光纤传输系统中光纤激光器关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤激光器以其低阈值、高功率、高光束质量、可靠性好、结构紧凑和散热性好等诸多优点,广泛应用于光通信、传感、航天、军事等领域。本论文主要研究光纤激光器在光纤通信系统中的应用技术。
     论文研究了光纤激光器的基本理论,分析了L波段光纤环形光纤激光器的结构,包括理论分析环形腔光纤激光器的输出特性及铒光纤长度和腔长对于系统输出功率的影响。在理论分析的基础上采用新型L波段环形腔掺铒光纤激光器经LiNbO_3电光调制器进行多速率外调制接收及时钟数据恢复实验,分析了影响系统传输质量的因素,研究了高速率下信号与时钟恢复后不同步的问题。
     研究了脉冲光通信系统中光孤子传输理论、传播特性及产生光孤子的被动锁模光纤激光器工作原理。研究基于可饱和吸收体的被动锁模掺铒光纤激光器,建立其仿真分析模型,并利用分步傅立叶法(SSFM)实现了对该锁模光纤激光器系统的仿真实验。通过仿真实验,重点研究了被动锁模掺铒光纤激光器的参数优化,通过适当调节该激光器的参数,使输出的光脉冲尽量接近于基态光孤子,从而保证光孤子通信系统的效率和稳定性。
     论文的理论研究和实验分析对光纤激光器在光纤通信系统及光纤传感系统中的实用化具有重要的指导意义。
Since the end of the twentieth century, with the wide range of application anddevelopment of optical fiber communication systems, ultra-fast optoelectronics,nonlinear optics and optical sensing applications have attracted more and moreattention. The current optical fiber communication systems can not meet the growingdemand for communication capacity. At present, the methods used to improve thecommunication capability of optical fiber communication systems, including theusage of optical time division multiplexing (OTDM), orthogonal frequency divisionmultiplexing (OFDM) and code division multiple access (CDMA) technologies toimprove the communication capacity and the usage of high-power laser light sourceand optical fiber amplifier to increase the relay distance. Fiber lasers which have theadvantages of absolute ideal beam quality, high conversion efficiency, completelymaintenance-free, high stability and small size have become the emerging field ofoptical communications technology. Fiber lasers can be used in the currentcommunication system to support higher transmission speeds, the high rate densewavelength division multiplexing systems and coherent optical communication andare the basis of optic communication system in the future. In this paper, we will studythe application technology of fiber lasers in optical fiber communication systems.
     In the present optical fiber communication systems, optical fiber loss anddispersion are the main factors which limit the transmission capacity and distance.Due to the development of optical fiber manufacturing technology, fiber loss isreduced to the degree which is close to the theoretical limit therefore dispersionbecomes a major obstacle to achieve large capacity and ultra-long-haul optical fibercommunication. The role of dispersion in the fiber will result in the broadening of theoptical pulse, and eventually the pulse will vanish completely. The study found thatanother effect in the fiber named nonlinear self-phase modulation will result in thecompression of optical pulse signal. When dispersion and nonlinear self-phasemodulation effect are balanced, a kind of special optical pulse named soliton will begenerated, which can always maintain its shape unchanged during process of thetransmission. The usage of optical soliton in the optical communication system hasthe advantages of high transfer rate, long distance relay, building maintenance and low cost, therefore the solution based optical communication system is widelyconsidered to be the most promising new generation optical communication system.
     In this paper, we study the key technologies of fiber lasers in optical fibercommunication systems, including the basic principles of fiber lasers in optical fibercommunication systems and transmission experiments, the theory of mode-lockedfiber laser and output soliton characteristics of optical soliton communication system.The main contents and research completed as follows:
     1. Study the basic theory of the fiber laser, including the emission and absorptionof the laser, pump and gain medium. We analyze the structure of erbium-doped fiberand level structure of the erbium ion. The structure of L-band fiber ring laser isthoroughly analyzed, including the working principle of erbium-doped fiber in L-bandand the basic principles of the L-band fiber ring laser.
