玻璃纤维芯铅网(丝)增强橡胶阻尼复合材料性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
橡胶是一种重要的粘弹类阻尼材料,已广泛应用于航空、航天、交通、机械、建筑等领域。但是,橡胶力学性能较差,很难单独作为结构材料直接使用。为了在不损失橡胶阻尼性能的同时提高其力学性能,实现结构-功能一体化,根据复合材料力学理论和阻尼机理,设计了一种由玻璃纤维(GF)、铅(Pb)和橡胶(R)组成的新型阻尼复合材料——玻璃纤维芯铅网(丝)增强橡胶复合材料(GF/Pb/R)。
     本课题对四种增强方式的复合材料依次进行了系统研究,它们是:GF/Pb网横向增强橡胶复合材料(H-GF/Pb/R)、GF/Pb网纵向增强橡胶复合材料(V-GF/Pb/R)、短GF/Pb丝增强橡胶复合材料(S-GF/Pb/R)和连续GF/Pb丝增强橡胶复合材料(T-GF/Pb/R)。采用力滞回线法和振动法考察了复合材料在承受压缩载荷和剪切载荷时的力学性能和阻尼性能,分析了复合材料中存在的阻尼机制。结果表明:使用GF/Pb网(丝)作为增强相能够有效地提高复合材料的压缩力学性能和阻尼性能,但对剪切性能提高效果不明显。复合材料阻尼是多种阻尼机制共同作用的结果,包括材料阻尼、界面微滑移阻尼、Pb的微观塑性变形阻尼。各种阻尼机制对复合材料阻尼性能的贡献与界面面积、界面结合强度等因素有关。
     本课题还分别研究了频率、复合结构、GF/Pb网(丝)体积分数、GF/Pb网铺层位置和相邻铺层间夹角、组元性能和使用条件等因素对四种复合材料力学性能和阻尼性能的影响,并根据实验结果确定了制备各种复合材料的最佳参数,以及发挥GF/Pb网增强作用的最佳复合结构
     不同GF/Pb网(丝)用量对复合材料性能影响的研究结果表明:H-GF/Pb/R和V-GF/Pb/R的压缩刚度和阻尼性能随着GF/Pb网体积分数的增加而提高,其剪切性能受GF/Pb网体积分数的影响不明显;T-GF/Pb/R的动刚度随着GF/Pb丝体积分数的增加而提高,其损耗因子却随GF/Pb丝体积分数增大略为降低。
     不同铺层结构对GF/Pb网增强橡胶复合材料性能影响的研究结果表明:H-GF/Pb/R的压缩动刚度和阻尼性能随着铺层结构的改变略有差别,当GF/Pb网位于样品中部时,H-GF/Pb/R的综合性能最佳。GF/Pb网铺层间夹角对V-GF/Pb/R的压缩力学性能和阻尼性能影响较小,其中以铺层间夹角为0°、GF/Pb网均匀铺层的复合材料性能最高。
     GF/Pb丝与橡胶间的界面结合强度对复合材料性能影响的研究结果表明:载荷作用前后的界面状态随界面结合强度的强弱而改变,故GF/Pb丝与橡胶间的界面结合强度成为影响复合材料性能的重要因素。界面结合较弱时,界面处的脱粘区域在受到循环载荷作用后迅速扩展;界面结合较强时,GF/Pb丝与橡胶在受力作用后仍然能够保持紧密结合状态。界面状态的差别导致了复合材料性能的差别,H-GF/Pb/R和V-GF/Pb/R的压缩力学性能随着界面结合强度的提高而提高,而损耗因子的变化较复杂。H-GF/Pb/R的阻尼性能按照界面弱结合、强结合、中等强度结合的顺序提高;V-GF/Pb/R的阻尼性能按照界面中等强度结合、强结合、弱结合的顺序提高。
     研究了金属组元和直径不同的GF/Pb丝的物理性能及它们所增强的复合材料力学性能和阻尼性能,结果发现:纯Pb比PbSn合金更容易发生微观塑性变形,形成较多的变形能耗,因此,用金属组元为纯Pb的GF/Pb丝制备的的复合材料阻尼性能较高。复合材料中的界面面积、GF/Pb丝分布状态随着GF/Pb丝直径的改变而变化,从而,复合材料的力学性能和阻尼性能也随之改变。GF/Pb网铺层数量相同时,H-GF/Pb/R和V-GF/Pb/R的力学性能和阻尼性能均随GF/Pb丝直径的增大而提高;GF/Pb丝体积分数相同时,GF/Pb丝直径对S-GF/Pb/R力学性能和阻尼性能影响不大,T-GF/Pb/R力学性能随着GF/Pb丝直径的增加而降低,而阻尼性能呈非线性变化。
     研究了四种复合材料在不同测试条件下的性能,考察了它们在不同使用环境中的减振效果。结果表明:H-GF/Pb/R和V-GF/Pb/R的压缩动刚度和阻尼性能随着预压缩量的增大而提高,随着振幅的增大而降低。复合材料动刚度随着频率的提高而提高。当f<8Hz时,阻尼性能随着频率的提高而提高;8Hz时达到峰值;之后,损耗因子随着频率提高而减小。
     比较了四种复合材料的力学性能和阻尼性能增强效果,结果表明:H-GF/Pb/R和V-GF/Pb/R的力学性能增强作用较高,V-GF/Pb/R的阻尼增强效果最好。在3~20Hz范围内,GF/Pb网(丝)体积分数为4%时,H-GF/Pb/R样品和V-GF/Pb/R样品的动刚度提高率相当,分别为53%~57%、48%~50%;V-GF/Pb/R的阻尼性能提高率可达到24%~47%。GF/Pb网增强橡胶复合材料的纵向压缩性能比横向压缩性能高,且横向剪切性能比纵向剪切性能高。当压缩载荷作用于V-GF/Pb/R时,复合材料良好的纵向压缩性能和横向剪切性能将同时发挥作用,使其表现出比H-GF/Pb/R更加优异的力学性能和阻尼性能。因此,GF/Pb网纵向增强橡胶复合材料比GF/Pb网横向增强橡胶复合材料更加有利于发挥GF/Pb网的增强作用。
     借助于有限元软件ANSYS,建立了由橡胶层与GF/Pb网增强橡胶薄层交替铺层构成的简化复合材料有限元模型和GF/Pb丝增强橡胶“单元胞”模型。根据能量法,利用有限元分析所得到的单元应变能预测了复合材料的力学性能和阻尼性能,所得结果与实验值比较吻合。同时分析了界面层的厚度、模量和阻尼性能对复合材料阻尼性能的影响,结果表明:只有当界面相模量高于1.25×108Pa时,复合材料阻尼性能才有可能提高,且界面层的阻尼性能比界面层的模量和厚度对复合材料阻尼性能影响更加明显。
     最后,为了考察GF/Pb网(丝)增强橡胶复合材料的工程减振效果,按照四种复合方式的优化结构参数和材料参数制备了复合样品,并模拟复合材料的实际应用环境进行了振动测试。结果表明:在3-20Hz范围内,H-GF/Pb/R的动刚度提高率可达到165%~198%,V-GF/Pb/R损耗因子提高率可达到42%~68%。使用复合材料的系统振动传递率仅是使用橡胶系统的一半,显示出了优良的减振效果。另外,将GF/Pb网复合材料应用于某铁道轨枕垫产品中,不仅解决了使用天然橡胶所引起的产品刚度和绝缘性能无法同时满足要求的问题,满足了工程应用要求,而且降低了生产成本。
