1126-1130.
    [149] Ni Z H, Wang H M, kasim J, Fan H M, Yu T, Wu Y H, Feng Y P, Shen Z X.Graphene Thickness Determination Using Reflection and Contrast Spectroscopy[J]. Nano Lett.,2007,7,2758-2763.
    [150] Robertson A W, Warner J H. Hexagonal Single Crystal Domains ofFew-Layer Graphene on Copper Foils [J]. Nano Lett.,2011,11,1182-1189.
    [151] Nemes-Incze P, Osváth Z, Kamarás K, Biró L P. Anomalies in ThicknessMeasurements of Graphene and Few Layer Graphite Crystals by Tapping ModeAtomic Force Microscopy [J]. Carbon,2008,46,1435-1442.
    [152] Paredes J I, Villar-Rodil S, Solís-Fernández P, Martínez-Alonso A, Tascón JM D. Atomic Force and Scanning Tunneling Microscopy Imaging of GrapheneNanosheets Derived from Graphite Oxide [J]. Langmuir,2009,25,5957-5968.
    [153] Krylova V, Andrulevi ius M. Optical, XPS and XRD Studies ofSemiconducting Copper Sulfde Layers on a Polyamide Film [J]. Int. J.Photoenergy,2009,2009,304308.
    [154] Ullmann F. Ueber Eine neue Bildungsweise von Diphenylaminderivaten [J].Ber. Dtsch. Chem. Ges.,1903,36,2382-2384.
    [155] Garey A. A.&Sundber, R. J. Advanced Orgnic Chemistry. Part A: Structureand Mechanisms.2nd, Plenum press, New York.1984.
    [156] Kishi K, Ikeda S. X-ray Photoelectron Spectroscopic Study of the Reactionof Evaporated Metal Films with Chlorine Gas [J]. J. Phys. Chem.1974,78,107-112.
    [157] Klein J C, Li C P, Hercules D M, Black J F. Decomposition of CopperCompounds in X-Ray Photoelectron Spectrometers [J]. Appl. Spectroscopy,1984,38,729-734.
    [158] Aben T, Tromans D. Anodic Polarization Behavior of Copper in AqueousBromide and Bromide/benzotriazole Solutions [J]. J. Electrochem. Soc.,1995,142,398-404.
    [159] Vasquez R P. CuBr2by XPS [J]. Suef. Sci. Spectra.,1993,2,165.
    [160] Maillard F, Bonnefont A, Chatenet M, Guetaz L, Doisneau-Cottignies B,roussel H, Stimming U. Effect of the Structure of Pt-Ru/C Particels on CoadMonolayer Vibrational Properties and Electrooxidation Kinetics [J].Electrochimica Acta,2007,53,811-822.
    [161] Tammeveski K, Tenno T, Claret J, Ferrater C. Electrochemical Reduction ofOxygen on Thin-Film Pt Electrodes in0.1M KOH [J]. Electrochim. Acta.1997,42,893-897.
    [162] Bj rn T, Wouter O, Albert B V D. Ammonia Sensors and Their Applications:A Review [J]. Sensor and Actuators B,2005,107,666-677.
    [163] He Q, Sudibya H G, Yin Z Y, Wu S X, Li H, Boey F, Huang W, Chen P,Zhang H. Centimeter-Long and Large-Scale Micropatterns of ReducedGraphene Oxide Films: Fabrication and Sensing Applications [J]. ACS nano.2010,4,3201-3208.
    [164] Diao J J, Xia M G. A Particle Transport Study of VerticalEvaporation-Driven Colloidal Deposition by the Coffee-Ring Theory [J].Colloids and Surfaces A: Phys. Eng. Aspects,2009,338,167-170.
    [165] Hur S H, Khang D Y, Kocabas C, Rogers J A. Nanotransfer Printing by Useof Noncovalent Surface Forces: Applications to Thin-Film Transistors that UseSingle-Walled Carbon Nanotube Networks and Semiconducting Polymers [J].Appl. Phys. Lett.,2004,85,5730.
    [166] Li D S, Windl W, Padture N P. Toward Site-Specific Stamping of Graphene[J].2009,21,1243-1246.
    [167] Xia Y N, Whitesides G M. Soft Lithography [J]. Annu. Rev. Mater. Sci.,1998,28,153-184.
    [168] Zhang L-S, Liang X-Q, Song W-G, et al. Identification of the NitrogenSpecies on N-doped Graphene Layers and Pt/NG Composite Catalyst for DirectMethanol Fuel Cell [J]. Phys. Chem. Chem. Phys.,2010,12,12055-12059.
