回旋管注波互作用非线性理论与模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
回旋管是一类具有重要发展前景的毫米波器件,能在毫米波及亚毫米波波段产生高功率、高效率和高增益,性能稳定,有一定的带宽,广泛应用在高功率雷达、电子对抗、微波武器、通信等领域,是目前电真空器件的热点研究对象之一。
     回旋管的注波互作用情况决定了回旋类器件的电子效率和主要的工作性能。是回旋类器件研究的关键内容,也是目前研究最为广泛的课题之一。各国学者开发了一系列可用于回旋管注波互作用的模拟与优化设计程序。本论文在深入了解回旋管的研究现状、发展方向及应用前景的基础上,对回旋管的注波互作用非线性理论进行了研究。主要工作和创新点如下:
     1.从基本的电磁场理论出发,推导出回旋管中电子注与高频场相互作用的自洽非线性方程组,建立了回旋振荡管、回旋速调管以及回旋行波管均适用的注波互作用自洽非线性理论模型。该模型采用简化的电磁场描述方法,用波导中横向电磁场的本征模式的叠加表示电磁场。相应地,将麦克斯韦方程组简化为各模式电压复振幅与电流复振幅关于时间和轴向坐标的耦合偏微分方程组(即广义电报方程),从而将电磁场的求解转化为广义电报方程的求解。各模式的场幅值随时间缓慢变化,更新电磁场的基本时间量程仅与谐振腔的填充时间相联系,因而允许比较长的时间间隔更新场。在此基础上,为了能够求解含有有限表面阻抗的电磁场,对广义电报方程进行了扩展,给出了损耗边界积分的处理方法,使广义电报方程能够计算损耗结构中的场。
     2.电子运动方程采用引导中心近似。在引导中心坐标系下,引入两种假设,其一是假设粒子穿过腔体的时间比电磁场演变时间要短。根据这种假设,粒子在腔内电磁场的辐射包络发生大的改变之前离开腔体。这就允许我们在描述电子运动方程时,将轴向坐标作为独立变量。而无需向PIC粒子模拟方法那样执行耗时的粒子位置沿轴向网格的插值运算,从而减少计算时间。其二是假设轴向磁场很强。在这种假设下,拉莫尔半径小于腔体特性长度,粒子沿磁场线运动。这两种假设的引入可以对电子运动方程进行简化,从而降低计算量。对激发电磁场的电流源,采用所有电子轨迹求和表示电流密度,根据电流源的定义得到电流源方程。从回旋管电子注横向速度满足高斯分布出发,建立了速度零散的分布模型。该模型更准确的反映粒子的分布情况,使非线性理论的计算结果更有意义。
     3.利用回旋管注波互作用自洽非线性理论模型,本文对一支Ka波段两腔回旋速调管放大器的非线性特性进行了深入研究。分析了注波互作用中的能量变化,研究了输入功率、电子注电压、电流、工作磁场、横纵速度比等工作参量对效率的影响。同时,应用粒子模拟软件MAGIC对设计的Ka波段两腔回旋速调管放大器进行了模拟验证,并对两种方法计算的结果进行了对比分析。MAGIC粒子模拟结果与自洽非线性理论程序结果基本一致,从而验证了回旋管注波互作用自洽非线性理论的正确性。在此基础上,利用所建立的理论模型设计了一支Ka波段二次谐波三腔回旋速调管放大器,研究了该回旋速调管放大器的非线性过程及特点。通过分析其非线性特性,确定了该回旋速调管放大器的最佳工作参数。同时,利用粒子模拟软件MAGIC进行大量的计算模拟,对设计的Ka波段二次谐波三腔回旋速调管放大器进行了对比验证。
     4.利用回旋管注波互作用自洽非线性理论模型,针对复合腔回旋管的特性,研究了94GHz二次谐波复合腔回旋管。分析了不同工作参数对复合腔回旋管非线性特性的影响,并总结模拟结果给出一组最优的参数。将优化参数代入粒子模拟软件MAGIC,对设计的复合腔回旋管进行了模拟验证。
     5.利用高频软件HFSS、粒子模拟软件MAGIC和广义电报方程,讨论了漂移段内和谐振腔内损耗结构对回旋速调管和回旋行波管性能的影响。同时,基于回旋管注波互作用自洽非线性理论模型,对含有损耗结构的回旋行波管进行了研究,分析了损耗介质层厚度、介电常数等对回旋行波管性能的影响,并进一步研究了回旋行波管的非线性特性。同时,利用粒子模拟软件MAGIC对该回旋行波管进行了对比模拟验证。
Gyrotron is one of the most promising novel millimeter wave devices. In the millimeter wave and submillimeter wave bands, it is able to produce high power, high efficiency and high gain. The Gyrotron has a certain bandwidth, and the performance is stable. It has great value in the millimeter wave high power radar, electronic warfare, microwave weapons, communications and other aspects of a very wide range of applications. The Gyrotron is currently one of the hot research object of the electric vacuum devices.