Rubber is an important kind of damping material because of its viscoelastic property, which has been applied in the field of aviation, aerospace, transportation, mechanical engineering and construction industry. However, its mechanical property is so poor that it is very difficult to be used as structural materials independently. In order to get a structural and functional material, a new damping composite was designed and studied in the dissertation based on the theory of composite and damping mechanisms. The ternary composite composed of glass fiber (GF), lead (Pb) and rubber (R) is named as glass-fiber–cored lead-wire(GF/Pb-wire) or woven GF/Pb-wire(GF/Pb-net) reinforced rubber composite (GF/Pb/R).
     The properties of four kinds of composites with different structures were studied systematically in the dissertation. They were horizontally layered GF/Pb-net reinforced rubber composite (H-GF/Pb/R), vertically layered GF/Pb-net reinforced rubber composite (V-GF/Pb/R), short GF/Pb-wire reinforced rubber composite (S-GF/Pb/R) and continuous GF/Pb-wire reinforced rubber composite (T-GF/Pb/R).
     The mechanical properties and damping properties of the composites under compressional loading and shear loading were studied by measuring their mechanical hysteresis loops and vibration transmissibility. And the damping mechanism of the composites was analyzed. The experimental results show that the compresssional properties (including mechanical property and damping property under compressional loading) of rubber are improved together by using GF/Pb-wire (or GF/Pb-net) as the reinforcement. But the shear properties don’t change obviously. The improvement of the damping property of GF/Pb/R dues to varied damping mechanisms, including material damping, interfacial micro-slippage damping and microscopic plastic deformation damping of Pb. And their contribution to the damping property of the composite is affected by many factors, such as interface area, interface bond strength and the distribution of stress in the composite, and so on.
     Furthermore, it was also studied that the influences of frequency, structural parameters, component properties and application conditions to the mechanical properties and damping properties of H-GF/Pb/R, V-GF/Pb/R, S-GF/Pb/R and T-GF/Pb/R.
     By studying the influence of the volume fraction of GF/Pb-wire (or GF/Pb-net)(VGF/Pb) on the mechanical properties and damping properties of the composites, it tells that the compressional properties of H-GF/Pb/R and V-GF/Pb/R improve with increasing the volume fraction of the GF/Pb-net. However, their shear properties change little. The dynamic stiffness of T-GF/Pb/R increases and its loss factor decreases a little when the volume fraction of GF/Pb-wire increases..
     By studying the influence of composite structure on the composite properties, it is concluded as follows: the compressional stiffness and loss factor of H-GF/Pb/R change a little with the change of GF/Pb-net layer position in the composite, while those of V-GF/Pb/R change little with the variation of the angle between the neighbouring GF/Pb-net layers. The combination property of H-GF/Pb/R is the best when the GF/Pb-net lies at the middle of the composite. And the property of V-GF/Pb/R is perfect when the angle between layers is 0°and the GF/Pb-nets are laid uniformly.