     2. Based on42km optical transmission links, the multi-speed receiving and clockdata recovery were experimented by using the L-band fiber laser. This systememployed NRZ format, LiNbO_3electro-optic modulator, modulation rate from622Mbps to2.7Gbps. Center wavelength of L-band fiber lasers used in theexperiment is1610.28nm, the linewidth is0.1nm, SMAR is more than45dB, andoutput power stability is better than0.02dB. The multi-rate receiving eye-diagram wastested. The stretching of the eye-diagrams was ideal and the eyelid was thin. Thecoding jam and signal aberrance were not detected, and signal-noise ratio was fine.The sensitivity of receiver is about-30.62dBm when BER is10-12, and the overloadpower is-4.1dBm. The factors of influencing system transmission quality wereanalyzed. The problem of the non-synchronization between signal and clock recoveryin high speed modulation was studied.
     3. We elaborated the transmission characteristics of the optical soliton and derivethe basic transmission equation of the optical soliton in the single-mode fiber. Usingthe equation, we studied the role of the group-velocity dispersion and nonlinearself-phase modulation, which can affect the optical soliton propagation, and then westudied the propagation characteristics of high-order soliton in the single-mode fiber.
     4. We deeply discussed the classification of the passively mode-locked fiber laserand comparatively analyzed the advantages and disadvantages of differentmode-locking technology. This paper focused on the saturable absorber basedpassively mode-locked erbium-doped fiber laser, established the system model, andsimulated the process of the soliton generation in the mode-locked fiber laser systemsthrough the step-by-step Fourier method (SSFM).
     5. Through simulation experiments, we studied the system parameter optimization of the passively mode-locked erbium-doped fiber laser. Currently themost commonly used optical soliton in the communication field is the ground statefirst-order optical soliton. To obtain the first-order optical soliton, it is critical toensure the system parameter N is as close as possible to1, otherwise, when thedeviation between N and1is greater than0.5, the first-order optical soliton can not beformed. Even if the deviation is less than0.5, but the deviation is comparatively toolarge, the pulse energy dispersive wave will be generated, which can result in thepulse energy loss and the instability of the first-order optical soliton. Therefore, thispart of the paper focuses on the parameter optimization of the passively mode-lockederbium-doped fiber laser. The research goal is to make N infinitely close to1byadjusting the system parameters of the mode-locked fiber laser, so that the output lightpulse is as close as possible to the ground state soliton, thus ensuring the efficiencyand stability of the optical soliton communication system.
     Theoretical research and experimental results have important guidingsignificance for the practical application of fiber laser in optical fiber communicationsystem.
引文
[1] E. Snitzer. Optical Maser Action of Nd3+in a Barium Crown Glass[J].Physical Review Letters,1961,7(12):444-446.
    [2] C.J. Koester, E. Snitzer.Amplification in a Fiber Laser [J].Appl. Opt.,1964,3(10):1182-1186.
    [3] K.C. Kao, G.A. Hockham.Dielectric-fibre surface waveguides for opticalfrequencies [J].Electrical Engineers, Proceedings of the Institution of,1966,113(7):1151-1158.
    [4] S.B. Poole, D.N. Payne, M.E. Fermann.Fabrication of low-loss optical fibrescontaining rare-earth ions [J].Electronics Letters,1985,21(17):737-738.
    [5] I.P. Alcock, A.C. Tropper, A.I. Ferguson, et al..Q-switched operation of aneodymium-doped monomode fibre laser [J].Electronics Letters,1986,22(2):84-85.
    [6] M. Shimizu, H. Suda, M. Horiguchi.High-efficiency Nd-doped fibre lasersusing direct-coated dielectric mirrors [J].Electronics Letters,1987,23(15):768-769.
    [7] H.M. Pask, J.L. Archambault, D.C. Hanna, et al.. Operation ofcladding-pumped Yb3+-doped silica fibre lasers in1μm region [J].ElectronicsLetters,1994,30(11):863-865.
    [8] S.G. Kosinski, D. Inniss. High-power fiber lasers [C]. Lasers andElectro-Optics,1998. CLEO98. Technical Digest. Summaries of paperspresented at the Conference on,3-8May,1998:78.
    [9] V. Dominic, S. MacCormack, R. Waarts, et al..110W fiber laser [C].Lasersand Electro-Optics,1999. CLEO '99. Summaries of Papers Presented at theConference on,23-28May,1999:CPD11/1-CPD11/2.
    [10] H. Takara, S. Kawanishi, M. Saruwatari.20GHz transform-limited opticalpulse generation and bit-error-free operation using a tunable, activelymodelocked Er-doped fibre ring laser [J].Electronics Letters,1993,29(2):1149-1150.