     Beam wave interaction in the gyrotron directly determines the efficiency and the working performance of electronic devices. Therefore, the study of gyrotron device of beam-wave interaction is the most widely studied topic, also is the most important and key device research content. Scholars at home and abroad spent a lot of time and energy to develop the program used for the gyrotron device simulation and optimization. In this dissertation, based on the depth analysis of gyrotron device development, application prospect and research status, the nonlinear self-consistent beam wave interaction theory and computer aided design are studied. The main work and innovation are as follows:
     1. From the basic theory of electromagnetic field, this dissertation derived the gyrotron of electron beam and the high frequency field interaction nonlinear self-consistent equations, established nonlinear self-consistent beam wave interaction theory model, which is applicable for Gyrotron oscillators, Gyroklystron amplifier and Gyro-travelling wave tude. This model uses a simplified description of the fields as a superposition of transverse electric and transverse magnetic eigenmodes of the waveguide. Accordingly, the Maxwell equation is simplified as the mode of voltage and current of complex amplitude on time and axial coordinates of the partial differential equations (i.e. generalized telegrapher's equations). Therefore, the solving electromagnetic field problem is transformed into solving the generalized telegrapher's equations.The complex amplitudes of the modes vary slowly with time. The basic time scale for updating the radiation field is a fraction of the cavity fill time, rather than a fraction of the high frequency period. On this basis, the loss of boundary integral in the generalized telegrapher's equations is processed, making these equations to calculate the fields in the loss of structure.
     2. Electronic equations of motion use the guiding center approximation. In the guiding center coordinate system, this dissertation introduces two kinds of hypothesis. One hypothesis is that the particles traverse the cavity in a time shorter than evolution time of the electromagnetic fields. Based on the hypothesis, particles transit the device before the envelope of the the radiation changes significantly. This allows us to describe the electron motion equations, the axial coordinates as independent variables. There is then no need to perform the usual interpolations on the axial grid of a particle location and the numercial operations of "gather" and "scatter", which is time consuming. The other hypothesis is that the axial magnetic field is strong. In this assumption, the Larmor radius is smaller than the cavity characteristic length and the particles essentially follow the magnetic-field lines.The introduction of the two hypotheses can be simplified equations of electron motion, thereby, reducing the amount of computation.With all electronic trajectories, it can calculate the current source. Then, the particles initial conditions are given. Transverse velocity of the electrons from the gyrotron satisfies the Gaussian distribution, distribution model of the velocity spread in the gyroklystron amplifier beam-wave interaction is established. In addition, we solved numerically the theory model of generalized telegrapher's equations and the electron motion equations. Using the unconditionally stable classical implicit format to difference combined with the boundary conditions, a numerical model of generalized telegrapher's equations is established.
     3. Using the beam wave interaction self-consistent nonlinear theory model, a Ka band two cavities gyroklystron amplifier is numerically studied. The beam-wave interaction energy changes is discussed, and the input power, electron beam voltage, magnetic field, horizontal and vertical velocity ratio effects on efficiency and output power are analyzed. This dissertation use particle simulation software MAGIC to optimize and simulate the designed Ka band two cavities gyroklystron amplifier. The calculated results of the two methods were compared and analyzed. MAGIC simulation results and the self-consistent nonlinear theory program results are basically consistent, which verifies the self-consistent nonlinear theory. The program can be used as a gyrotron device preliminary design tool, which can greatly shorten the gyrotron device simulation time, accelerate device design process, and also deepen understanding of the amplifier of electron beam and wave interaction mechanisms and the physical process. Therefore, the work on gyrotron device development has important guiding significance. On this basis, the design and simulation of a Ka-band two harmonics three cavities of the gyroklystron amplifier is presented. The dissertation studied the gyrotron device nonlinear process and characteristic, and discussed electronic injection voltage, current and magnetic field, frequency and other working parameters on the device. Through the analysis of nonlinear characteristics, we determined the gyrotron optimum working parameters, and achieved the design goals.This dissertation also use particle simulation software MAGIC to optimize and simulate the designed Ka-band two harmonics of the three cavities gyroklystron amplifier.
     4. Using the beam wave interaction self-consistent nonlinear theory simplified model, this dissertation study a94GHz second harmonics complex cavity gyrotron. By continuously adjusting the the complex cavity of dimension, it get a set of optimized parameters and give the impact of the changes in different parameters of the complex cavity gyrotron characteristics. Then, this dissertation use MAGIC to optimize and simulate the94GHz two harmonics complex cavity gyrotron.
     5. Using the high frequency software HFSS, particle in cell simulation software MAGIC and the generalized telegrapher's equations, this dissertation discusses two kinds of loss structures on the gyrotrons. At the same time, the analysis of the loss of the structure and its application is given. Based on the theory model, this dissertation studied the Gyro-travelling wave tude with loss structure. The loss of the thickness of the dielectric layer, the dielectric constant of the gyrotron traveling wave tube on output power is analyzed, and further the nonlinear characteristics of the Gyro-travelling wave tude is studied in detail. Then, we use simulation software MAGIC to compare and validate the Gyro-travelling wave tude.