     By studying the influence of the interfacial bond strength between GF/Pb-wire and rubber on the properties of composites,it tells that the interface properties are important factors to influence the properties of GF/Pb/R because the changes of interface status after vibration are different for composites with varied interfacial bond strength. The small gaps at the interface enlarged immediately under the cyclic loading when the interface bond strength was weak. However, GF/Pb-wire and rubber still combined tightly after vibration when the interface was bonded strongly. Thus, the energy dissipations were different in composites with varied interface bond strength that their properties differ obviously. The compressional mechanical properties of H-GF/Pb/R and V-GF/Pb/R improve with the improvement of the interfacial bond strength, while their loss factors change irregularly. The loss factor of H-GF/Pb/R is the maximum when the interface bond strength is medium, while that of V-GF/Pb/R is the maximum when the interface is bonded weakly.
     By studying the physical properties of GF/Pb-wires with different ingredient and different diameter and analyzing the composite properties composed of those GF/Pb-wires, it is concluded that plastic deformation is easier to take place in Pb than in PbSn, therefore more energy dissipation comes into being in the former. So GF/Pb/R prepared with Pb has higher damping properties. Because the interface area and the distribution of GF/Pb-wire (GF/Pb-net) vary with the change of GF/Pb-wire diameter in the composite, the mechanical property and damping property of GF/Pb/R change accordingly. When the volume fraction of GF/Pb-wire or GF/Pb-net is fixed, the mechanical properties and the damping properties of H-GF/Pb/R and V-GF/Pb/R improve with the increase of GF/Pb-wire diameter. And the properties of S-GF/Pb/R change little. While the mechanical property decreases and the damping property changes irregularly for T-GF/Pb/R.
     By testing the properties of composites under different loading and different vibration amplitude, their vibration control effects were studied. It reveals that the compressional stiffness and loss factor increase while increasing the precompression and decrease while increasing the vibration amplitude. The dynamic stiffness of the composites increases with increasing the frequency. The loss factor increases when the frequency is lower than 8Hz and reaches the peak value at 8Hz, and then it decreases.
     By comparing the properties of H-GF/Pb/R, V-GF/Pb/R, S-GF/Pb/R and T-GF/Pb/R with 4% volume fraction of GF/Pb-wire or GF/Pb-net within the range of 3~20Hz under the same condition, it is concluded that the compressional mechanical properties of H-GF/Pb/R and V-GF/Pb/R improve more than the others, and their stiffness increase by 53%~57% and 48%~50% respectively. The improvement of the damping property of V-GF/Pb/R is the most distict among the four composites, and its loss factor increases by 24%~47%.
     In addition, on the basis of energy method, two finite element models composed of rubber lamina and GF/Pb-net reinforced rubber lamina were developed to predict the mechanical properties and the damping properties of H-GF/Pb/R and V-GF/Pb/R in virtue of software ANSYS, respectively. Another finite element model composed of rubber and two orthogonal GF/Pb-wires was also developed to analyze the effect of the loss factor, the modulus and the thickness of the interface on the damping properties of the composite theoretically. The finite element models were proven valid because the predicted results agree with the experimental results well. It is found that the damping properties of GF/Pb/R cannot be improved unless the interface modulus is over 1.25×108Pa. And the damping property of the interface has greater effect on the damping property of GF/Pb/R than its modulus and thickness.
     At last, four composites with the optimized structure parameters were prepared to discuss their vibration control effect in engineering application. The stiffness of H-GF/Pb/R improves by 165%~198%, and the loss factor of V-GF/Pb/R increases by 42%~68% within the range of 3~20Hz. Vibration test shows that the vibration transmissibility of the system with composites is only half of that of the system with rubber. That’s to say, the composite has greater vibration reducing capability. GF/Pb-nets reinforced rubber can meet the demands of stiffness and insulation for railroad damping cushions while the pure rubber can not. What is more, the producing cost is also reduced.
引文
[1] 孙庆鸿,张启军,姚慧珠.振动与噪声的阻尼控制.北京:机械工业出版社,1992
    [2] 杨根仓.阻尼材料发展现状与展望.航空科学技术,1994, (3):12~13
    [3] http://mil.21dnn.com/5051/index.htm:千龙新闻网—军事.htm:俄罗斯“现代”级驱逐舰
    [4] 戴德沛.阻尼减振降噪技术.西安:西安交通大学出版社,1986
    [5] 刘棣华.粘弹阻尼降噪应用技术.北京:宇航工业出版社,1990
    [6] R.Plunkett.Damping analysis:An historical perspective, M3D:Mechanics and mechanisms of material damping,edited by V. K.Kinra and A.Wolfenden,American Society for Testing and Materials,Philadelphia,1992:562~569
    [7] 张忠明,刘宏昭,王锦程,杨根仓.材料阻尼及阻尼材料的研究进展.功能材料,2001,32(3):227~230
    [8] 王锦程.复合材料阻尼性能的数值模拟研究[博士学位论文].西安:西北工业大学研究生院,2001
    [9] 盛美萍,王敏庆,孙进才.噪声与振动控制技术基础.北京:科学出版社,2001
    [10] 《高技术新材料要览》编辑委员会.高技术新材料要览.北京:中国科学技术出版社,1993
    [11] J.H.Gu,X.N.Zhang.Damping behaviors of magnesium matrix composites reinforced with Cu-coated and uncoated SiC particulates.Composites Science and Technology,2005,65(11-12):1736~1742
    [12] 陶艳玲,张津,潘复生.镁合金及镁基复合材料阻尼性能研究进展.材料导报,2004,18(4):91~93
    [13] 邓华铭,陈树川.锰基高阻尼合金的研究进展.金属功能材料,2000,7(2):1~5
    [14] 董军辉,薛素铎,周乾.形状记忆合金在结构振动控制中的应用.世界地震工程,2002,18(3) :124~129
    [15] M.C.Ray , N.Mallik . Performance of smart damping treatment using piezoelectric fiber-reinforced composites.American Institute of Aeronautics and Astronautics,2005,43 (1) :184~193
    [16] 成国祥,沈峰.锆钛酸铅/高分子复合膜的吸声特性.高分子材料科学与工程,1999,15(3):133
    [17] 冷劲松,刘彦菊.电流变体特性及电流变体应用器件的进展.复合材料学报,1996,13(4):53
    [18] 李亦东,于翘.阻尼结构与高聚物阻尼材料.材料科学与工程,1995,13(2):1~13.
