太阳能多碟聚光系统聚集特性及吸热器光热力特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳能热动力发电具有不使用化石燃料、零污染物排放等优点,是清洁的发电系统。由于地球表面接收到的太阳辐射强度除了受到昼夜、季节和地理纬度等规律性因素的影响外,还受到阴云和雨雪天气等随机性因素的制约,以及集热子系统热流密度传输不均匀性的影响,因而太阳能的热利用具有显著的间断性和不均匀性,导致吸热器受到反复高温差的热冲击循环而承受高热应力并引起吸热器的弯曲变形及失效。
     本文以太阳能高温热转换及利用为应用背景,结合实际应用过程中对太阳能高效低成本利用技术的发展需求,对太阳能热动力发电站中的太阳光线聚集与传输、能量的吸收与转换以及吸热器的可靠性等关键核心技术的科学基础问题展开研究。主要研究内容包括以下四个方面。
     1.采用直接热流密度场实验测量系统对搭建在哈尔滨工业大学的双轴跟踪多碟聚光系统焦平面处热流密度场进行测量;并编制了基于蒙特卡洛法的求解太阳能辐射聚集传输问题的计算源代码,将实验测量得到的多碟聚光系统焦平面处无量纲热流密度场与数值模拟结果进行对比研究,找出数值模拟的最佳参数组合;研究了多碟聚光系统的反射镜数目及镜面反射率的变化对焦平面处的热流密度场分布的影响。
     2.在分析半球形腔体式太阳能吸热器聚集辐射分布特性的基础上,结合太阳能光学窗口的折射而重新分配聚集辐射热流的作用,本文提出了含有上凸式光学窗口的腔体式太阳能吸热器,分析了等效误差、光学窗口特征参数及壁面吸收率对含有上凸式光学窗口半球形腔体式太阳能吸热器壁面热流密度场分布的影响;并对含有上凸式光学窗口的腔体式太阳能吸热器的热效率特性进行了研究;从吸热器光学效率的角度对平顶锥形腔体式太阳能吸热器展开研究,分析了吸热器开口半径和单碟聚光系统的相对光孔对平顶锥形腔体式太阳能吸热器的辐射传输特性的影响。
     3.为了解决平顶锥形腔体式太阳能吸热器底面处金属管盘绕过程中无法布满整个底面而降低吸热器光学效率的问题,本文提出了两种新型底面凸起腔体式太阳能吸热器以达到提高吸热器光学效率的目的;并分析了底面凸起无量纲高度、壁面吸收率、指向误差和焦面位置误差等参数对底面凸起腔体式太阳能吸热器光学效率提高的影响。
     4.采用蒙特卡洛法与有限单元法相结合的计算方法对管式太阳能吸热器进行了温度场、热应力场及应变场的研究,并将蒙特卡洛法与有限单元法相结合的计算结果与简化热流密度场边界条件下的计算结果进行对比研究。鉴于墨西哥国立大学太阳能热利用电站采用铜管式太阳能吸热器替代不锈钢管式太阳能吸热器来解决在实验和运行中发生的吸热器弯曲变形问题,本文研究了不同材料对管式太阳能吸热器的热应力场及应变场的影响。为了降低管式太阳能吸热器的热应力和总应变,本文提出了一种偏心管式太阳能吸热器,并研究了偏心角及偏心率对偏心管式太阳能吸热器的热应力场及应变场的影响。
Solar dynamic power generation system is a clean power generation system with manyadvantages, such as: without using fossil fuel and zero pollutant emission, etc. The solarradiation intensity received by the earth is affected no only by diurnal variation, season,latitude and other regular factors, but also by clouds, rain, snow and other random factors, aswell as by heterogeneous heat flux transmission of the collector subsystem. Therefore, the solarthermal utilization has severe intermittence and heterogeneity, which can cause the receiver toendure repeated high–temperature differential thermal shock cycles and subjected to highthermal stress till bending deformation and receiver failure.
     Based on the background of high–temperature conversion and utilization of solar energyas well as the requirement of applied technology development of high effective and low costsolar energy utilization, this dissertation will research on the concentration and transmission ofsolar rays, absorption and conversion of energy, reliability of receiver and other key scientifictechnologies of solar dynamic power generation system. The main researches of thisdissertation include the following four aspects.