引文
[1]R.Q.Twiss, J.A.Roberts. Electromagnetic radiation from electrons rotating in an ionized medium under the action of a uniform magnetic field[J]. Aust.J. Phys.,1958,11:424-432
    [2]J.Schneider. Stimulated emission of radiation by relativistic electrons in a nagnetic field [J].Phys.Rev.Lett.,1959,2:504-508
    [3]A.V.Gaponov. Interaction between irrectilinear electron beams and electromagnetic waves in transmission lines[J]Izv.VUZov. Radio fiz.,1959,2:836-837
    [4]R.H.Pantell. Backward wave oscillation in an unloaded waveguide[J]. Proc IRE,1959, 47:1146-1146
    [5]J.L.Hirshfield and J.M.Wachtell.Electron cyclotron maser[J]. Phys. Rev. Lett.,1964,12:533-536
    [6]刘濮鲲,徐寿喜.回旋速调管放大器及其发展评述[J].电子信息学报,2003,25(5):683-694
    [7]廖复疆,孙振鹏,闫铁昌.真空电子技术[M].北京:国防工业出版社,2008,104-106
    [8]杨祥林,张兆镗,张祖舜.微波器件原理[M].北京:电子工业出版社,1994,319-323
    [9]王文祥.微波工程技术[M].北京:国防工业出版社,2009,307-308
    [10]V.L.Granatstein, B. Levush, B.G.Danly, et al. A quarter century of gyrotron research and development[J]. IEEE Trans. on Plasma Sci.,1997,25:1322-1335
    [11]J.R. Luo, G.J.Yuan, Y.N. Su, et al. Millimeter wave processing of materials in IECAS[C]. Proceedings of 27th IEEE International Conference on Infrared and Millimeter Waves 2002, San Diego, California, USA,2002,79-80
    [12]V.V.Alikaev, G.A.Bobrovskii, M.M.Ofitserov, et al. Electron-cyclotron heating on the Tokamak TM-3[J]. JEIP Lett.,1972,15:27-31
    [13]N.I.Zaytsev, T.B.Pankratova, M.I.Pterlin, et al. Millimeter-and submillineter-wave gyrotron[J]. Eng.Electron Radio.Phys.,1974,19:103-107
    [14]D.V.Kisel, G.S.Korablev, V.G.Pavel'yev, et al. An experimental study of a gyrotron operating at the second harmonic of the cyclotron frequency with optimized distribution of the, high-frequency field[J]. Radio Eng. Electron. Phys.,1974,10:95-100
    [15]A.V.Gaponov, A.L.Gpl'denberg, D.P. Grigor'ev, et al. An experimental investigation of cm wave gyrotrons[J]. Izv, VUZov Radiofizika,1975,18:280-289
    [16]Y.V.Bykov, A.F.Goldenberg, L.V.Nikolaev, et al. An experimental investigation of a gyrotron with whispering-gallery modes[J]. Izv. VUZov. Radiofiz,1975,18:1544-1547
    [17]R.M.Gilgenbach, M.E.Read, K.E.Hachett, et al. Heating at the electron cyclotron frequency in the ISX-B Tokamak[J]. Phys. Rev. Lett.,1980,44(10):647-650
    [18]M.E.Read, R.M.Gilgenbach, R.Lucey, et, al. Spatial and temporal coherence of a 35GHz gyromonotron using the TE01 circular mode[J]. IEEE Trans. on Microwave Theory and Tech., 1980, MTT-28(8):875-878
    [19]Barker, Booske, Luhann, et al. Modern micerowave and millimeter-wave power electronics[M].IEEE, NewYork:Wiley-IEEE Press,2005,81-110
    [20]Y.V.Bykov, V.E.Semenov. Processing of material using microwave radiation in applications of high-power microwaves[M],Boston, MA:Artech House,1994,.319-352.