    [11] E. Yoshida, Y. Kimura, M. Nakazawa.20GHz,1.8ps pulse generation from aregeneratively modelocked erbium-doped fibre laser and its femtosecond pulsecompression [J].Electronics Letters,1995,31(5):377-378.
    [12] K.S. Abedin, N. Onodera, M. Hyodo.Repetition-rate multiplication in activelymode-locked fiber lasers by higher-order FM mode locking using ahigh-finesse Fabry–Perot filter [J].Applied Physics Letters,1998,73(10):1311-1313.
    [13] J.D. Moores, W.S. Wong, K.L. Hall.50-Gbit/s optical pulse storage ring usingnovel rational-harmonic modulation [J].Opt. Lett.,1995,20(24):2547-2549.
    [14] J. Min-Yong, L. Hak-Kyu, A. Joon Tae, et al..External fibre laser based pulseamplitude equalisation scheme for rational harmonic modelocking in aring-type fibre laser [J].Electronics Letters,1998,34(2):182-184.
    [15] M.P. Sorensen, K.A. Shore, T. Geisler, et al..Dynamics of additive-pulsemode-locked fibre lasers [J].Optics Communications,1992,90(1):65-69.
    [16] H. Haus, E.P. Ippen, K. Tamura.Additive-pulse modelocking in fiber lasers[J].Quantum Electronics, IEEE Journal of,1994,30(1):200-208.
    [17] J. Dorring, L. Yan, D.A. Satorius, et al..Injection locking of an additive-pulsemode-locked fiber laser [J].Photonics Technology Letters, IEEE,2002,14(11):1497-1499.
    [18] D.J. Richardson, R.I. Laming, D.N. Payne, et al..Selfstarting, passivelymodelocked erbium fibre ring laser based on the amplifying Sagnac switch[J].Electronics Letters,1991,27(3):542-544.
    [19] C.-W. Chang, S. Chi.Passive mode-locking through nonlinear polarizationrotation in low-birefringence fibers [J].Optics Communications,1997,134(1):218-222.
    [20] V.J. Matsas, T.P. Newson, D.J. Richardson, et al..Selfstarting passivelymode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation[J].Electronics Letters,1992,28(12):1391-1393.
    [21] B.C. Collings, K. Bergman, S.T. Cundiff, et al..Short cavity erbium/ytterbiumfiber lasers mode-locked with a saturable Bragg reflector [J].Selected Topicsin Quantum Electronics, IEEE Journal of,1997,3(4):1065-1075.
    [22] A.G. Deryagin, D.V. Kuksenkov, V.I. Kuchinskii, et al..Generation of highrepetition frequency subpicosecond pulses at1.535μ m by passivemode-locking of InGaAsP/InP laser diode with saturable absorber regionscreated by ion implantation [C].Semiconductor Laser Conference,1994.,14thIEEE International,19-23Sep,1994:107-108.
    [23] N.H. Seong, D.Y. Kim. A new figure-eight fiber laser based on adispersion-imbalanced nonlinear optical loop mirror with lumped dispersiveelements [J].Photonics Technology Letters, IEEE,2002,14(4):459-461.
    [24] J.W. Lou, T.F. Carruthers, M. Currie.Mode-locked multiple-wavelengtherbium-doped fiber laser in a sigma configuration [J].Photonics TechnologyLetters, IEEE,2002,14(3):281-283.
    [25]彭江得,陈晓鹏,刘小明, et al..复合腔全光纤环形激光器单纵模双向同时激射的实验研究[J].光学学报,1998,18(10):1412-1416.
    [26] V. Cautaerts, D.J. Richardson, R. Paschotta, et al..Stretched pulse Yb3+silicafiber laser [J].Opt. Lett.,1997,22(5):316-318.
    [27] K. Tamura, E.P. Ippen, H.A. Haus, et al..77-fs pulse generation from astretched-pulse mode-locked all-fiber ring laser [J].Opt. Lett.,1993,18(13):1080-1082.
    [28] J.R. Buckley, F.W. Wise, F. Ilday, et al..Femtosecond fiber lasers with pulseenergies above10nJ [J].Opt. Lett.,2005,30(14):1888-1890.