     1.Heat flux distribution on the focal plane of the biaxial tracking multi–dishesconcentrator system set up in Harbin Institute of Technology is measured by direct heat fluxdistribution measurement system. A program for solving concentration and transmissionproblem of solar radiation is compiled based on the Monte Carlo method. In order to seek theoptimal parameter combination for numerical calculation, the dimensionless heat fluxdistribution calculated by numerical method is compared with that measured by direct heatflux distribution measurement system. Besides, the variations of dimensionless heat fluxdistribution on the focal plane of multi–dishes concentrator system with the increase of dishesand change of reflectivity are also studied in this dissertation.
     2.Based on the directional characteristic analysis of concentrated heat flux distributionon the focal plane of hemispherical cavity receiver and the redistribution effect of opticalwindow, a cavity receiver with internal convex optical window is proposed. The effects ofeffective error variation, characteristic parameters variation and absorptivity variation ofreceiver surface on the heat flux distribution of the hemispherical cavity receiver with internalconvex optical window are analyzed. Besides, the thermal efficiency of cavity receiver withinternal convex optical window is also investigated. The researches on conical cavity receiver are carried out from the perspective of optical efficiency of receiver, and the irradiativetransfer properties variation of conical receiver with the change of aperture radius and relativeaperture is analyzed.
     3.In order to solve the problem that the bottom surface of conical cavity receiver can notbe completely covered with coiled metal tube and to improve the optical efficiency, two newtypes of cavity receiver with bottom surface convex are put forward in this dissertation. Theeffects of dimensionless bottom surface convex height variation, absorptivity variation ofreceiver surface, pointing error variation and alignment error variation on the optical efficiencyof cavity receiver with bottom surface convex are analyzed.
     4.The researches on the temperature field, thermal stress field and strain field of tubereceiver are carried out by adopting Monte Carlo and Finite Element combined method, andthe results calculated by Monte Carlo and Finite Element combined method are compared withthe results calculated with simplified heat flux distribution boundary condition. In view ofsolving the deformation problem of stainless steel tube receiver occurred during applicationand experiment in the National University of Mexico solar dynamic power station by usingcopper tube receiver, the effects of material selection on the thermal stress field and strain fieldare investigated. The eccentric tube receiver is put forward in this dissertation to decrease thethermal stress and total strain of tube receiver, and the effects of oriented angle and eccentricityvariation on the thermal stress field and strain field of eccentric tube receiver are alsoinvestigated.
引文
1.罗运俊,何梓年,王长贵.太阳能利用技术.化学工业出版社,2005,110
    2.王如竹,代彦军.太阳能制冷.化学工业出版社,2007,213
    3.何梓年.太阳能热利用.中国科学技术大学出版社,2009
    4. T.P. Fluri,J.P. Pretorius,C. Van Dyk,T. Backstr m.Cost Analysis of Solar Chimney PowerPlants.Solar Energy,2009,83(2):246256