    [21]R. L. Ives, H. R. Jory, J. Neilson, et al. Development and test of a 500kW,8-GHz gyrotron[J].IEEE Trans. Electron Dev.,1993,40(7):1316-1321
    [22]B.V. Raisky, S.E. Tsimring. Numerical simulation of nonstationary processes in intense helical electron beams of gyrotrons[J]. IEEE Trans. Plasma Sci.,1996,24:992-998
    [23]G. P. Saraph, T.M. Antonsen, G.S. Nusinovich, et al. A study of parametric instability in a harmonic gyrotron:Designs of third harmonic gyrotrons at 94GHz and 210GHz[J]. Phys. Plasmas,1995,2:3511-3522
    [24]S.E Tsimring. Electron beams and microwave vacuum electronics. John Wiley & Sons Inc,2006, 501-530
    [25]Y. Carmel, A.K. Ganguly, D. Dialetis, et al. A high power complex cavity gyrotron for fusion research devices[C]. Electron Devices Meeting,1982 International/IEDM,1982,2:372-374
    [26]H. Jory, R. Bier, S. Evans, et al. First 200kW CW operation of a 600GHz gyrotron[C]. Electron Devices Meeting,1982 International/IEDM,1988,267-283
    [27]A.W. Fliflet, R.C. Lee, M.E. Read. Self-consistent field model for the complex cavity gyrotron[J]. Int. J. Electronics,1988,65(3):273-283
    [28]S.A. Malygin. Powerful gyrotron operating at the third harmonic[J].Radiotekhnika I Elektronika, 1986,31:334-336
    [29]H.F. Li. and M. Thumm. Mode coupling in corrugated waveguides with wall impedance diameter change[J]. Int. J. Electronics,1991,71(5):827-844
    [30]Y.Carmel, K.R.Chu, R.Read, et al.Realization of a highly stable and efficient gyrotron for controlled fusion research[J]. Phys. Rev. Lett.,1983,50:112-115
    [31]A.G.Litvak, G.G.Denisov, M.V.Agapova, et al. Development in Russia of 170 GHz gyrotron for ITER[C]. IRMMW-THz 2009 the 34th International Conference on Infrared, Millimeter, and Terahertz Waves, Busan, Korea,2009,1-2
    [32]H.F. Li, P.Z. Du, S.W. Yu, et al. The study on third harmonic gyrotron with complex cavity[C]. In Proc. Conf. Dig.21st Int. Conf. Infrared and Millimeter Waves,1996,263-264
    [33]喻胜,李宏福,谢仲怜等.8mm波段三次谐波复合腔回旋管的非线性分析[J].物理学报,2001,50(10):1979-1983
    [34]H.F. Li, Z.L.Xie. A 35-GHz low-voltage third-harmonic gyrotron with a permanent magnet system[J]. IEEE Trans. on Plasma Sci.,2003,31(2):264-271
    [35]I.I.Antakov, A.V.Gaponov, E.V.ZasyPkin, et al. Gyroklystrons-millimeter wave amplifiers of the highest power[C]. Proceedings 1993 International Symposium on Strong Microwaves in plasmas, Moscow-N. Novgorod-Moscow,1994:587-587
    [36]W.M.Bollen, A.H.Mccurdy, B.Arfin, et al. Design and performance of a three-cavity gyroklystron amplifier[J]. IEEE Trans Plasma Sci.,1985,13:417-423
    [37]W.Lawson, J.P.Calame, B.Hogan, et al. Efficiency operation of a high power X-band gyroklystron[J].Phys. Rev. Lett.,1991,67:520-523
    [38]K.R.Chu, V.L.Granatstein, P.E.Latham, et al. A 30-MW gyroklystron amplifier design for high energy linear accelerators[J]. IEEE Trans. on Plasma Sci.,1985,13:424-434
    [39]H.W.Matthews, W.Lawson, J.P.Calame, et al. Experimental studies of stability and amplification in a two-cavity second harmonic gyroklystron[J] IEEE Trans. on Plasma Sci.,1994,22:825-833
    [40]I.I.Antokov,E.V.Zasypkin,E.V.Sokolov.35GHz radar gyroklystron[C], in Proc,18th Int. Conf. IR&MM Waves, J.R.Birch and T.J.Parker,Eds.,Colchester,1993,2104:338-339
    [41]E.V.Zasypkin, M.A.Moiseev, I.G.Gachev, et al. Study of high-harmonic Ka-band second-harmonic gyroklystron amplifier[J]. IEEE Trans. on Plasma Sci.,1996,24(3):666-670
    [42]JJ.Choi, A.H.McCurdy, F.Wood, et al.Experimental investigation of a high power, two-cavity 35GHz gyroklystron amplifier[J]. IEEE Trans. on Plasma Sci.,1998,26(3):416-425
    [43]J.P.Calame, M.Garven, J.J.Choi, et al. Experimental studies of bandwith and power production in a three-cavity,35GHz gyroklystron amplifier[J]. Phys. plasmas,1999,6(1):285-297
    [44]M.Garven, J.P.Calame, K.T.Nguyen, et al. Experimental studies of a four-cavity,35GHz gyroklystron amplifier[J]. IEEE Trans. on Plasma Sci.,2000,28(3):672-680