    [19] 罗兵辉,张迎元.高阻尼铝合金层压板的内耗.中国有色金属学报,1996,6(3): 131~134
    [20] J.M.Zhang,R.J.Perez,C.R.Wong.Effects of secondary phases on the damping behaviour of metals, alloys and metal matrix composites.Materials Science and Engineering,1994,13(8):325~389
    [21] A.Azushima,T.Miura,M.Miyagawa.Damping capacity of composite sheets made by a superplastic rolling/joining technique of steel/superplastic alloy.Journal of the Iron and Steel Institute of Japan,1984,70(16):2269~2275
    [22] N.Yamada , S.Shoji , H.Sasaki , A.Nagatani , K.Yamaguchi , S.Kohjiya , Azanam S.Hashim . Developments of high performance vibration absorber from poly(vinyl chloride)/chlorinated polyethylene/epoxidized natural rubber blend.Journal of Applied Polymer Science,1999,71(6):855~863
    [23] 罗宁,张隐西.用2,4,6—三疏基—1,3,5—三嗪共硫化聚氯乙烯/丁腈橡胶共混物的研究.橡胶工业,1991,38(7):394~399
    [24] 朱金华,文庆珍,姚树人.聚氨酯弹性体的相区相容性和阻尼性能研究.应用化学.2001,18(5):416~418
    [25] 任润桃,郭万涛.结构型树脂基阻尼复合材料基体胶液阻尼性能研究.噪声与振动控制.2003,23(2):20~24
    [26] D.Ratna,N.R.Manoj,L.Chandrasekhar,B.C.Chakraborty.Novel epoxy compositions for vibration damping applications.Polymers for advanced Technologies,2004,15(10):583~586
    [27] 王如义,郑元所.橡胶阻尼材料研究进展.橡胶工业,2003,50(2):88~93
    [28] 杨亦权,杜森,郑强.新型高聚物阻尼材料研究进展.功能材料,2002,33(3):234~236
    [29] 王和平,张巨生等.新型高吸声型阻尼材料研究进展.黑龙江大学自然科学学报,2002,19(4):106~109
    [30] H.Kish , M.Kuwata , S.Matsuda , T.Asami , A.Murakami . Damping properties of thermoplastic-elastomer interleaved carbon fiber-reinforced epoxy composites.Composites Science and Technology,64(16),2004:2517~2523
    [31] J.H.Yim,S.Y.Cho,Y.J.Seo,B.Z.Jang.A study on material damping of 0° laminated composite sandwich cantilever beams with a viscoelastic layer.Composite Structures.2003,60(4):367~374
    [32] 张少辉,陈花玲.共固化复合材料粘弹阻尼结构的损耗因子研究.航空材料学报,2005,25(1):53~57
    [33] J.M.Berthelot,Y.Sefrani.Damping analysis of unidirectional glass and Kevlar fibre composites.Composites Science and Technology,64(9),2004:1261~1278
    [34] R.D.Adams,M.R.Maheri.Damping in advanced polymer-matrix composites.Journal of Alloys and Compounds,2003,355(1):126~130
    [35] M.R.Maheri,R.D.Adams.Modal vibration damping of anisotropic FRP laminates using the Rayleigh-Ritz energy minimization scheme.Journal of sound and vibration,2003,259(1) :17~29
    [36] R.M.Crane,J.W.Jr.Gillespie,Analytical model for prediction of the damping loss factor of composite materials.Polymer Composites,1992,13(3):179~190
    [37] R.F.Gibson.The use of strain energy-based finite element techiques in the analysis of various aspects of composite materials and structures.Journal of Composite Materials,1992,26(17):2585~2605
    [38] 杨霜,孙康.混杂纤维复合材料阻尼性能的研究.纤维复合材料,2002,19(1):6~10
    [39] F.Cheng,Q.Q.Ni,I.Masaharu.Development of glass fabric reinforced SDR damping material and its mechanical behavior.Journal of the Society of Materials Science,2005,54(5):481~486
    [40] M.Naghipour,F.Taheri,G.P.Zou.Evaluation of vibration damping of glass reinforced polymer reinforced glulam composite beams.Journal of Structural Engineering,2005,131(7):1044~1050
    [41] S.Houshyar,R.A.Shanks,A.Hodzic.The effect of fiber concentration on mechanical and thermal properties of fiber-reinforced polypropylene composites.Journal of Applied Polymer Science,2005,96(6):2260~2272
    [42] 李伟洲,张培强,阮剑华.低温下纤维增强复合材料阻尼的若干影响因素.中国科学技术大学学报,2000,30(4):393~400
    [43] 叶皓,李明俊,徐泳文,万诗贵,刘桂武.层合阻尼薄板之各向异性参数对损耗因子的影响分析.南昌航空工业学院学报(自然科学版),2004,18(2):15~19
    [44] 李明俊,苏媛,孙向春等.层合阻尼结构各向异性设计之阻尼特性分析.复合材料学报,2002,19(23):94~97
    [45] A.Sharma , L.D.Peel , Vibration damping of flexible and rigid polyurethane composites.SAMPE 2004,Long Beach CA, 2004:749~761
    [46] L.A.Pothan,P.Potschke,R.Hable,S.Thomas.The static and dynamic mechanical properties of banana and glass fiber woven fabric-reinforced polyester composite.Journal of Composite Materials,2005,39(11):1007~1025