    5.麦克维,方铎荣译.太阳能应用导论.国防工业出版社,1984,18
    6.沈超,何雅玲,卢杰,刘迎文.安装倾角对热声发动机性能影响的试验研究.热能动力工程,2008,23(4):421424
    7. Y.T. Li,L. Lu,H.X. Yang.Energy and Economic Performance Analysis of an Open Cycle SolarDesiccant Dehumidification Air Conditioning System for Application in Hong Kong.Solar Energy,2010,84(12):20852095
    8.项立成,赵玉文,罗运俊.太阳能的热利用.宇航出版社,1990,110
    9.李申生.太阳能热利用导论.高等教育出版社,1989,112
    10.中国太阳能学会.太阳能热利用的理论基础.中国太阳能学会,1981:15
    11. J. Llorente,J. Ballestrín,A.J. Vázquez.A New Solar Concentrating System:Description,Characterization and Applications.Solar Energy,2011,85(5):10001006
    12. International Energy Agency.Solar Heating and Cooling Program.IEA/SHC Annual Report:Solarassisted Air Conditioning of Building,2004,15
    13.袁建丽,林汝谋,金红光,韩巍,洪慧.太阳能热发电系统与分类.太阳能学报,2007,4:3033
    14. N.M. Sheikh.Efficient Utilization of Solar Energy for Domestic Applications.Second InternationalConference on Electrical Engineering,Pakistan,2008,2526
    15.韩延民,王如竹,代彦军,翟辉,付剑波.太阳能高倍聚光能量利用系统热力学分析及传输过程设计优化.工程热物理学报,2007,28(S1):14
    16. Z.F. Wang.The Research Status of Solar Thermal Power Technologies in China.Proceedings of the13thInternational Symposium on Concentrating Solar Power and Chemical EnergyTechnologies,Spain,2006,2023
    17.崔映红,杨勇平,杨志平,侯宏娟,郭喜燕.太阳能辅助燃煤一体化热发电系统耦合机理.中国电机工程学报,2008,28(29):99104
    18.岑幻霞.太阳能热利用.清华大学出版社,1981,427
    19. A. Yilanci,I. Dincer,H.K. Ozturk.A Review on Solar Hydrogen/Fuel Cell Hybrid Energy Systems forStationary Applications.Progress in Energy and Combustion Science,2009,35:231244
    20. R. Webb.Our Unknown Solar System.New Scientist,2009,201(293):2831
    21.王炳忠.我国的太阳能资源及其计算.太阳能学报,1980,1(1):19
    22. Z.F. Wang.Solar Energy of China.Offical Launch of the China EU Science&Technology Yearand the Science Policy forum,Belgium,2006,15
    23. Pilkington Solar International.Status Report on Solar Thermal Power Plants.1996
    24. K.K. Chong,F.L. Siaw,C.W. Wong,G.S. Wong.Design and Construction of Non Imaging PlanarConcentrator for Concentrator Photovoltaic System.Renewable Energy,2009,34(5):13641370
    25.隋军,金红光,郑丹星,侯智,王志峰.太阳能甲醇分解吸收反应器研制与实验研究.工程热物理学报,2007,28(6):909912
    26. C. Suter,P. Tome,A. Weidenkaff,A. Steinfeld.A Solar Cavity Receiver Packed with an Array ofThermoelectric Converter Modules.Solar Energy,2011,85(7):15111518
    27. R.F. Almanza,A. Lentz,G. Jiménez.Receiver Behavior in Direct Steam Generation with Parabolictoughs.Solar Energy,1997,61:275278
    28. A. Valdés,R. Almanza,A. Soria,M. Mazari.Mathematical Model for Direct Steam Generation inParabolic Trough Collectors with Compound Wall Receiver.Proceedings of the AnnualConference:American Solar Energy Society,USA,1998,271275
    29. R.F. Almanza,G. Jiménez,A. Lentz.DSG under Two Phase and Stratified Flow in a Steel Receiverof a Parabolic Trough Collector.Journal of Solar Energy Engineering,2004,124:140144
    30. R.F. Almanza,V.C. Flores,A. Lentz,A. Valdés.Compound Wall Receiver for DSG in ParabolicTroughs.Proceedings of the10thInternational Symposium of Solar Thermal:Solar PACES,Australia,2002,131135
    31. V.C. Flores,R.F. Almanza.Behavior of Compound Wall Copper Steel Receiver with StratifiedTwo Phase Flow Regimen in Transient States When Solar Irradiance is Arriving on One Side ofReceiver.Solar Energy,2004,76:195–198