    [169] Robinson J T, Perkins F K, Snow E S, Wei Z Q, Sheehan P. ReducedGraphene Oxide Molecular Sensors[J]. Nano Lett.,2008,8,3137-3140.
    [170] Yamazoe N, Miura N. Development of Gas Sensors for EnvironmentalProtection [J]. IEEE Tran. Compou. Packag. Manuf. Technol. Part A,1995,18,252-256.
    [171] Weppner W. Advanced Principles of Sensors Based on Solid State Ionics [J].Mater. Sci. Eng. B,1992,15,48-55.
    [172] Kanazawa E, Sakai G, Shimanoe K, Kanmura Y, Teraoka Y, Miura N,Yamazoe N. Metal Oxide Semiconductor N2O Sensor for Medical Use [J]. Sens.Actuators B,2001,77,72-77.
    [173] Barsan N, Schweizer-Berberich M, G pel W. Fundamental and PracticalAspects in the Design of Nanoscaled SnO2Gas Sensors: a Status Report [J].Fresenius J. Anal. Chem.,1999,365,287-304.
    [174] Sharma R K, Bhatnagar M C, Sharma G L. Influence of Doping onSensitivity and Response Time of TiO2Oxygen Gas Sensor [J]. Rev. Sci.Instrum.,2000,71,1500-1504.
    [175] Varghese O K, Gong D W, Paulose M, Ong K G, Grimes C A. HydrogenSensing Using Titaia Nanotubes [J]. Sens. Actuators B,2003,93,338-344.
    [176] Zhang Y H, Tang Z-R, Fu X Z, Xu Y-J. TiO2-graphene Truly Different fromOther TiO2-carbon Composite Materials [J]. ACS nano,2010,4,7303-7314.
    [177] Emeline A V, Kuznetsov V N, Rybchuk V K, Serpone N. Visible-Light-Active Titania Photocatalysts: The Case of N-Doped TiO2Properties and SomeFundamental Issues [J]. Inter. J. Photoenergy,2007,2008,1155.
    [178] Lu H F, Li F, Liu G, Chen Z-G, Wang D-W, Fang H-T, Lu G Q, Jiang Z H,Cheng H-M. Amorphous TiO2Nanotube Arrays for Low-temperature OxygenSensors [J]. Nanotechnology,2008,19,405504.
    [179] Das A, Pisana S, Chakraborty B, Piscanec S, Saha S K, Waghmare U V,Novoselov K S, Krishnamurthy H R, Geim A K, Ferrari A C, Sood A K.Monitoring Dopants by Raman Scattering in an Electrochemically Top-gatedGraphene Transistor [J]. Nat. Nanotechnol.,2008,3,210-215.
    [180] Frank O, Mohr M, Maultzsch J, Thomsen C, Riaz I, Jalil R, Novoselov K S,Tsoukleri G, Parthenios J, Papagelis K, Kavan L, Galiotis C. Raman2D-bandSplitting in Graphene: Theory and Experiment [J]. ACS nano,2011,5,2231-2239.
    [181] Niyogi S, Bekyarova E, Itkis M E, Zhang H, Shepperd K, Hicks J, SprinkleM, Berger C, Lau C N, deHeer W A, Conrad E H, Haddon R C. Spectroscopy ofCovalently Functionalized Graphene [J]. Nano lett.,2010,10,4061-4066.
    [182] Englert J M, Dotzer C, Yang G, Schmid M, Papp C, Gottfried J M, SteinrückH-P, Spiecker E, Hauke F, Hirsch A. Covalent Bulk Functionalization ofGraphene [J]. Nat. Chem.,2011,3,279-286.
    [183] Temple P A, Hathaway C E. Multiphonon Raman Spectrum of Silicon [J].Phys. Rev. B,1973,7,3685-3697.
    [184] Ohsaka T, Izumi F, Fujiki Y. Raman Spectrum of Anatase TiO2[J]. J. RamanSpectro.,1978,7,321-324.
    [185] Miao Z, Xu D S, Ouyang J H, Guo G L, Zhao X S, Tang Y Q.Electrochemically Induced Sol-Gel Preparation of Single Crystalline TiO2Nanowire [J]. Nano Lett.,2002,2,717-720.
    [186] Batzill M, Diebold U. The Surface and Materials Science of Tin Oxide [J].Prog. Surf. Sci.,2005,79,47-154.
    [187] Weisz P B. Effects of Electronic Charge Transfer Between Adsorbate andSolid on Chemisorption and Catalysis [J]. J. Chem. Phys.,1953,21,1531-1538.
