硬目标侵彻测试系统防护设计与仿真分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硬目标侵彻通常是指用弹体贯穿钢装甲或钢筋混凝土等坚固工事或靶体目标的强碰撞过程。弹上部组件及电子设备所承受的冲击过载值达104g~105g (g=9.8m/s2)量级,这一条件对于战斗部装药和弹载电子产品如智能电子引信来说,是十分苛刻的;而对于高速侵彻和多重侵彻条件来说,弹上产品所经历的条件将更加严酷。硬目标侵彻弹载测试是国内外硬目标高速侵彻实验数据测量的主要手段,主要用于侵彻动力学实验研究、引信动态响应研究和目标特性识别、弹体材料动态响应研究等。国内目前对低速侵彻和单层靶侵彻的测试研究比较常见,这些研究更多基于实验,相关理论研究和数值仿真分析甚少。因此,开展硬目标侵彻测试系统在高速侵彻多重硬目标靶条件下的包括理论研究、数值模拟方法以及实验技术在内的高过载防护技术研究,对于推动高速深侵彻武器的发展,都具有重要的现实意义。
     本文针对硬目标弹载测试系统开展了如下研究:
     (1)对可能引起硬目标侵彻弹载测试系统在高速侵彻条件下破坏的主要因素进行了分析,提出了硬目标侵彻弹载测试系统高过载防护设计总体方案,给出了防护设计的判定条件。
     (2)建立弹靶简化理论模型,根据一维应力波传播理论和能量守恒理论,推导出了用于确定硬目标侵彻弹载测试系统防护材料参数和结构参数设计条件。
     (3)应用有限元仿真分析工具,对经过理论设计的弹靶简化模型进行了数值分析,再现了弹靶冲击应力传播过程,对缓冲前后电路模块的应力和加速度变化过程进行了分析,对缓冲模块的能量吸收情况进行了分析。结果表明,理论设计可以较好的指导结构防护设计,电路模块的应力水平满足理论给出的应力防护设计要求,缓冲模块能量吸收满足设计要求。
     (4)采用仿真分析与实验结合的方法,对经过理论设计的弹载测试系统的防护结构进行了高g值冲击实验和火炮实弹侵彻实验验证。结果表明,冲击加速度测试曲线与数值模拟结果一致;经过理论设计的硬目标侵彻弹载测试系统可经受高速侵彻多层硬目标靶的火炮实验,实验成功获得完整的弹体过载历程曲线,表明理论推导结果与数值模拟方法可信。
Hard target penetration is usually by means the process of a projectile penetrating into steel armor or reinforced concrete target, the components and electronic equipment are under overload value up to104g~105g (g=9.8m/s2) level, the conditions is very strict for the warhead charge and electronic products such as intelligent electronic fuze, and high speed penetration and multiple penetration will be more severe conditions. Hard target penetration test is mainly used for penetration dynamics experimental research, dynamic response characteristics of target recognition, projectile material dynamic response research, etc.; At present, low penetration and single target penetration test are more common, and usually are based on experimental research, the theoretical study and numerical simulation analysis are not enough. Therefore, It's very important to carry out theory study, numerical simulation method and experiment technology, high overload protection technology research of hard target penetration test system under the condition of multiple hard target.
     Aiming at the hard target test system to carry out the following research:
     (1) The main factors are analyzed, and the protection design decision condition is given.
     (2) Simplified theory mode is established. Based on one-dimensional stress wave transmission theory and energy conservation theory, material parameters and structure parameters of the reference formula is deduced.
     (3) Application of finite element simulation and analysis tool, numerical analysis is done for the simplified model, it reproduces the impact stress propagation process, the stress and acceleration change process was analyzed and the energy absorption is analyzed; The results show that the theoretical design can better guide structure protection design, circuit module is given with the theory of stress level to meet the stress protection design requirements, buffering module energy absorption can meet design requirements as expected.
     (4) The combination of simulation and experimental method, the theoretical design of the missile test system protection structure is tested and verified through a high g value impact experiment and artillery live ammunition penetration experiment. The results show that the acceleration curve and the result are in good agreement with numerical simulation and theoretical design of hard target penetration. The missile test system can withstand high penetration, the experiment successfully getting the overload process curve, indicates that the theoretical results and numerical simulation method is credible.
引文
[1]孙桂娟,何翔.弹体侵彻过载特性研究综述[C].第六届全国工程结构安全防护学术会议文集.2006.
    [2]王涛,余文力,王少龙等.国外钻地武器的现状与发展趋势[J].导弹与航天运载技术.2005,(5):51-56.
    [3]宋丽萍,王华.美国精确制导侵彻钻地武器的发展[J].飞航导弹.2001,1:89-95.