    [47] C.Kyriazoglou,F.J.Guild.Quantifying the effect of homogeneous and localized damagemechanisms on the damping properties of damaged GFRP and CFRP continuous and woven composite laminates-an FEA approach . Composites Part A : Applied Science and Manufacturing,2005,36(3):367~379
    [48] X.Zhou,E.Shin,K.W.Wang,C.E.Bakis.Inerfacial damping Characteristics of Nanotube Enhanced Composites.Composites Science and Technology,2004,64(15):2425~2437
    [49] N.A.Koratkar, J.Suhr, A.Joshi, R.S.Kane, L.S.Schadler, P.M.Ajayan, S.Bartolucci. Characterizing energy dissipation in single-walled carbon nanotube polycarbonate composites.Applied Physics Letters,2005,87(6):1~3
    [50] H.Rajoria,N.Jalili.Determination of strength and damping characteristics of carbon nanotube-epoxy composites.Proceedings of the ASME Dynamic Systems and Control Division,Anaheim,2004:1461~1466
    [51] W.Y.Jung,J.Amjad.A combined honeycomb and solid viscoelastic material for structural damping applications.Mechanics of Materials.2003,35(8):831~844
    [52] T.Yanagida , A.J.Matchett . Damping and elastic properties of binary powder mixtures.Powder Technology.2002,127(2):107~115
    [53] X.Yang,Y.S.Wang,J.H.Zhu,H.W.Yu.Damping properties of the composite structures with multilayered damping materials.Acta Material Composite Sinica,2005,22(3):175~181
    [54] J.H.Yang,B.C.Chun ,Y.C.Chung,J.W.Cho ,B.G.Cho .Vibration control ability of multilayered composite material made of epoxy beam and polyurethane copolymer with shape memory effect.Journal of Applied Polymer Science,2004,94(1):302~307
    [55] J-D.D.Melo,D.W.Raford.Viscoelastic characterization of transversely isotropic composite laminae.Journal of Composite Materials,2003,37(2):129~145
    [56] M.Lokander , B.Stenberg . Improving the magnetorheological effect in isotropic magnetorheological rubber materials.Polymer Testing,2003,22(6):677~680
    [57] S.Araki,H.Yamashita,N.Mizutani,A.Sugimoto.Micromechanical analysis of vibration damping properties of a polymer based composite material.Transactions of the Japan Society of Mechanical Engineers, Part A,2004,70(10):1514~1521
    [58] M.C.Paiva,J.F.Mano.Interfacial studies of carbon fibre/polycarbonate composites using dynamic mechanical analysis.E-Polymers,2005,14:12
    [59] W.Hufenbach,L.Kroll,O.Tager,B.Zhou.Material-adapted design of textile-reinforced composite structures with optimized vibro-acoustic and damping properties including shear effects.Mechanics of Composite Materials,2005,41(3):195~204
    [60] R.Chandra , S.P.Singh , K.Gupta . Damping studies in fiber-reinforced composites-a review.Composite Structure,1999,46(1):41~51
    [61] 张少辉,陈花玲.国外纤维增强树脂基复合材料阻尼研究综述.航空材料学报,2002,22(1):58~62
    [62] 任勇生,刘立厚.纤维增强复合材料结构阻尼研究进展.力学与实践,2004,26(1):9~16
    [63] 杨雪,王源升,朱金华,余红伟.二层粘弹阻尼复合结构的优化设计.海军工程大学学报,2003,15(4):69~72
    [64] 莫宵依.复合材料夹层板动态特性的有限元分析.西安理工大学学报,1996,12(2):160~164
    [65] 孙社营.粘弹阻尼结构动态性能的有限元分析.材料开发与应用,1999,14(6):31~36
    [66] C.H.Park , D.J.Inman , M.J.Lam . Model reduction of viscoelastic finite element models.Journal of sound and vibration,1999,219(4):619~637
    [67] M.Kaliske , H.Rother . Damping characterization of unidirectional fiber reinforced composite.Composites Engineering,1995,5(5):551~567
    [68] J.Aboudi . A continuum theory for fiber-reinforced elastic-visco-plastic composites.International Journal of Engineering Science,1982,20(5):605~620
    [69] J.Aboudi.A constitutive equations for elasto-plastic composites with imperfect bonding.Int. J. plasticity,1988,4 (2) :103~125
    [70] J.Aboudi.Micromechanical analysis of composites by the method of cells.Applied Mechnics Review,1989,42:193~221
    [71] S.J.Hwang,R.F.Gibson.Prediction of fiber-matrix interphase effects on damping of composites using a micromechanical strain energy/finite element approach.Composite Engineering,1993,3(10):975~984