    [29] J. An, D. Kim, J.W. Dawson, et al..Grating-less, fiber-based oscillator thatgenerates25nJ pulses at80MHz, compressible to150fs [J].Opt. Lett.,2007,32(14):2010-2012.
    [30] A. Chong, W.H. Renninger, F.W. Wise.All-normal-dispersion femtosecondfiber laser with pulse energy above20nJ [J].Opt. Lett.,2007,32(16):2408-2410.
    [31] K. Kieu, W.H. Renninger, A. Chong, et al..Sub-100fs pulses at watt-levelpowers from a dissipative-soliton fiber laser [J].Opt. Lett.,2009,34(5):593-595.
    [32]刘德明,向清,黄德修,光纤技术及其应用[M].成都:电子科大出版社,1994:123-137.
    [33] A. Galvanauskas. Mode-scalable fiber-based chirped pulse amplificationsystems [J].Selected Topics in Quantum Electronics, IEEE Journal of,2001,7(4):504-517.
    [34] F.A. Flood. L-band erbium-doped fiber amplifiers [C]. Optical FiberCommunication Conference,2000,2000:102-104vol.2.
    [35] A. Gloag, N. Langford, K. McCallion, et al.. Continuously tunablesingle-frequency erbium ring fiber laser [J].J. Opt. Soc. Am. B,1996,13(5):921-925.
    [36]郭玉彬,霍佳雨,光纤激光器及其应用[M].北京:科学出版社,2008:313-315.
    [37]陈吉欣,隋展,陈福深, et al..高功率双包层光纤激光器的受激拉曼散射[J].中国激光,2006,33(3):298-302.
    [38]胡姝玲,张春熹,高春清, et al..包层抽运掺镱光纤激光器中受激拉曼散射和受激布里渊散射效应[J].中国激光,2008,35(1):6-10.
    [39] E. Yoshida, M. Nakazawa. Low-threshold115-GHz continuous-wavemodulational-instability erbium-doped fiber laser [J].Opt. Lett.,1997,22(18):1409-1411.
    [40] S. Kawanishi, H. Takara, K. Uchiyama, et al..1.4Tbit/s (200Gbit/s×7ch)50km optical transmission experiment [J].Electronics Letters,1997,33(20):1716-1717.
    [41] S. Kawanishi, H. Takara, K. Uchiyama, et al..3Tbit/s (160Gbit/s×19channel) optical TDM and WDM transmission experiment [J].ElectronicsLetters,1999,35(10):826-827.
    [42] S. Wei, M.A. Leigh, Z. Jie, et al.. High-Power All-Fiber-BasedNarrow-Linewidth Single-Mode Fiber Laser Pulses in the C-Band andFrequency Conversion to THz Generation [J].Selected Topics in QuantumElectronics, IEEE Journal of,2009,15(2):377-384.
    [43] Y. Liu, Y. Chen, L. Xu, et al..Mutual injection-locking of two individualdouble-clad fibre lasers [J].Electronics Letters,2009,45(8):399-400.
    [44] P.F. Moulton, G.A. Rines, E.V. Slobodtchikov, et al..Tm-Doped Fiber Lasers:Fundamentals and Power Scaling [J].Selected Topics in Quantum Electronics,IEEE Journal of,2009,15(1):85-92.
    [45]孙宝元,杨宝清,传感器及其应用手册[M].北京:机械工业出版社,2005:95-117.
    [46]廖延彪.我国光纤传感技术现状和展望[J].光电子技术与信息,2003,16(5):1-6.
    [47] K.O.Hill, Y.Fujii, D.C.Johnson, et al.. Photosensitivity in Optical FiberWaveguides:Application to Reflection Filter Fabrication [J].Applied PhysicsLetters,1978,32(10):647-649.
    [48]吴薇,许儒泉,陈婷, et al..可调谐掺铒光纤激光器在光纤传感中的应用[J].武汉理工大学学报,2009,31(1):20-23.
    [49]赵铭.分布布拉格反射单纵模光纤激光器研究[D].吉林大学,2008.
    [50] K.K. P, K.A. D.Fiber laser sensor with ultrahigh strain resolution usinginterferometric interrogation [J].Electronic Letters,1995,31(14):1180-1182.
    [51]郭玉彬,霍佳雨,光纤激光器及其应用[M].科学出版社,2008.
    [52]白冰.高性能掺铒光纤激光器的研究[D].吉林大学,2005.