    [45]M.Blank, B.G.Danley, B.Levush, et al. Experimental demonstration of a W-band gyroklystron[J].Phys. Rev. Lett.,1997,79(2):4485-4488
    [46]M.Blank, B.G.Danley, B.Levush, et al. Experimental investigation of W-band (93GHz) gyroklystron amplifiers[J]. IEEE Trans. on Plasma Sci.,1998,26(3):409-415
    [47]I.I.Antokov, E.V.Zasypkin, E.V.Sokolov. Design and performance of 94GHz high power multicavity gyroklystron amplifier[C]. In Proc,18th Int. Conf. IR&MM Waves, J.R.Birch and T.J.Parker, Eds., Colchester,1993,2104:466-467
    [48]M.Blank, B.G.Danley, J.P.Calame, et al. Demonstration of a lOkW average power W-band gyroklystron amplifier[J].Phys. plasmas,1999,12(6):4405-4409
    [49]B.G.Danley, M.Blank, J.P.Calame, et, al. Development and testing of a high-average power 94GHz gyroklystron[J]. IEEE Trans. on Plasma Sci.,2000,28(3):713-726
    [50]M.Blank, B.G.Danley, B.Levush. Experimental demonstration of W-band gyroklystron amplifier with improved gain and efficiency[J]. IEEE Trans. on Plasma Sci.,2000, 28(3):706-711
    [51]Y.Y.Lau, K.R. Chu, L.R. Barnett, et al. Gyrotron traveling wave amplifier:analysis of oscillations[J]. Int of Infrared and Millimeter Waves,1981,2(3):373-393
    [52]K.C. Leou, D.B. McDermott, N.C. Luhmann Jr. Large signal characteristics of a wide-band dielectric-loaded gyro-TWA[J]. IEEE Trans. Plasma Sci.,1996,24(3):718-725
    [53]K.T. Nguyen, J.P. Calame, D.E. Pershing, et al. Design of a Ka-band gyro-TWT for radar applications[J]. IEEE Trans. on Plasma Sci.,2001,48(1):108-115
    [54]Q.S Wang, D.B Mcdermott, N.C.Lahmann. Operation of a stable 200kW second harmonics Gyro-TWT amplifier[J]. IEEE Trans. on Plasma Sci.,1996,24(3):700-706
    [55]K.C Leou, T. Pi, D.B McDemott. Circuit design for a wide-band disk-loaded gyro-TWT amplifier[J]. IEEE Trans. on Plasma Sci.,1998,26(3):488-495
    [56]A.T. Lin, K.R. Chu, C.C. Lin, et al. Marginal stability design criterion for Gyro-TWT and comparison of fundamental with second harmonic operation[J]. Int. J. Electronics,1992,72(5): 873-885
    [57]K.C. Leou, D.B. McDermott, C.K. Chong, et al. Experimental investigation of a broadband dielectric-loaded gyro-TWT amplifier[J]. IEEE Trans. on Electron Dev.,1996, 43(6):1016-1020
    [58]V.A.Flyagin, A.V.Gaponov, M.l.Petelin, V.K.Yulpatov. The gyrotron[J]. IEEE Trans. on Microwave Theory and Tech.,1977,25(6):514-521
    [59]P.M.Malouf, V.L.Granatstein, S.Y.Park, et al. Performance of a wideband, three-stage, mixed geometry gyrotwystron amplifier[J]. IEEE Trans. on Electron Dev.,1995,42(9):1681-1685
    [60]L.R.Branett, Y.Y.Lau, K.R.Chu, et al. An experimental wide band gyrotron traveling wave amplifier[J]. IEEE Trans. on Electron Dev.,1981,28(7):872-875
    [61]K.R.Chu, L.R.Branett, W.K.Lau, et al. Recent development in milimeter wave gyro-TWT research at NTHU[J].IEDM Tech.Dig.,1990,699-702
    [62]K.T.Nguyen. Design of Ka band gyro-TWT for radar applications[J]. IEEE Trans. Electron Dev.,2001,48(1):108-115
    [63]Q.S.Wang. Operation of a stable 200-kW second harmonic gyro-TWT amplifier[J]. IEEE Trans. on Plasma Sci.,1996,24(3):700-706
    [64]Y.S.Yeh, C.L.Hung, C.W.Su, et al. W-Band second-Hharmonic gyrotron traveling wave amplifier with distributed-loss and severd structures[J]. International Journal of infrared and millimeter waves,2004,25(1)29-40
    [65]M. Blank, J. Calame, B. Danly, et al, Experimental demonstration of high power millimeter wave gyro-amplifiers[C].Proceedings of the 1999 Particle Accelerator Conference, New York, 1999,1016-1018
    [66]E.V.Zasypkin,M.A.Moiseev,E.V.Sokolov, et al. Effeet of penultimate cavity Position and tuning on three-cavity gyroklystron amplifier performance[J]. Int.J. Electronics,1995, 78(2):423-433
    [67]G.S.Nusinovich, O.Dumbrajs. Two-harmonic prebunching of electrons in multicavity gyrodevices[J].Phys.Plasma,1995,2(2):568-577
    [68]R.S.Symons and H.R.Jory. Cyclotron resonance devices[M].Advances in Electronics and Electron Physics, NewYork:Academic Press,1981,55:201-231