    [72] D.A.Saravanos,C.C.Chamis.Unified micromechanics of damping for unidirectional and off-axis fiber composites.Journal of composites technology & research,1990,12(1):31~39
    [73] I.C.Finegan,R.F.Gibson.Analytical modeling of damping at micromechanical level in polymer composites reinforced with coated fibers.Composite Science and Technology,2000,60(7):1077~1084
    [74] I.C.Finegan . Analytical and experimental study of improvement of damping at the micromechanical level in polymer composite materials by the use of special fiber coatings[Dissertation].Detroit:the Graduate School of Wayne State University,1997
    [75] I.C.Finegan , R.F.Gibson . Recent research on enhancement of damping in polymer composites.Composite Structure,1999,44(2-3):89~98
    [76] Y.H.Zhao,G.Weng.Effective elastic moduli of ribbon reinforced composites.Journal ofApplied Mechanics,1990,57(1):158~167
    [77] J.D.Eshelby.The determination of the elastic field of an elliptical inclusion and related problems.Proceedings of the Royal Society of London.Series A,Mathematical and Physical Sciences,1957,241 (1226):376– 396
    [78] T.Mori,K.Tanaka.Average stresses in matrix and average elastic energy of materials with misfitting inclusions.Acta Metallurgica,1973,21(5):571~574
    [79] S.J.Hwang,R.F.Gibson,J.Singh.Decomposition coupling effects on damping of laminated composites under flexural vibration.Composite Structure,1992,43:159~169
    [80] S.J.Hwang,R.F.Gibson.Contribution of interlaminar stresses to damping in thick laminated composites under uniaxial extension.Composite Structure,1992,20:29~35
    [81] J.P.Talbot,J.Woodhouse.The vibration damping of laminated plates.Composites Part A,1998,28(12):1007~1012
    [82] D.A.Saravanos,J.M.Pereira.Dynamic Characteristics of specialty composite structures with embedded damping layers.Journal of Vibration and Acoustics,1995,117(1):62~69
    [83] D.A.Saravanos,C.C.Christos.Unified micromechanics of damping for unidirectional and off-axis fiber composites.Journal of Composites Technology & Research,1990,12(1):31~40
    [84] D.A.Saravanos,D.A.Hopkins.Effects of delaminations on the dynamic characteristics of composite laminates:Analysis and experiments.Journal of Sound and Vibration,1996,195(5):977~993
    [85] D.A.Saravanos,J.M.Pereira.Effects of interply damping layers on the dynamic characteristics of composite plates.American Institute Of Aeronautics And Astronautics,1992,30(12):2906~2913
    [86] H.Guan,R.F.Gibson.Micromechanical models for damping in woven fabric-reinforced polymer matrix composites.Journal of Composite Materials.2001,35(16):1417~1434
    [87] H.Guan.Micromechanical analysis of viscoelastic damping in woven fabric-reinforced polymer matrix composites[Dissertation].Detroit:the Graduate School of Wayne State University,1997
    [88] 蔡敢为,时或,梁洁萍等.三维编织材料空心断面梁的阻尼分析.湘潭矿业学院学报,2000,15(1):37~42
    [89] 蔡敢为,周晓红,廖道训.四步法三维编制复合材料杆件的刚度与阻尼分析.机械强度,1999,21(1):18~21
    [90] 蔡敢为,钟掘,廖道训.三维编制复合材料构件的机构模态阻尼.中国机械工程,2001,11(5):481~486
    [91] 万志敏,马六成,谭惠丰等.粘弹性复合材料的有效三位阻尼矩阵预报与能耗计算.复合材料学报,2002,18(2):118~123
    [92] S.Kohji,K.Kazuro,K.Isao,F.Kunio.Vibration analysis and damping prediction of damped composite laminates by using multiplayer higher-order-deformable finite elements.Transactions of the Japan Society of Mechanical Engineers,Part C,2004,70(4):933~940
    [93] A.F.M.S.Amin,M.S.Alam,Y.Okui.An improved hyperelasticity relation in modeling viscoelasticity response of natural and high damping rubbers in compression:experiments,parameter identification and numerical verification.Mechanics of Materials.2002,34(2):75~95
    [94] E.Barkanov,A.Chate.Finite element modeling of frequency-dependent dynamic behaviour of viscoelastic composite structures.Advanced Composites Letters,2004,13(1):9~16