    [53]郭玉彬,光纤通信技术[M].西安电子科技大学出版社,2008.
    [54]李晓莉.基于光纤光栅调谐的掺铒光纤激光器的实验研究[D].西北大学,2009.
    [55]王天枢.全光通信用高功率低噪声可调谐单频光纤激光器研究[D].吉林大学,2007.
    [56]张岩滨,彭江得,刘小明.L波段掺铒光纤放大器增益谱特性研究[J].中国激光,2001,28(11):1013-1016.
    [57]原容.掺铒光纤放大器的原理、特性及其应用[J].光通信技术,1994,9(12):142-150.
    [58]谭莉,王衍勇,丁永奎.L带掺铒光纤放大器的研究与进展[J].激光与光电子学进展,2003,40(1):905-907.
    [59]邱仁和,阳华,伍浩成.几种新型的掺铒光纤放大器[J].光通信技术,2001,25(3):195-199.
    [60]庞勇,黎江辉,蒋佩璇.1480nm泵浦下掺铒光纤中正反向ASE谱的差别[J].北京邮电大学学报,1996,19(2):1-5.
    [61] F.R.M. Adikan, M.A. Mahdi, K. Dimyati, et al..A study of gain and noisefigure performance of an L-band erbium doped fibre amplifier (EDFA) with980nm and amplified spontaneous emission (ASE) pumps [C].TENCON2000. Proceedings,2000:417-420vol.3.
    [62] M. Soderlund, S. Tammela, P. Poyhonen, et al..Amplified spontaneousemission in cladding-pumped L-band erbium-doped fiber amplifiers[J].Photonics Technology Letters, IEEE,2001,13(1):22-24.
    [63] M. Bumki, Y. Hosung, L. Won Jae, et al..Coupled structure for wide-bandEDFA with gain and noise figure improvements from C to L-band ASEinjection [J].Photonics Technology Letters, IEEE,2000,12(5):480-482.
    [64]蒙红云,杨石泉,袁树忠.基于后向ASE抽运的L波段掺铒光纤放大器[J].中国激光,2002,29(10):905-907.
    [65] S. Yamashita, M. Nishihara. L-band erbium-doped fiber amplifierincorporating an inline fiber grating laser [J].Selected Topics in QuantumElectronics, IEEE Journal of,2001,7(1):44-48.
    [66]姜宇,工程电磁场与电磁波[M].武汉:华中科技大学出版社,2011:28-46.
    [67]叶齐政,孙敏,电磁场[M].武汉:华中科技大学出版社,2008:191-212.
    [68] D.N.C. P. N. Butcher,The Elements of Nonlinear Optics [M].Cambridge:Cambridge University Press,1990:112-124.
    [69] E.V. Sisakyan, A.B. Shvartsburg, G.N. Chimakadze.Resonance magneticmodulation of submillimeter radio waves in a semiconductor plasma[J].Soviet journal of quantum electronics,1984,14(1):151-152.
    [70] M. Miyagi, S. Nishida.Pulse spreading in a single-mode optical fiber due tothird-order dispersion: effect of optical source bandwidth [J].Applied Optics,1979,18(13):2237-2240.
    [71] D. Marcuse.Pulse distortion in single-mode fibers-2[J].Applied Optics,1981,20(17):2969-2974.
    [72] D. Marcuse.Equalization of dispersion in single-mode fibers [J].AppliedOptics,1981,20(4):696-700.
    [73] D. Marcuse. Propagation of pulse fluctuations in single-mode fibers[J].Applied Optics,1980,19(11):1856-1861.
    [74] K. Iwashita, K. Nakagawa, Y. Nakano, et al..Chirp pulse transmission througha single-mode fibre1982,V18(N20):873-874.
    [75] A. Takada, T. Sugie, M. Saruwatari.Picosecond optical pulse compressionfrom gain-switched1.3μm distributed-feedback laser diode through highlydispersive single-mode fibre [J].Electronics Letters,1985,21(21):969-971.
    [76] G.P. Agrawal, M.J. Potasek.Effect of frequency chirping on the performanceof optical communication systems [J].Optics letters,1986,11(5):318-318.
    [77] D. Anderson, M. Lisak.Propagation characteristics of frequency-chirpedsuper-Gaussian optical pulses [J].Optics letters,1986,11(9):569-71.