    32. R. Tchinda.Thermal Behavior of Solar Air Heater with Compound Parabolic Concentrator.EnergyConversion and Management,2008,49(4):529540
    33. J.M. Lata,M.N. Rodriguez,M.A. Lara.High Flux Central Receivers of Molten Salts for the NewGeneration of Commercial Stand Alone Solar Power Plants.Journal of Solar Energy Engineering,2008,130(2):021002
    34. C.C. Agrafiotis,I. Mavroidis,A.G. Konstandopoulos,B. Hoffschmidt,P. Stobbe,M. Romero,V.F.Quero.Evaluation of Porous Silicon Carbide Monolithic Honeycombs as Volumetric ReceiversCollectors of Concentrated Solar Radiation.Solar Energy Materterials and Solar Cells,2007,91:474–488
    35. S.K. Jae,W. Allan.Transient Conjugate CFD Simulation of the Radiator Thermal Cycle.SAETechnical Paper,2006,No.06011577
    36. T. Wetzel,F. Brotz,F. L ffler,B. Boermsa,A. Fernandez,N.T. Heckenberger.CoupledAeroThermodynamic and Structural Analysis of Transient Charge Air Cooler OperationModes.VTMS8,2007,07VTMS38
    37. H. Knaus,S. Weise,W. Kühnel,U. KrüGer.Overall Approach to the Validation of Charge AirCoolers.SAE Technical Paper,2005,No.05012064
    38. U. Steffen,R. Wolfgang,H. Peter.Beam Characterization and Improvement with a Flux MappingSystem for Dish Concentrators.Journal of Solar Energy Engineering,2002,124(1):182188
    39.刘颖.太阳能聚光器聚焦光斑能流密度分布的理论与实验研究.博士学位论文,哈尔滨工业大学,2008
    40.戴景民,刘颖.抛物柱面聚光器焦面能流分布特性研究.太阳能学报,2008,29(9):10971100
    41. Y. Liu,J.M. Dai,X.G. Sun.Factors Influencing on Flux Distribution on Focal Region of ParabolicConcentrators.Journal of Physics:Conference Series,2006,48(1):5963
    42.戴景民,刘颖.聚光器聚焦光斑能流密度分布的测量与分析.应用光学,2008,29(6):917920
    43. F. Dissner.Operation Manual for the Measurement Activities with Heat Flux DistributionSystem.Deutsche Forschungs Und Versuchsanstalt Furluft Und Raumfahrt,Cologne,1981
    44. G. García.General Description of the Flux Measuring System of the Volumetric Receiver.PlataformaSolar De AlmeríA,Internal Report R15/88GG,1988
    45. M.M. Elsayed,K.A. Fathalah.Solar Flux Density Distribution Using Separation of VariablesSuperposition Technique.Renewable Energy,1994,4(7):7787
    46. M.M. Elsayed,K.A. Fathalah,O.M. Rabghi.Measurements of Solar Flux Density Distribution on aPlane Receiver due to a Flat Heliostat.Solar Energy,1995,54(6):403411
    47. J. Ballestrin.A Non Water Cooled Heat Flux Measurement System under Concentrated SolarRadiation Conditions.Solar Energy,2002,73(3):159168
    48. J. Ballestrin,R. Monterreal.Hybrid Heat Flux Measurement System for Solar Central ReceiverEvaluation.Energy,2004,29(1):915924
    49.戴景民,刘颖,于天河.基于CCD的聚焦光斑能流密度分布测量系统的研制.光电子·激光,2008,19(11):15071511
    50.刘颖,戴景民.聚光器聚焦光斑能流密度测量系统的设计.973计划“利用太阳能规模制氢的基础研究”项目年度研究进展论文集,西安,2004,518520
    51. A. Neumann.Procedures for Flux Measurements for Solar Receivers Using Video Cameras andLumberton Targets.Introductory Guidelines for Preparing Reports on Solar Thermal PowerSystems,In Solarpaces Technical Report,1996,No. III3/97
    52. T. Fend,R.P. Paal,O. Reutter,J. Bauerb,B. Hoffschmidt.Two Novel High Porosity Materials asVolumetric Receivers for Concentrated Solar Radiation.Solar Energy Materials and Solar Cells,2004,84(14):291304
    53. J.B. Blackmon.Development and Performance of a Digital Image Radiometer for Heliostat Evaluationat Solar One.Journal of Solar Energy Engineering,1985,107(4):315321