    [4]朱丽华.摧坚贯韧钻地弹[J].兵器知识.2002,11:20-21.
    [5]金丰年,刘黎.深钻地武器的发展及其侵彻[J].解放军理工大学学报.2002,3(2):34-40.
    [6]应国淼,倪震明.常规反舰导弹战斗部的现状及发展[J].工程论坛.2006,4:14-15.
    [7]王金丰.关于侵彻问题研究现状的综述[J].工程论坛.2005,2:129-130.
    [8]徐鹏.高g值侵彻加速度测试及其相关技术研究进展[J].兵工学报.2011,32(6):739-745.
    [9]陈小伟.动能深侵彻弹的力学设计(Ⅰ):侵彻/穿甲理论和弹体壁厚分析[J].爆炸与冲击.2005,25(6):499-505.
    [10]陈小伟,金建明.动能深侵彻弹的力学设计(Ⅱ):弹靶的相关力学分析与实例[J].爆炸与冲击.2006,26(1):71-78.
    [11]陈小伟等.动能深侵彻弹的力学设计(Ⅲ):缩比实验分析[J].爆炸与冲击.2006,26(1):71-78.
    [12]Forrestal M J, Luk V K. Penetration into soil targets[J]. International Journal of Impact Engineering.1992,12(3):427-44.
    [13]Wendong Zhang. Design method of storage measurement and its application. High Education Press of China.2002.
    [14]Burke L W, Irwin E S, Faulstich R J, et al. High-g power sources for the U. S. army's HSTSS Programme[J]. Journal of Power Source.1997,65:263-270.
    [15]Rothacher T, Giger B. High g ballistic flight data recorder[C].18th international symposium on ballistic. San Antonio.1999:379-386.
    [16]Chen X W, Li Q M. Deep penet ration of a non2deformable projectile with different geomet rical characteristics[J]. International Journal of Impact Engineering.2002,27 (6):619-637.
    [17]Li Q M, Chen X W. Dimensionless formulae for penet ration depth of concrete target impacted by a non-deformable Projectile[J]. International Journal of Impact Engineering. 2003,28(1):93-116.
    [18]Forrestal M J, Frew D J, Hickerson J P, et al. Penetration of concrete targets with deceleration-time measurements[J]. International Journal of Impact Engineering.2003, 28:479-497.
    [19]徐鹏,祖静,范锦彪.应力波传播对弹丸实测超高加速度值的影响[J].测试技术学报.2006,20(1):41-45.
    [20]任辉启,何翔.‘弹体侵彻混凝土过载特性研究[J].土木工程学报.2005,38(1):110-116.
    [21]周宁,任辉启.侵彻钢筋混凝土过程中弹丸过载特性的实验研究[J].实验力学.2006,21(5):572-578.
    [22]姬永强,李映辉,聂飞.弹载数据存储模块抗高过载防护技术研究[J].振动与冲击.2012,31(18):104-106.
    [23]虞青俊,李玉龙,金连宝等.侵彻多层混凝土目标弹丸过载特性研究[J].探测与控制学报.2007,29.
    [24]Michael S.Baker, Kenneth R.Pohl. High-G Testing of MEMS Mechanical Non-Volatile Memory and Silicon Re-Entry Switch[R], SAND2005-6094.
    [25]Franco R J, Platzbecker M R. Miniature penetrator (MINPEN) acceleration recorder development test Sandia national laboratories[R]. Sand98-1172C.
    [26]Morris S,Berman. Electronic Components for High-g Hardened Packaging[R]. ARL-TR-3705.2006.
    [27]范锦标,徐鹏.高速动能弹侵彻钢板加速度测试技术研究[J].弹箭与制导学报.2008,28(2):123-126.
    [28]孙桂娟,张庆明.高g值侵彻过载测试相关技术研究[J].科技导报.2008,26(9):26-29.
    [29]吴骏.多功能弹对目标的侵彻过载存储测试技术研究[D].中北大学硕士学位论文.2006:23-25
    [30]徐鹏等.高g值冲击下存储测试模块缓冲保护研究[J].实验力学.2005,20(4):610-613.
    [31]刘俊,石云波.高过载测试中结构防护模型研究[J].测试技术学报.2005,19(3):249-253.
    [32]李峥辉,祖静,范锦彪.弹体撞击钢板过载信号处理方法[J].数据采集与处理.2009,24(S):93-99.
    [33]Wen dong Zhang. Ultra-high g deceleration-time measurement for the penetration into steel target[J]. International Journal of Impact Engineering.2007,34:436-447.