    [69]R.S.Symons and H.R.Jory. Small-signal theory of gyrotrons and gyroklystrons[C]. In Proc. Symp. Eng. Probl. Fusion Res.7th,1977,1111-1115
    [70]C.T.Iatrou, G.Mourifr and P.Grin. Linear analysis of the gyroklystron with Gaussian field profile[J]. Int. J. Electronics,1993,75(3):535-559
    [71]A.W. Fliflet, R.C. Lee, S.H. Gold, et al.Time-dependent multimode simulation of gyrotron oscillators[J]. Phys. Rev. A,1991,43(11):115-125
    [72]G.S.Nusinovich. Review of the theory of mode interaction in gyrodevices[J]. IEEE Trans. on Plasma Sci.,1999,27(2):313-326
    [73]李宏福,杜品忠,杨仕文等.突变复合腔回旋管自洽场理论与模拟[J].物理学报,2000,49(2):312-317
    [74]E.Borie, B. Jodicke.Self-consistent theory of mode competition for gyrotrons[J]. Int J Electronics,1992,72(5/6):721-744
    [75]B.G. Danly, R.J. Temkin.Generalized nonlinear harmonic gyrotron theory[J]. Phys. Fluids, 1986,29(2):561-567
    [76]A.W.Fliflet, M.E.Read, K.R.Chu, et al. A self-consistent field theory for gyrotron oscillators: application to a low Q gyromonotron[J]. Int. J. Electronics,1982,53(6):505-521
    [77]G.S. Nusinovich. Linear theory of a gyrotron with weakly tapered external magnetic field[J]. Int. J.Electronics,1988,64(1):127-135
    [78]O.Dumbrajs, G.S.Nusinovich.Cold-cavity and self-consistent approaches in the theory of mode competition in gyrotrons[J]. IEEE Trans. on Plasma Sci.,1992,20(3):133-138
    [79]杨中海,李斌等.微波管CAD技术进展[J].真空电子技术,No.4,2002.1-9
    [80]李斌,杨中海,李建清等.微波管CAD技术进展[J].电子科技大学学报,2009,38(6):897-903
    [81]R.T.Benton. First pass TWT design success[J]. IEEE Trans. on Electron Dev.,2001, 48:176-178
    [82]徐寿喜.Ka波段二次谐波回旋速调管放大器的研究[D]北京:中国中国科学院电子学研究所,2004,47-60
    [83]梁显锋.8mm二次谐波三腔回旋速调管放大器的研究[D]北京:中国中国科学院电子学研究所,2004,52-99
    [84]耿志辉.毫米波回旋速调管放大器的自洽非线性理论与模拟[D]北京:中国中国科学院电子学研究所,2005,13-93
    [85]刘迎辉.回旋速调放大器理论与模拟研究[D].成都:电子科技大学,2008,45-70
    [86]M. V. Kartikeyan, B. Edith, K.A.T. Manfred.Gyrotrons:high power microwave and millimeter wave technology[M].New York:Springer,2004,33-33
    [87]J.J. Ma, X.F. Zhu, X.L. Jin, et al. Time-dependent nonlinear theory and numerical simulation of 94GHz complex cavity Gyrotron[J]. Progress In Electromagnetics Research M,2012, 25:141-155
    [88]J.J. Ma, X.F. Zhu, X.L. Jin, et al. Numerical simulation of two-cavity gyroklystron amplifier[C].2012 International Conference on Microwave and Millimeter Wave Technology (ICMMT2012), Shen Zhen China,2012,2:1-4
    [89]马俊建,朱小芳,金晓林,等.回旋速调管注波互作用数值模拟研究[C].中国电子学会真空电子学分会十八届学术年会军用微波管研讨会论文集,张家界,2011,545-548
    [90]朱小芳,马俊建,金晓林,等.回旋速调管时域非线性理论与模拟验证[C].中国电子学会真空电子学分会十八届学术年会军用微波管研讨会论文集,张家界,2011,600-604
    [91]来国军,刘濮鲲.W波段回旋行波管放大器速度零散的分析[J].红外与毫米波学报,2006,25(6):447-450
    [92]蔡熙章.回旋电子注速度零散的实验研究[J].电子科学学刊,1984,6(1):55-63
    [93]G.S. Nusinovich, H. Li. Large-signal theory of gyro traveling wave tubes at cyclotron harmonics[J]. IEEE Trans. on Plasma Sci.,1992,20(3):170-175
    [94]T.N. Khanh, G.S. Park, J.J. Choi, et al. Effects of beam velocity spread on two-stage tapered gyro-TWT amplifier[J]. IEEE Trans. Electron Dev.,1996,43(4):655-660
    [95]C.B. Liu, T.M. Antonsen, B. Levush. Simulation of the velocity spread in magnetron injection guns[J]. IEEE Trans. on Plasma Sci.,1996 24 (3):982-991
    [96]刘三水.回旋行波管注波互作用的研究和数值计算[D].成都:电子科技大学物理电子学院,2007,33-71
    [97]肖舒.等离子体填充介质Cerenkov振荡器和耦合腔链研究[D].成都:电子科技大学物理电子学院,2002,60-62
    [98]陆金甫.偏微分方程数值解法[M].北京:清华大学出版社,2004,,13-18
    [99]王秉中.计算电磁学[M].北京:科学出版社,2002,197-198
    [100]约翰D.安德森.计算流体力学基础及其应用[M].(吴颂平,刘兆森).北京:机械工业出版社,2007,367-370
    [101]钟尔杰,黄廷祝.数值分析[M].北京:高等教育出版社,2004,203-211
    [102]丁丽娟.数值计算方法[M].北京:北京理工大学出版社,1997,210-214
    [103]P.E. Latham, W. Lawson, V.Irwin. The design of a 100MW, Ku band second harmonic gyroklystron experiment [J]. IEEE Trans. on Plasma Sci.,1994,22(5):804-817
    [104]M. Botton, T.M. Antonsen, B. Levush, et al. MAGY:A time-dependent code for simulation of slow and fast microwave sources[J]. IEEE Trans. on Plasma Sci.,1998,26(3):882-892.