    [95] R.Chandra,S.P.Singh,K.Gupta.Micromechanical damping models for fiber-reinforced composites : a comparative study . Composites Part A : Applied Science and Manufacturing.2002,33(6):787~796
    [96] J.H.Gu,X.N.Zhang,M.Gu.Analytical modeling of damping at micromechanical level in particulate-reinforced metal matrix composites.Materials Letters,2004,58(30):1952~1955
    [97] S.E.Olson.An analytical particle damping model.Journal of sound and vibration,2003,264(5):1155~1166
    [98] B. Benchekchou, M. Coni, H. V. C. Howarth and R. G. White.Some aspects of vibration damping improvement in composite materials.Composites Part B,1998,29B (6) :809~817
    [99] R.Chandra,S.P.Singh,K.Gupta.A study of damping in fiber-reinforced composite.Journal of sound and vibration,2003,262(3):475~496
    [100] R.Chandra,S.P.Singh,K.Gupta.Micromechanical damping models for fiber-reinforced composites:a comparative study.Composite:Part A,2002,33(6):787~796
    [101] N.K.Anifantis,P.A.Kakavas,G.C.Papanicolaou.Thermal stress concentration due to imperfect adhesion in fiber-reinforced composites.Composite Science and Technology,1997,57(6):687~696
    [102] H.Y.Kim,W.Hwang.Estimation of normal mode and other system parameters of composite laminated plates.Composite Structures,2001,53(3):345~354
    [103] J.Vantomme . A parametric study of material damping in fibre-reinforced plastics.Composites,1995,26(2):147~153
    [104] B.Benchekchou , R.G.White . Acoustic fatigue and damping technology in FRPcomposites.Composite Structure,1997,37(3):299~309
    [105] G.Qian,S.V.Hoa,X.Xiao.A vibration method for measuring mechanical properties of composite,theory and experiment.Composite Structures,1997,39(1-2):31~38
    [106] 周云,徐赵东,邓雪松.铅粘弹性阻尼器的计算模型.地震工程与工程振动,2000,20(1):120~214
    [107] 姚立宁.平纹织物复合材料的振动能量耗散以及阻尼分析.固体力学学报,1995,16(1):70~73
    [108] 冯文贤,陈新.基于试验复模态参数的有限元模型修正.航空学报,1999,20(1):12~16
    [109] 董军,邓洪洲,王肇民.结构动力分析阻尼模型研究.世界地震工程,2000,16(4):63~69
    [110] A.Zambrano , J.A.Inaudi . Modal coupling and accuracy of modal strain energy method.Journal of engineering mechanics,1996,122(7):603~612
    [111] N.Saha,A.N.Banerjee,B.C.Mitra.Dynamic mechanical study on unidirectional polyethylene fibers-PMMA and glass fibers-PMMA composite laminates.Journal of Applied Polymer Science,1996,60(5):657~662
    [112] A.Aprile,J.A.Inaudi,J.M.Kelly.Evolutionary model of viscoelastic dampers for structural applications.Journal of engineering mechanics,1998,123(6):551~560
    [113] R.G.Faisea,C.Magluta,N.Roitman.Experimental characterization of viscoelastic materials as vibration dampers.Journal of Engineering Mechanics,2002,127(9):959~962
    [114] K.L.Shen,T.T.Soong.Modeling of viscoelastic dampers for structural applications.Journal of Engineering Mechanics,1996,121(6):694~701
    [115] A.J.Aref,W.Y.Jung.Energy-dissipating polymer matrix composite-infill wall system for seismic retrofitting.Journal of Structural Engineering,2003,129(4):440~448
    [116] T.C.Ramesh , N.Ganesan . Vibration and damping analysis of cylindrical shells with constrained damping treatment-A comparison of three theories.Journal of Vibration and Acoustics,1995,117:213~219
    [117] M.D.Rao,R.Echempati,S.Nadella.Dynamic analysis and damping of composite structures embedded with viscoelastic layers.Composites Part B,1997,28B(5-6):547~554
    [118] R.L.Sakaguchi,N.C.Shah,B.S.Lim,J.L.Ferracane,S.E.Borgersen.Dynamic mechanical analysis of storage modulus development in light-activated polymer matrix composite.Dental Materials,2002,18:197~202
    [119] S.K.Chaturvdi,G.Y.Tzeng.Micromechanical modeling of material damping in discontinuous fiber three-phase polymer composites.Composite Engineering,1991,1(1):49~60
    [120] 曾威,李树材.胶乳型互穿聚合物网络(LIPN)阻尼材料.高分子通报,2001(1):68~73
    [121] 丁国芳,石耀刚,张长生,王建华.丁基橡胶阻尼材料阻尼行为的研究.功能材料,2004,35(Z1):2233~2236
    [122] 丁国芳,王建华,石耀刚. IIR 阻尼材料动态力学性能的研究.橡胶工业.2004,51(9):517~520