    54. M. Schubnell,J. Keller,A. Imhof.Flux Density Distribution in the Focal Region of a SolarConcentrator System.Transactions of the ASME,1991,113(1):112116
    55. M. Schubnell.Sunshape and Influence on the Flux Distribution in Imaging Solar Cocnetrators.Journalof Solar Energy Engineering,1992,114(4):260266
    56. G. Johnston.Flux Mapping the400m2“Big Dish” at the Australian National University.Transactionsof the ASME,1995,117(1):290293
    57. G. Johnston2.Focal Region Measurements of the20mTitled Dish at the Australian NationalUniversity.Solar Energy,1998,63(2):117124
    58. A. Neumann,U. Groer.Experimenting with Concentrated Sunlight Using the DLR SolarFurnace.Solar Energy,1996,58(46):181190
    59. A. Neumann,A. Schmitz.The SCATMES Device for Measurement of Concentrated SolarRadiation.Transactions of the ASME,1999,121(1):116120
    60. S. Biryukov.Determining the Optical Properties of PETAL,the400m2Parabolic Dish at SedeBoqer.Journal of Solar Energy Engineering,2004,126(1):827832
    61.武思宇,罗伟.ANSYS工程计算应用教程.中国铁道出版社,2004,115
    62.王建江,胡仁喜,刘英林.ANSYS11.0结构与热力学有限元分析实例指导教程.机械工业出版社,2008,211
    63. P. Bendt,A. Rabl.Optical Analysis and Optimization of Line Focus Solar Collectors.Colorado:SolarEnergy Research Institute,1979
    64.谈和平,夏新林,刘林华,阮立明.红外辐射特性与传输的数值计算—计算热辐射学.哈尔滨工业大学出版社,2006,157172
    65.余雷,王军,张耀明.基于槽式集热器中抛物线的量化分析模型.东南大学学报(自然科学版),2011,41(3):563567
    66. P. Bendt,A. Rabl.Optical Analysis of Point Focus Parabolic Radiation Concentrators.AppliedOptics,1981,20(4):674683
    67. A. Mobarak,A.A. Rahim.Determination of Flux Distribution of a Parabolic Solar ConcentratorApplying Real Sunshape.Solar Energy,Twelfth Annual International Solar Energy Conference,1990
    68.江守利,陈则韶,胡芃,莫松平.二次反射聚光分频光伏系统的三维光学模型.太阳能学报,2009,30(9):11881193
    69. J.R. Howell,M. Perlmutter.Monte Carlo Solution of Thermal Transfer through Radiant Media betweenGray Walls.Journal of Heat Transfer,1964,86(1):116122
    70.徐钟济.蒙特卡洛法.上海科学技术出版社,1985
    71.裴鹿成,张孝则.蒙特卡洛法及其在粒子输运问题中的应用.科学出版社,1980
    72. M.F. Modest.Radiative Heat Transfer.Mcgraw Hill,1993,644676
    73. H.P. Tan,Y. Shuai,X.L. Xia,H.C. Zhang.Reliability of Stray Light Calculation Code using the MonteCarlo Method.Optical Engineering,2005,44(2):111,Art. No.023001
    74. X.L. Xia,Y. Shuai,H.P. Tan.Calculation Techniques with the Monte Carlo Method in Stray RadiationEvaluation.Journal of Quantitative Spectroscopy and Radiative Transfer,2005,95(1):101111
    75. H.P. Tan,Y. Shuai,S.K. Dong.Analysis of Rocket Plume Base Heating by using BackwardMonte Carlo Method.Journal of Thermophysics and Heat Transfer,2005,19(1):125127
    76. Y. Shuai,S.K. Dong,H.P. Tan.Simulation of the Infrared Radiation Characteristics ofHigh Temperature Exhaust Plume Including Particles using the Backward Monte CarloMethod.Journal of Quantitative Spectroscopy and Radiative Transfer,2005,95(2):231240
    77. L.M. Ruan,H.P. Tan,Y.Y. Yan.A Monte Carlo (M C) Method Applied to the Medium with NongrayAbsorbing Emitting Anisotropic Scattering Particles and Gray Approximation.Numerical HeatTransfer,Part A,2002,42(3):253268
    78. A.Q. Wang,M.F. Modest.Spectral Monte Carlo Models for Nongray Radiation Analyses inInhomogeneous Participating Media.International Journal of Heat and Mass Transfer,2007,50(1920):38773889