    [105]J.J.Choi, A.H.McCurdy, F.Wood, et al.Experimental investigation of a high power, two-cavity 35GHz gyroklystron amplifier[J]. IEEE Trans. on Plasma Sci.,26(3), pp.416-425,1998
    [106]M. Garven, J.P. Calame, K.T. Nguyen, et al. Experimental studies of a four-cavity,35 GHz gyroklystron amplifier[J]. IEEE Trans. on Plasma Sci.,2000,28(3):672-680
    [107]P.K Liu, S.C.Zhang, S.X.Xu,et al. Experimental studies of a Ka-band second harmonic gyroklystron amplifier[C],Infrared Millimeter and Terahert Waves 35th International Conference, Rome,2010,1-1
    [108]S.X.Xu, P.K Liu, S.C.Zhang, et al. Design and experimental operation of a Ka-band second harmonic gyroklystron amplifier[C], Vacuum Electronics Conference,2008. IEEE International, Monterey CA,2008,252-253
    [109]徐勇,罗勇,熊彩东,等.Ka波段TEol模基波回旋速调放大器的设计与实验[J].物理学报,2011,60(4):757-764
    [110]刘崸威.太赫兹回旋谐波器件的研究[D].成都:电子科技大学物理电子学院,2009,99-107
    [111]雷朝军.8mm二次谐波回旋速调管模拟研究[D].成都:电子科技大学物理电子学院,2006,30-51
    [112]郭建华,喻胜,李宏福.回旋速调管注-波互作用非线性理论研究[J].强激光与粒子数,2011,23(9):2453-2456
    [113]郭建华,喻胜,李宏福,等.回旋速调管注波互作用瞬态非线性理论与模型研究[J].物理学报,2011,60(9):090301-1-090301-8
    [114]K.R Chu.Theory of electron cyclotron maser interaction in a cavity at the harmonic frequencies[J].Phys.Fluids,1978,21 (12):2354-2364
    [115]I.I. Antakov, I.G. Gachev, M.A.Moiseev, et al.35GHz second harmonic gyroklystron experiment[C]. in conf. Dig.29th Int. Conf.Infrared Millimeter Waves, Sendai, Japan,1991, 37-37
    [116]W. Lawson, H.W. Matthews, M.K. E. Lee, et al. High-power operation of a K-band second-harmonic gyroklystron[J]. Phys. Rev. Lett.,1993,71(3):456-459.
    [117]X.J. Niu, L.Gu, H.F.Li.94 GHz, CW, low-voltage gyrotron[C].20108th International Vacuum Electron Sources Conference and Nanocarbon, IVESC 2010 and NANO carbon 2010, Nanjing, China,2010,341-342
    [118]J.H.Guo, S.Yu, X.Li, et al. Study on nonlinear theory and code of beam-wave interaction for gyroklystron[J], J Infrared Milli Terahz Waves,2011,32:1382-1393
    [119]殷勇,祝大军,刘盛刚,等.35GHz, TE021回旋速调管的电磁模拟[J].电子学报,2005,33(6):757-764
    [120]G.S. Nusinovich. Linear theory of a gyrotron with weakly tapered external magnetic field[J]. INT. J. Electronics,1988,64(1):127-135
    [121]V.A. Flyagin, A.V.Gaponov, M.I. Petelin, et al. The Gyrotron[J]. IEEE Trans. on Microwave Theory and Tech.,1977,25(6):514-521
    [122]K.R. Chu. The electron cyclotron maser[J].Reviews of modern physics,2004,76(2):489-540
    [123]W.G. Lawson, Theoretical evaluation of nonlinear tapers for a high power gyrotron[J]. IEEE Trans. on Microwave Theory and Tech.,1990,38(11):1617-1622
    [124]H.F. Li, P.Z. Du, S.W. Yang.A self-consistent field theory and simulation for complex cavity gyrotron with abrupt transition[J]. Acta Physica Sinica,2000,49(2):312-317
    [125]H.F. Li. A 35GHz low-voltage 3rd-harmonic gyrotron with a permanent-magnet system[J]. IEEE Trans. Plasma Sci.,2003,31(2):264-271
    [126]D.R. Whaley, M.Q. Tran, and T.M. Antonsen Jr. Mode competition and startup in cylindrical cavity Gyrotrons using high-order operating modes [J]. IEEE Trans. on Plasma Sci.,1994, 22(5):850-860
    [127]O. Dumbrajs, E. Borie. A complex cavity with mode conversion for gyrotrons[J]. Int. J. of Electronics,1988,65(3):285-295
    [128]A.W. Fliflet, R.C. Lee. Self-consistent field model for the complex cavity gyrotron[J]. Int. J. Electronics,1988,65(3):273-283