    [78] D. Anderson, M. Lisak.Bandwidth limits due to mutual pulse interaction inoptical soliton communication systems [J].Optics letters,1986,11(3):174-174.
    [79] Y.K. H. Hasegawa,Solitons in Optical Communications [M].New York:Oxford University Press,1995:243-256.
    [80] W.J. Liu, B. Tian, M. Li, et al..Pulse compression and pedestal suppression forthe high-order solitons [J]. Journal of Electromagnetic Waves andApplications,2012,26(8-9):1261-1273.
    [81] P.G. Kevrekidis, H. Susanto, Z. Chen.High-order-mode soliton structures intwo-dimensional lattices with defocusing nonlinearity [J].Physical Review E-Statistical, Nonlinear, and Soft Matter Physics,2006,74(6).
    [82] D. Jia, B. Tan, Z. Wang, et al..High-order soliton generation in dispersionflattened fiber [J].Chinese Optics Letters,2006,4(6):318-319.
    [83] M.G. Banaee, J.F. Young. High-order soliton breakup and solitonself-frequency shifts in a microstructured optical fiber [J].Journal of theOptical Society of America B: Optical Physics,2006,23(7):1484-1489.
    [84] L. Du Mouza, E. Seve, H. Mardoyan, et al..High-order dispersion-managedsolitons for dense wavelength-division multiplexed transmissions [J].OpticsLetters,2001,26(15):1128-1130.
    [85] N.S. Shahabuddin, H. Mohamad, M.A. Mahdi, et al..Passively mode-lockedsoliton fiber laser using a combination of saturable absorber and nonlinearpolarization rotation technique [J]. Microwave and Optical TechnologyLetters,2012,54(6):1430-1432.
    [86] O. Svelto,Principals of Lasers,4th ed [M].New York: Plenum,1998:59-143.
    [87] Y. Huang, Y. Li, G. Tong, et al..Filter properties of chirped fiber Bragg gratingFabry-Perot cavity: A potential wavelength stabilizer of diode laser[J].Applied Optics,2013,52(13):3094-3099.
    [88] J. Peng, L. Zhan, Z. Gu, et al..High-energy all-fiber soliton laser employing achirped fiber Bragg grating [J].Optics Communications,2013,294:246-249.
    [89] C. Chen, Y.-S. Yu, R. Yang, et al..Reflective optical fiber sensors based ontilted fiber Bragg gratings fabricated with femtosecond laser [J].Journal ofLightwave Technology,2013,31(3):455-460.
    [90]肖军,王颖.光纤传感技术的研究与展望[J].机械管理开发,2006(6):80-84.
    [91]卫正统.光纤传感技术简述[J].中国科技信息,2007(22):301-303.
    [92]赵勇,光纤光栅及其传感技术[M].北京:国防工业出版社,2007:78-104.
    [93] L. Wang, X. Qiu.Theoretical analysis of wavelength conversion in fiber bragggrating external cavity lasers:981-983.
    [94] Z.-R. Lin, C.-K. Liu, G. Keiser.Tunable dual-wavelength erbium-doped fiberring laser covering both C-band and L-band for high-speed communications[J].Optik-International Journal for Light and Electron Optics,2011,123(1):46-48.
    [95]肖磊.L波段可调谐环形腔掺铒光纤激光器[D].吉林大学,2005.
    [96] L. Juhan, R. Uh-Chan, S.J. Ahn, et al..Enhancement of power conversionefficiency for an L-band EDFA with a secondary pumping effect in theunpumped EDF section [J].Photonics Technology Letters, IEEE,1999,11(1):42-44.
    [97] C.R. Giles, E. Desurvire. Modeling erbium-doped fiber amplifiers[J].Lightwave Technology, Journal of,1991,9(2):271-283.
    [98] P. Franco, M. Midrio, A. Tozzato, et al..Characterization and optimizationcriteria for filterless erbium-doped fiber lasers [J].J. Opt. Soc. Am. B,1994,11(6):1090-1097.
    [99] P. Myslinski, D. Nguyen, J. Chrostowski.Effects of concentration on theperformance of erbium-doped fiber amplifiers [J].Lightwave Technology,Journal of,1997,15(1):112-120.
    [100]黄文财,明海,谢建平, et al..L波段掺铒光纤超荧光和放大器研究[J].光电工程,2002,29(6):50-52.