    79. L.H. Liu,H.C. Zhang,H.P. Tan.Monte Carlo Discrete Curved Ray Tracing Method for RadiativeTransfer in an Absorbing Emitting Semitransparent Slab with Variable Spatial RefractiveIndex.Journal of Quantitative Spectroscopy and Radiative Transfer,2004,84(3):357362
    80. Y. Huang,X.G. Liang,X.L. Xia.Monte Carlo Simulation of Radiative Transfer In Scattering, Emitting,Absorbing Slab with Gradient Index.Journal of Quantitative Spectroscopy and RadiativeTransfer,2005,92(1):111120
    81. C Y. Wu.Monte Carlo Simulation of Transient Radiative Transfer in a Medium with a VariableRefractive Index.International Journal of Heat and Mass Transfer,2009,52(1920):41514159
    82. H. Ries,M. Schubnell,W. Spirkl.Simultaneous Radiometric Measurement of Absorber Temperatureand Irradiance.Proceeding of the ISES Solar World Congress,Japan,1989
    83.张晓峰.碟式抛物面太阳能集热器的热分析.硕士学位论文,哈尔滨工业大学,2005,1124
    84.张晓峰,帅永,谈和平.旋转抛物面反射镜的焦面热流密度计算.973计划“利用太阳能规模制氢的基础研究”项目年度研究进展论文集,西安,2004
    85.帅永,张晓峰,谈和平.抛物面式太阳能聚能系统聚光特性模拟.工程热物理学报,2006,27(3):484486
    86.帅永.典型光学系统表面光谱辐射传输及微尺度效应.博士学位论文,哈尔滨工业大学,2008,5368
    87. J. Nilsson,R. Leutz,B. Karlsson.Micro Structured Reflector Surfaces for a Stationary AsymmetricParabolic Solar Concentrator.Solar Energy Materials and Solar Cells,2007,91:525533
    88.肖杰,何雅玲,程泽东,陶于兵,徐荣吉.槽式太阳能集热器集热性能分析.工程热物理学报,2009,30(5):729733
    89. Z.D. Cheng,Y.L. He,J. Xiao,R.J. Xu.Three Dimensional Numerical Study of Heat TransferCharacteristics in the Receiver Tube of Parabolic Trough Solar Collector.IntermationalCommunication of Heat Mass Transfer,2010,37:782–787
    90. S.M. Jeter.The Distribution of Concentrated Solar Radiation in Paraboloidal Collectors.Journal ofEnergy Engineering,1986,108(1):219225
    91. S.M. Jeter.Analytical Determination of the Optical Performance of Practical Parabolic TroughCollectors from Desihn Data.Solar Energy,1987,39(1):1121
    92.赵建中,葛新石,李业发.抛物柱面聚焦器焦平面上辐射通量分布的理论和实验研究.太阳能学报,1994,15(3):262267
    93. H. Sammouda,C. Royere,A. Belghitha.Reflected Radiance Distribution Law for a1000kW ThermalSolar Furnace System.Renewable Energy,1999,17(1):920
    94. R.R. David,S.G. Marcelino,A.E. Claudio.Three Dimensional Analysis of a Concentrated SolarFlux.ASME Journal of Solar Energy Engineering,2008,130:014503
    95.刘颖,戴景民,郎治国.旋转抛物面聚光器焦面能流分布的有限元分析.光学学报,2007,27(10):17751778
    96. H. Klaisz,R. Kohne,J. Nitsch,U. Sprengel.Solar Thermal Power Plants for SolarCountries—Technology,Economics and Market Potential.Applied Energy,1995,52(3):165–183
    97. N.S. Kumar,K.S. Reddy.Thermal Analysis of Solar Parabolic Trough with Porous DiscReceiver.Applied Energy,2009,86:1084–1112
    98. X. Li,W.Q. Kong,Z.F. Wang,C. Chang,F.W. Bai.Thermal Model and Thermodynamic Performanceof Molten Salt Cavity Receiver.Renewable Energy,2010,35:981988
    99.戴贵龙,夏新林,于明跃.石英窗口太阳能吸热腔热转换特性研究.工程热物理学报,2010,6(31):10051008
    100. Y. Shuai,F.Q. Wang,X.L. Xia,H.P. Tan.Radiative Properties of A Solar Cavity Receiver/Reactorwith Quartz Window.International Journal of Hydrogen Energy,2011,36:1214812158
    101. J.A. Harris,G.T. Lenz.Thermal Performance of Solar Concentrator/Cavity Receiver Systems.SolarEnergy,1985,34(2):135142
    102.张春平,刘志刚,赵耀华,唐大伟.碟式聚光太阳能热发电系统用腔式吸热器热性能分析.工程热物理学报,2004,26(4):591594
    103. N.S. Kumar,K.S. Reddy.Comparison of Receivers for Solar Dish Collector System.EnergyConversion and Management,2008,49:812819
    104. E. L pfert,K.J. Riffelmann,H. Price,F. Burkholder,T. Moss.Experimental Analysis of OverallThermal Properties of Parabolic Trough Receivers.Journal of Solar Energy Engineering,2008,30:021007