    [129]X.J.Niu, L.Wang, H.F. Li. Experimental investigation of 94 GHz second-harmonic gyrotrons[C].Vacuum Electronics Conference (IVEC), IEEE International, Rome,2009, 485-486
    [130]X.J.Niu, L.Wang, H.F.Li.94GHz second-harmonic gyrotron with complex cavity [C] Vacuum Electronics Conference (IVEC), IEEE International, Rome,2009,469-470
    [131]Y.Huang, H.F.Li, P.Z.Du, et al. Third-harmonic complex cavity gyrotron self-consistent nonlinear alanysis[J].IEEE Trans. on Plasma Sci.,1997,25(6):1406-1410
    [132]H.Z. Guo, D.S. Wu, Y.H. Miao, et al. Special complex open-cavity and low-magnetic field high-power gyrotron[J]. IEEE Trans. on Plasma Sci.,1990,18(3):326-333
    [133]M.V. Kartikeyan, A. Kumar, S. Kamakshi, et al. RF behavior of a 200-kW CW gyrotron[J] IEEE Trans.on Plasma Sci.,2008,36(3):631-636
    [134]J.P. Calame, D.K. Abe. Applications of advanced materials technologies to vacuum electronic devices[C]. Proc.of the IEEE,1999,87(5):840-864
    [135]S.G.Tantawi,W.T.Main,P.E.Latham, et al. High PowerX-band amplification from an overmoded three-eavity gyroklystron with atunable Penultimate cavity[J].IEEE Trans. on Plasma Sci.,1992,20:205-215
    [136]H.W.Matthews, W.Lawson, J.P.Calame, et al. Experimental studies of stability and amplification in a two cavity second harmonic gyroklystron[J].IEEE Trans. on Plasma Sci.,1994,22:825-833
    [137]K. R. Chu, H. Y. Chen, C. L. Hung, et al. Ultrahigh gain gyrotron traveling wave amplifier [J].Phys. Rev. Lett.,1998,81(21):4760-4763
    [138]K. R. Chu, H. Y. Chen, C. L. Hung, et al.Theory and experiment of ultrahigh-gain gyrotron traveling wave amplifier[J]. IEEE Trans. on Plasma Sci.,1999,27:391-404
    [139]J. P. Calame, M. Garven, B. G. Danly, et al. Gyrotron-traveling-wave-tube circuits based on lossy ceramics[J]. IEEE Trans. Electron Dev.,2002,49:1469-1477
    [140]H H. Song, L. R. Bamett I, D. B. McDermott,et al. W-band heavily loaded the gyrotron traveling wave amplifier[C], 2003 IEEE,2003,348-389
    [141]J.R.Sirigiri, M.A Shapiro, R.J.Temkin A high power 140GHz quasioptical gyro-TWT[C]. Plasma Science,2003, ICOPS 2003.2-5
    [142]Sirigiri J R, Shapiro M A, Temkin R J. Initial experimental results from the MIT 140 GHz quasioptical gyro-TWT [C]. Vacuum Electronics Conference,2002, Third IEEE International, 2002,83-84
    [143]M. Garven, J.P. Calame, G.D. Bruce, et al. A gyrotron-traveling-wave tube amplifier experiment with a ceramic loaded interaction region[J]. IEEE Trans. on Plasma Sci.,2002, 30(3):885-893
    [144]D. R. Gillingham and T.M. Antonsen, Jr. Linear theory of shot noise in harmonic gyroklystrons and Gyro-TWT amplifiers[J]. IEEE Trans. on Plasma Sci.,2004,32(3):987-993
    [145]J.M.Neilson, P.E. Latham, M.Caplan, et,al. Determination of the resonant frequencies in a complex cavity using the scattering matrix formulation[J]. IEEE Trans. on Microwave Theory and Tech.,1989,37(8):1165-1170
    [146]S.Jamal, J.V.Ronald. Mode coupling in coaxial waveguides with varying-radius center and outer conductors [J]. IEEE Trans. on Microwave Theory and Tech.,1995,43(3):582-591
    [147]W.Alvin. Solution of waveguide discontinuities by modal analysis[J]. IEEE Trans. on Microwave Theory and Tech.,1967,15(9):508-517
    [148]W. Lawson, P.E. Latham. The scattering matrix formulation for overmoded coaxial cavities [J]. IEEE Trans. on Microwave Theory and Tech.,1992,40(10):1973-1977

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700