    [123] 苗传威,夏宇正,石淑先等.乳液共混法制备丙烯酸酯系阻尼材料.北京化工大学学报,2002,29(5):42~45
    [124] H.Kaneko,K.Inoue,Y.Tominaga,et a1.Damping performance of polymer blend/organic filler hybrid materials with selective compatibility.Materials Letters,2002,52(1):96~99
    [125] D.Hill , M.Perera , P.Pomera . Dynamic mechanical properties of homopolymers and interpenetrating networks based on diethylene glycol-bis-allyl carbonate.Polymer,1998,39(21):5075~5083
    [126] 彭伟江.PS/PCEACEA-NBA 乳胶 IPN 阻尼性能的研究.天津:轻工业学院,1994
    [127] C.Qin,W.Cai,J.Cai,et a1.Damping properties and morphology of polyurethane/Vinyl ester resin interpenetrating polymer network.Composite Chemistry and Physics,2004 (85):402~409
    [128] 韩俐伟,聂玉梅.丁腈橡胶和聚氯乙烯共混合金隔振降噪阻尼性能研究.化学工程师,2003,2:17~l8
    [129] 李强,黄光速,江璐霞.PMPS/PMAc 相容性与同步互贯聚合物网络的阻尼性能研究.高分子学报,2003,3:409~4l3
    [130] 晏欣,姚树人.PVA/PBA 乳胶互穿聚合物网络阻尼材料的研究.高分子材料科学与工程,2003,19:92~96
    [131] 李松瑞.铅及铅合金.长沙:中南大学出版社,1996
    [132] 周纪华,管克智.金属塑性变形阻力.北京:机械工业出版社,1989:210
    [133] 朱世杰,陈玉琼译,结构振动分析(振动结构的模型、分析和阻尼),北京:中国铁道出版社,1998
    [134] 王兴业.复合材料力学分析与设计.国防科技大学出版社,长沙,1999
    [135] L.Lv,S.X.B,H.Zhang,J.Wang,J.Y.Xiao,J.Yang.Dynamic properties of glass-fiber-cored lead-wire reinforced rubber composites.Material Science and Engineering A,2006,429:124-129
    [136] L.Lv,S.X.B,H.Zhang,J.Wang,J.Yang ,J.Y.Xiao.Damping propety of polymer chain structured GF/Pb-wire reinforced rubber composite.Material Science and Engineering A,2006,433:121-12
    [137] 《表面处理工艺手册》编审委员会.表面处理工艺手册.上海:上海科学技术出版社,1991
    [138] 赵玉庭,姚希曾.复合材料基体与界面.上海:华东化工学院出版社,1991
    [139] GB 3513-83.橡胶与单根钢丝粘合强度的测定-H 抽出法[S]
    [140] HB7655-1999.塑料与复合材料动态力学性能的强迫非共振型试验方法[S]
    [141] 机械工业部科技与质量监督司,中国机械工程学会理化检验分会.机械工程材料手册:物理金相卷.沈阳:辽宁科学技术出版社,1999
    [142] GB/T 7757-93.硫化橡胶或热塑性橡胶压缩应力应变性能的测定[S]
    [143] GB 9870-88.弹性体动态试验的一般要求[S]
    [144] GB/T 13937-92.分级用硫化橡胶动态性能的测定-强迫正弦剪切应变法[S].
    [145] 王铁英.两类铅阻尼器的试验性能研究及抗倾覆数值计算分析[硕士学位论文].哈尔滨:哈尔滨工业大学,2002
    [146] 李冀龙.金属阻尼器的阻尼力模型[硕士学位论文].哈尔滨:哈尔滨工业大学,2002
    [147] 李超,金属学原理.哈尔滨:哈尔滨工业大学出版社,1987
    [148] W.H.Robinson,M.D.Monti.Seismic isolation and passive damping-the New Zealand experience on isolation.Energy Dissipation Post-Smirt Conference on Isolation, Energy Disspation and Control of Vibration of structures.Taormina,Sicily,Italy,Angust 25-27,1997
    [149] M.D.Monti,W.H.Robinson.A lead shear damper suitabIe for reducing the motion induced by wind and earthquake.Proc.11th WCEE,1996
    [150] П.И.波卢欣等著,黄克勤,杨节,杨觉先,魏和荣等译.塑性变形的物理基础.北京:冶金工业出版社,1989
    [151] 周云,周福霖.邓雪松铅阻尼器的研究与应用.世界地震工程.1999,15(1):53-61
    [152] W.H.Robinson,L.R.Greenbank.An extrusion energy absorber suitable for the protection of structures during an earthquake.Earthquake Eng. and Str. Dyn. 1976,4(3): 251-259
    [153] R.I.Skinner,W.H.Robinson,G.McVerry.An introduction to seismic isolation.Wiley,Chichester,England,1993
    [154] T.Sakllrai,K.Shibata et al.,Application of joint damper to thermal Power plant building.Proc.11thWCEE,vol.7,Marid,Spain,July,1992
    [155] 周云,邓雪松.装有铅橡胶复合阻尼器结构的减震研究.地震工程与工程振动,1990,18(4):103-111
    [156] 胡赓祥,蔡珣.材料科学基础.上海:上海交通大学出版社,2000
    [157] 张志民,张开达,杨乃宾.复合材料结构力学.北京:北京航空航天大学出版社,1993
    [158] L.H.He, Y.L.Liu.Damping Behavior of Fibrous Composites with Viscous Interface under Longitudinal Shear Loads.Composite Science and Technology,2005,65:855~860
    [159] 曾正明.实用工程材料技术手册.北京:机械工程出版社,2001
    [160] 沈观林.复合材料力学.北京:清华大学出版社,1996:106
    [161] W.Gu.Interfacial adhesion evaluation of uniaxial FRPC by vibration damping of cantilever beam[Dissertation].Blacksburg:the Faculty of the Virginia Polytechnic Institute and State University,1997
    [162] J. Zhang,R.J.Perez,C.R.Wong.Effect of secondary phases on the damping behavior of metals, alloys and metal matrix composites.Material Science and Engineering, 1994,13(8):325~390
    [163] TB/T2626-1995 铁道混凝土轨枕下用橡胶垫板技术条件

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700