    105.张丽英,翟辉,代彦军,王如竹.聚集型太阳能集热器中腔体吸收器的热性能研究.工程热物理学报,2008,29(9):14531457
    106. N.M. Villar,J.C. López,F.D. Mu oz,E.R. Garcia,A.C. Andrés.Numerical3D Heat Flux Simulationson Flat Plate Solar Collectors.Solar Energy,2009,83:10861092
    107. J.B. Fang,J.J. Wei,X.W. Dong,Y.S. Wang.Thermal Performance Simulation of a Solar CavityReceiver under Windy Conditions.Solar Energy,2011,85:126138
    108. D.C. Kim,Y.D. Choi.Analysis of Conduction Natural Convection Conjugate Heat Transfer in theGap between Concentric Cylinders under Solar Irradiation.International Journal of ThermalSciences,2009,48:12471258
    109. American Society of Heating,Refrigeration,and Air Conditioning Engineers.Handbook ofFundamentals.ASHRAE,1979
    110. D.Q. Lei,Z.F. Wang,J. Li.The Analysis of Residual Stress in Glass to Metal Seals for SolarReceiver Tube.Materials and Design,2010,31:1813–1820
    111. V. Verlotski,M. Schaus,M. Pohl.A Solar Thermal Mgo Powder Receiver with WorkingTemperatures of More Than1600°C:Model Investigation by Using Laser as an IrradiationSource.Solar Energy Materials and Solar Cells,1997,45(3):227–239
    112. Y. Shuai,X.L. Xia,H.P. Tan.Radiation Performance of Dish Solar Concentrator/Cavity ReceiverSystems.Solar Energy,2008,82:13–21
    113. Y. Shuai,X.L. Xia,H.P. Tan.Numerical Study of Radiation Characteristics in a Dish Solar CollectorSystem.ASME Journal of Solar Energy Engineering,2008,130:021001
    114. Y. Shuai,X.L. Xia,H.P. Tan.Structural Optimization Design and Radiation PerformanceSimulation in Dish Solar Collector System.Ch.11,Solar Collectors:Energy Conservation,Design and Applications.Nova Science Publisher,2009,277307
    115. H. Hasuike,Y.S. Yoshizawa,A.K. Suzuki,Y.T. Tamaura.Study on Design of Molten Salt SolarReceivers for Beam Down Solar Concentrator.Solar Energy,2006,80:1255–1262
    116.王富强,帅永,谈和平.腔式太阳能吸热器的热分析.工程热物理学报,2011,32(5):843–846
    117.刘斌,吴玉庭,杨征.螺旋盘管腔式熔盐太阳能吸热器的分析优化和研制.工程热物理学报,2009,30(6):995–998
    118.张鹤飞.太阳能热利用原理与计算机模拟.西北工业大学出版社,2007,475
    119.余其铮.辐射换热原理.哈尔滨工业大学出版社,2000,9095
    120. H.I. Villafán Vidalesa,C.A. Arancibia Bulnesa,U. Dehesa Carrascoa,H. Romero Paredesb.MonteCarlo Radiative Transfer Simulation of a Cavity Solar Reactor for the Reduction of CeriumOxide.International Journal of Hydrogen Energy,2009,34:115124
    121. H. Nestor,R.R. David,V. Eduardo,J.D. Rubén.Conical Receiver for a Paraboloidal Concentratorwith Large Rim Angle.Solar Energy,2012,In Press
    122. A.M. Clausing.An Analysis of Convective Losses from Cavity Solar Central Receiver.SolarEnergy,1981,27:295–300
    123. A.M. Clausing.Convective Losses from Cavity Solar Receivers–Comparisons between AnalyticalPredictions and Experimental Results.Journal of Solar Energy Engineering,1983,105:29–33
    124. M. Behnia,J.A. Reizes,D.V. Davis.Combined Radiation and Natural ConvectionNatural Convection in a Rectangular Cavity with a Transparent Wall and Containing aNon Participating Fluid.International Journal for Numerical Methods in Fluids,1990,10(3):305–325
    125. T. Taumoefolau,S. Paitoonsurikarn,G. Hughes,K. Lovegrove.Experimental Investigation of NaturalConvection Heat Loss from a Model Solar Concentrator Cavity Receiver.Journal of Solar EnergyEngineering,2004,126(2):801–807