    [101]杨石泉,赵春柳,蒙红云, et al..工作在L波段的可调谐环形腔掺铒光纤激光器[J].中国激光,2002,29(8):677-679.
    [102] J.M. Oh, H.B. Choi, D. Lee, et al..Efficient tunable fiber ring laser for1580nm band with a fiber Bragg grating [C].Optical Fiber CommunicationConference and Exhibit,2001. OFC2001,17-22March2001:WA6-WA6.
    [103] A. Buxens, H.N. Poulsen, A.T. Clausen, et al..Gain flattened L-band EDFAbased on upgraded C-band EDFA using forward ASE pumping in an EDFsection [J].Electronics Letters,2000,36(9):821-823.
    [104] X. Lei, Z. Shangjian, Z. Xiaoli, et al.. Electro-optical analog-to-digitalconverter based on LiNbO3Mach-Zehnder modulators [C]. OpticalCommunications and Networks (ICOCN2010),9th International Conferenceon,24-27Oct.2010:343-346.
    [105] P. Zhengduo, S. Baishun, M. Guoying, et al..Research and design of the APCand ATC circuits in LD controller [C].Computer, Mechatronics, Control andElectronic Engineering (CMCE),2010International Conference on,24-26Aug.2010:342-344.
    [106] Q.-Y. Xu, M. Yan, C.-Q. Xu, et al..Direct modulation of multimode fiberBragg grating external cavity lasers [J].Microwave and Optical TechnologyLetters,2011,53(7):1615-1618.
    [107] C. Zhang, L. Liu, Z. Liu, et al..Tunable multi-wavelength fiber laser based ona polarization-maintaining erbium-doped fiber and a polarization controller[J].Optics Communications,2011,284(10鈥?1):2550-2553.
    [108] Y. Yang, Q. Xueguang, Z. Jing, et al..Polarization-Controlled SwitchableMulti-Wavelength Erbium-Doped Fiber Laser with Cascaded Fiber BraggGratings [C].Photonics and Optoelectronics (SOPO),2011Symposium on,16-18May,2011:1-4.
    [109] J. Nakagawa, M. Noda, N. Suzuki, et al..Demonstration of10G-EPON andGE-PON Coexisting System Employing Dual-Rate Burst-Mode3RTransceiver [J]. Photonics Technology Letters, IEEE,2010,22(24):1841-1843.
    [110] Z. Jian, A. Ellis.Electronic Impairment Mitigation in Optically MultiplexedMulticarrier Systems [J].Lightwave Technology, Journal of,2011,29(3):278-290.
    [111] V. Snasel, J. Platos, E. El-Qawasmeh, et al., Analysis of M-QAM DataCommunication System Using3D Eye Diagram, in Digital InformationProcessing and Communications.2011, Springer Berlin Heidelberg. p.337-348.
    [112] W. Srisuwarat, J. Akaranuchat, D.r. Worasucheep.Performance of10Gb/soptical receiver in50-GHz DWDM transmission over40-km SSMF[C].Electrical Engineering/Electronics Computer Telecommunications andInformation Technology (ECTI-CON),2010International Conference on,19-21May2010:992-995.
    [113] P. Shilong, Y. Jianping.A Wavelength-Tunable Single-Longitudinal-ModeFiber Ring Laser With a Large Sidemode Suppression and Improved Stability[J].Photonics Technology Letters, IEEE,2010,22(6):413-415.
    [114] A. Nassar, A. Emira, A.N. Mohieldin, et al..Multichannel Clock and DataRecovery: A Synchronous Approach [J].Circuits and Systems II: ExpressBriefs, IEEE Transactions on,2010,57(5):329-333.
    [115] H. YaMei, L. SiYuan, W. LiQian, et al..Optical Receiver Sensitivity Analysisfor Electronic Code Division Multiple Access Over Passive Optical Network[C].Network Architectures, Management, and Applications VIII:79890B.
    [116] J. Liu, C. Zhao, H. Hu, et al..Systemic optimization of linear cavity Yb-dopeddouble-clad fiber laser [J].Optik,2013,124(9):793-797.
    [117] X. Li, Y. Wang, W. Zhao, et al..All-fiber dissipative solitons evolution in acompact passively Yb-doped mode-locked fiber laser [J]. Journal ofLightwave Technology,2012,30(15):2502-2507.