    [34]陈鲁疆,熊继军,张文栋.侵彻过程中弹载测试装置防护技术研究及仿真[J].弹箭与制导学报.2006,26(2):224-226.
    [35]徐文峥,王晶禹等.弹性弹体侵彻混凝土靶板过载特性研究[J].振动与冲击.2010,29(5):91-95
    [36]景鹏.高g值冲击测试关键技术研究.中北大学硕士学位论文[D].2009:9-11.
    [37]徐鹏,祖静,范锦彪等.高速动能弹侵彻硬目标加速度测试技术研究[J].振动与冲击.2007,26(11):118-122.
    [38]Low K H. Drop-impact cushioning effect of electronics products former by plates[J]. Advanced in Engineering Software.2003,34(1):31-50.
    [39]Lim C, TeoY M, Shim V P W. Numerical simulation of the drop impact response of a portable electronic product[J]. Transctions on Components and Packaging Technologies. 2002,25(3):478-485.
    [40]S.t.Jenq, H.S. Sheu. High-G drop impact response and failure analysis of a chip packaged printed circuit board[J]. International Journal of Impact Engineering.2007, 34:1655-1667.
    [41]Bo Zhang, Han Ding, Xin JunSheng. Modal analysis of board-level electronic package[J]. Microelectronic Engineering.2008,85:610-620.
    [42]Man-Lung Sham a, Jang-Kyo Kim a, Joo-Hyuk Park. Numerical analysis of plastic encapsulated electronic package reliability:Viscoelastic properties of under fill resin[J]. Computational Materials Science.2007,40:81-89.
    [43]A. Urena, M.V. Utrilla, J. Rams, P. Rodrigo. Electroless multilayer coatings on aluminium-silicon carbide composites for electronics packaging. Journal of the European Ceramic Society.2007,27:3983-3986.
    [44]A. M. Veprik. Vibration Protection of Critical Components of Electronic Equipment in Harsh Environmental Conditions[J]. Journal of Sound and Vibration.2003 259(1):161-175.
    [45]A. M. Veprik and V. I. Babitsky. protection of sensitive electronic equipment from harsh harmonic[J]. Journal of Sound and Vibration.2000,238:19-30.
    [46]纪霞,王利.弹丸侵彻多层靶板数值分析[J].探测与控制学报.2006,28(2):42-45.
    [47]张清爽.弹丸侵彻装甲钢板过载特性数值模拟[J].弹箭与制导学报.2009,29(4):133-135.
    [48]刘璞,石坤林.钢板侵彻过载的三维数值模拟[J].探测与控制学报.2006,28(1):25-28.
    [49]齐明思,张晋宁,杨卫.泡沫铝—聚氨酯复合结构的缓冲性能研究[J].包装工程. 2010,31(19):6-9.
    [50]何平笙.高聚物的力学性能[M].合肥:中国科学技术大学出版社.2008.
    [51]李艳.高冲击测试实验研究[D].中北大学硕士学位论文.2008.
    [52]吴晓莉,张河高.冲击下电子线路灌封材料的缓冲机理及措施研究[J].包装工程.2004,25(1):44-46.
    [53]周春燕,余同希,李世玮.便携式电子产品的跌落冲击响应[J].力学进展.2006,36(2):240-246.
    [54]余同希,邱信明.冲击动力学[M].北京:清华大学出版社.2011.
    [55]张国伟.终点效应及其应用技术[M].北京:国防工业出版社.2006.
    [56]王礼立,朱兆祥.应力波基础(第二版)[M].北京:国防工业出版社.2010.
    [57]石少卿,康建功,汪敏等.ANSYS/LSDYNA在爆炸与冲击领域内的工程应用[M].北京:中国建筑工业出版社.2011.
    [58]ANSYS Engineering Data Sources. ANSYS 13.0.2012
    [59]李晓杰,姜力,赵峥等.高速旋转弹头侵彻运动金属薄板的数值模拟[J].爆炸与冲击.2008,28(1):57-61.
    [60]杜星文,宋宏伟.圆柱壳冲击动力学及耐撞性设计[M].北京:科学出版社.2004.
    [61]李映辉.粘弹性结构动力分析及其随机稳定性研究[R].西南交通大学博士后研究工作报告.2002.
    [62]李映辉,高庆.粘弹性运动带动力响应分析[J].应用数学和力学.2003,24(11):1191-1196.
    [63]刘俊,石云波,马游春.高过载测试中缓冲材料的实验分析[J].中北大学学报.2005,26(5):381-384.
    [64]Wendong Zhang, Lujiang Chen, Jijun Xiong. high g deceleration-time measurement for the penetration into steel target[J]. International Journal of Impact Engineering. 2007,34:436-447.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700