    126. M. Prakash,S.B. Kedare,J.K. Nayak.Investigations on Heat Losses from a Solar CavityReceiver.Solar Energy,2009,83:157–170
    127. Q. Yu,Z.F. Wang,E. Xu.Simulation and Analysis of the Central Cavity Receiver’s Performance ofSolar Thermal Power Tower Plant.Solar Energy,2012,86(1):164174
    128. N.A. Kelly,T.L. Gibson.Solar Energy Concentrating Reactors for Hydrogen Production byPhotoelectrochemical Water Splitting.International Journal of Hydrogen Energy,2008,33(22):64206431
    129. D. Hirsch,A. Steinfeld.Solar Hydrogen Production by Thermal Decomposition of Natural Gas Usinga Vortex Flow Reactor.International Journal of Hydrogen Energy,2004,29(22):4755
    130.赵耀华,张春平,刘志刚.腔式吸热器.国家发明专利,授权号:ZL200410000650.2
    131. S. Paitoonsurikarn,K. Lovegrove.Numerical Investigation of Natural Convection Loss in CavityType Solar Receivers.In Proceedings of Solar,ANZSES Annual Conference,Australia,2002,1–6
    132. J. Mu oz,A. Abánades.Analysis of Internal Helically Finned Tubes for Parabolic Trough Design byCFD Tools.Applied Energy,2011,88(11):41394149
    133. G. Steven,R.P. Macosko.Transient Thermal Analysis of a Refractive Secondary SolarCocentrator.SAE Technical Paper,2009,No.99–01–2680
    134. H. Cui,Y.M. Xing,Y.S. Guo.Numerical Simulation and Experiment Investigation on Unit HeatExchange Tube for Solar Heat Receiver.Solar Energy,2008,49:812–819
    135.葛新石,龚堡,俞善庆.太阳能利用中的光谱选择性涂层.科学出版社,1980,2154
    136.陶文铨.数值传热学.西安交通大学出版社,2004,333409
    137. Ansys Inc.Ansys Software Package,Copyright2008
    138.李黎明.Ansys有限元分析教程.清华大学出版社,2005,127
    139.王勖成.有限单元法.清华大学出版社,2003,1394
    140.李维特,黄保海,毕仲波.热应力理论分析及应用.中国电力出版社,2004,99109
    141.孔祥谦.热应力有限单元法分析.上海交通大学出版社,1999,66127
    142. J.H. Fauple,F.E. Fisher.Engineering Design–A Synthesis of Stress Analysis and MaterialEngineering.Wiley,1981
    143. Y.S. Islamoglu.Finite Element Model for Thermal Analysis of Ceramic Heat Exchanger Tube underAxial Concentrated Solar Irradiation Convective Heat Transfer Coefficient.Materials and Design,2004,25:479–482
    144.张国智,胡仁喜,陈继刚.Ansys10.0热力学有限元分析实例指导教程.机械工业出版社,2007
    145. B. Friedrich,K. Wolfram,C. Yang.Virtual Temperature Cycle Testing of Automotive HeatExchangers by Coupled Fluid Structure Simulation.SAE Technical Paper,2008,No.08011210
    146. Y.F. Qin,S. Kuba,N. Naknishi.Coupled Analysis of Thermal Flow and Thermal Stress of an EngineExhaust Manifold.SAE Technical Paper,2004,No.04–01–1345
    147.程耀东,牛加毅,齐津.一种结构动态分析中有限元网格细分方法.浙江大学学报,1992,3(S1):3338
    148.许洋,党沙沙,胡仁喜.ANSYS11.0\FLOTRAN流场分析实例指导教程.机械工业出版社,2009,3178391
    149.谢龙汉,李翔,张海.Ansys Flotran流体及热分析.电子工业出版社,2012
    150.宋小龙,安继儒.新编中外金属材料手册.化学工业出版社,2008
    151. M.A. Ifran,W.C. Chapman.Thermal Stresses in Radiant Tubes:A Comparison Between Recuperativeand Regenerative Systems.Applied Energy,2009,30:196–200
    152. M.A. Ifran,W.C. Chapman.Thermal Stresses in Radiant Tubes Due to Axial,Circumferential andRadial Temperature Distributions.Applied Thermal Engineering,2009,29:1913–1920
    153. C.F. Mcdonald.The Role of Ceramic Heat Exchanger in Energy and Resource Conservation.Journalof Engineering Power,1980,102:303–315
    154. R.M. Manglik,P.P. Fang.Effect of Eccentricity and Thermal Boundary Conditions on Laminar FullyDeveloped Flow in Annular Ducts.International Journal of Heat Fluid Flow,1995,16:298–306

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700