    [118] I. Pavlov, E. Ilbey, E. Dulgergil, et al..High-power high-repetition-ratesingle-mode Er-Yb-doped fiber laser system [J].Optics Express,2012,20(9):9471-9475.
    [119] M.F. Ferreira, M.V. Facao, S.V. Latas, et al..Optical solitons in fibers forcommunication systems [J].Fiber and Integrated Optics,2005,24(3-4):287-313.
    [120] R. Gangwar, S.P. Singh, N. Singh.Soliton based optical communication[J].Progress in Electromagnetics Research-Pier,2007,74:157-166.
    [121] N. Pornsuwancharoen. A new soliton communication band for opticalnetworking redundancy using a Gaussian soliton generation [J].Optik,2010,121(23):2159-2161.
    [122] B. Zhu, X.L. Yang.High-order Nonlinearity Influence on Performances ofHigh Rate Soliton Communication System and its Suppression Method[J].Journal of Infrared Millimeter and Terahertz Waves,2009,30(6):545-555.
    [123] G. Tsigaridas, I. Polyzos, V. Giannetas, et al..Compensation of nonlinearabsorption in a soliton communication system [J].Chaos Solitons&Fractals,2008,35(1):151-160.
    [124] A. Hasegawa. Soliton-based ultra-high speed optical communications[J].Pramana-Journal of Physics,2001,57(5-6):1097-1127.
    [125] S. Karlsson, J. Yu, M. Akay.Time-frequency analysis of myoelectric signalsduring dynamic contractions: A comparative study [J].IEEE Transactions onBiomedical Engineering,2000,47(2):228-238.
    [126] S.-S. Wang, Y.-Z. Pan, R.-X. Gao, et al..Mode-locked double-clad fiber laserwith a carbon nanotubes saturable absorber [J].Wuli Xuebao/Acta PhysicaSinica,2013,62(2).
    [127] J.-J. Chi, P.-X. Li, C. Yang, et al..A theoretical and experimental study onall-normal-dispersion Yb-doped mode-locked fiber lasers [J].Chinese PhysicsB,2013,22(4).
    [128] L. Zhao, D. Tang, X. Wu, et al..Dissipative soliton generation in Yb-fiberlaser with an invisible intracavity bandpass filter [J].Opt. Lett.,2010,35(16):2756-2758.
    [129] L.M. Zhao, D.Y. Tang, H. Zhang, et al..Dissipative soliton operation of anytterbium-doped fiber laser mode locked with atomic multilayer graphene[J].Opt. Lett.,2010,35(21):3622-3624.
    [130] X. Wu, D.Y. Tang, H. Zhang, et al..Dissipative soliton resonance in anall-normal-dispersionerbium-doped fiber laser [J].Opt. Express,2009,17(7):5580-5584.
    [131] H. Zhang, D.Y. Tang, L.M. Zhao, et al..Dissipative vector solitons in adispersionmanagedcavity fiber laser with net positivecavity dispersion [J].Opt.Express,2009,17(2):455-460.
    [132] H. Zhang, D.Y. Tang, L.M. Zhao, et al..Vector dark domain wall solitons in afiber ring laser [J].Opt. Express,2010,18(5):4428-4433.
    [133] H. Zhang, D. Tang, L. Zhao, et al..Vector dissipative solitons in graphenemode locked fiber lasers [J].Optics Communications,2010,283(17):3334-3338.
    [134] Z. Han, T. Dingyuan, R.J. Knize, et al.. Graphene mode locked,wavelength-tunable, dissipative soliton fiber laser [J]. Applied PhysicsLetters,2010,96(11):111112-111112-3.
    [135] Q. Bao, H. Zhang, Z. Ni, et al..Monolayer graphene as a saturable absorber ina mode-locked laser [J].Nano Research,2011,4(3):297-307.
    [136] H. Zhang, D.Y. Tang, L.M. Zhao, et al..Large energy mode locking of anerbium-doped fiber laser with atomic layer graphene [J].Opt. Express,2009,17(20):17630-17635.
    [137] Z. Han, B. Qiaoliang, T. Dingyuan, et al..Large energy soliton erbium-dopedfiber laser with a graphene-polymer composite mode locker [J].AppliedPhysics Letters,2009,95(14):141103-141103-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700