    [188] Hoffmann M R, Martin S T, Choi W Y, Bahnemann D W. EnviromentalApplications of Semiconductor Photocatalysis [J]. Chem. Rev.,1995,95,69-96.
    [189] Lu C-C, Huang Y-S, Huang J-W, Chang C-K, Wu S-P. A macroporous TiO2Oxygen Sensor Fabricated Using Anodic Aluminium Oxide as an Etching Mask[J]. Sensors,2010,10,670-683.
    [190] Llobet E, Espinosa E H, Sotter E, Ionescu R, Vilanova X, Torres J, Felten A,Pireaux J J, Ke X, Tendeloo G V, Renaux F, Paint Y, Hecq M, Bittencourt C.Carbon Nanotube-TiO2Hybrid Films for Detecting Traces of O2[J].Nanotechnology,2008,19,375501.
    [191] Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia YY, Wu Y, Nguyen S T, Ruoff R S. Synthesis of Graphene-based Nanosheets viaChemical Reduction of Exfoliated Graphite Oxide [J].Carbon,2007,45,1558-1565.
    [192] Wu S-D, Lv W, Xu J, Han D, Chen X, Wang P, Yang Q H. AGraphene/poly(vinyl alcohol) Hybrid membrane Self-assembled at theLiquid/air Interface: Enhanced Mechanical Performance and PromisingSaturable Absorber [J]. J. Mater. Chem.,2012,22,17204-17209.
    [193] Shang Y Y, He X D, Li Y B, Zhang L H, Li Z, Ji C Y, Shi E Z, Li P X, ZhuK, Peng Q Y, Wang C, Zhang X J, Wang R G, Wei J Q, Wang K L, Zhu H W, WuD H, Cao A Y. Super-Stretchable Spring-Like Carbon Nanotube Ropes [J]. Adv.Mater.2012,24,2896-2900.
    [194] Shang Y Y, Li Y B, He X D, Du S Y, Zhang L H, Shi E Z, Wu S T, Li Z, Li PX, Wei J Q, Wang K L, Zhu H W, Wu D H, Cao A Y. Highly TwistedDouble-Helix Carbon Nanotube Yarns [J]. ACS Nano,2013,7,1446-1453.
    [195] Lima M D, Li N, de Andrade M J, Fang S, Baughman R H. Electrically,Chemically, and Photonically Powered Torsional and Tensile Actuation ofHybrid Carbon Nanotube Yarn Muscles [J]. Science,2012,338,928-932.
    [196] Zhang M, Atkinson K R, Baughman R H. Multifunctional Carbon NanotubeYarns by Downsizing an Ancient Technology [J]. Science,2004,306,1358-1361.
    [197] Chen W F, Yan L F. Centimeter-sized Dried Foam Films of Graphene:Preparation, Mechanical and Electrical Properties [J]. Adv. Mater.2012,24,6229-6233.
    [198] Li Y-Q, Yu T, Ynag T-Y, Zheng L-X, Liao K. Bio-Inspired Nacre-likeComposite Films Based on Graphene with Superior Mechanical, Electrical, andBiocompatible Properties [J]. Adv. Mater.2012,24,3426-3431.
    [199] Wang R Z, Suo Z, Evans A G, Yao N, Aksay I A. Deformation Mechanismsin Nacre [J]. J. Mater. Res.,2001,16,2485-2493.
    [200] Vollrath F, Knight D P. Liquid Crystalline Spinning of Spider Silk [J].Nature,2001,410,541-548.
    [201] Cheng M, Chen W, Weerasooriya T. Mechanical Properties of KevlarKM2Single Fiber [J]. J. Eng. Mater. Technol.2005,127,197-203.
    [202] J. M. Gosline, P. A. Guerette, C. S. Ortlepp, K. N. Savage. The MechanicalDesign of Spider Silks: from Fibroin Sequence to Mechanical Function [J]. J.Experi. Bio.,1999,202,3295-3303.
    [203] Dalton A B, Collins S, Mu oz E, Razal J M, Ebron V H, Ferraris J P,Coleman J N, Kim B G, Baughman R H. Super-Tough Carbon-Nanotube Fibres.Nature,2003,423,703.
    [204] Hu X Z, Xu Z, Gao C. Multifunctional, Supramolecular, ContinuousArtificial Nacre Fibres [J]. Scientific Reports,2012,2,767-774.
    [205] Wang R R, Sun J, Gao L, Xu C H, Zhang J. Fibrous Nanocomposites ofCarbon Nanotubes and Graphene-oxide with Synergetic Mechanical andActuative Performance [J]. Chem. Commun.,2011,47,8650-8652.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700