基于微波光子学的可调微波信号源
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微波光子学是一门新兴的研究微波信号与光信号相互作用的交叉学科,其研究领域包括了微波信号的光子学产生、传输、测量与处理,光纤无线通信系统,光控相控阵雷达等。基于微波光子技术的宽带、可调谐微波/毫米波信号产生作为微波光子系统中的一项关键技术,近年来吸引了广泛关注。论文简要介绍了微波光子学的发展历史及主要应用领域,围绕基于微波光子学的宽带可调谐微波/毫米波信号源,从理论分析和实验验证两方面,研究了几种性能优越、结构新颖的微波/毫米波产生方案,分别为基于光倍频的可调毫米波信号源、基于倍频光电振荡器的可调微波信号源和基于微片激光器的可调微波信号源。
     基于光自外差原理的光倍频毫米波产生技术是通过对低频信号的光域处理来产生高频毫米波信号。该方案对器件要求低,性价比较高。论文通过构建一个多次调制的光纤环形腔,结合可调光滤波器,实现了10GHz微波信号的光学6次倍频,获得了60GHz的毫米波信号,并通过改变低频调制信号的频率实现了毫米波信号频率的可调。
     基于倍频光电振荡器的可调微波信号源具有极低的相位噪声和极高的频谱纯度。论文在深入研究光电振荡器相关理论基础上,提出了一种基于相位调制器和啁啾光纤光栅的倍频光电振荡器结构,该方案利用一个级联了光带通滤波器的相位调制器实现双边带相位调制,经拍频产生倍频信号,同时通过啁啾光纤光栅的色散效应产生驱动调制器的基频反馈信号。实验中成功获得高质量的8GHz基频信号和16GHz倍频信号。在该方案基础上,去除啁啾光纤光栅,代之以受激布里渊散射的选择性放大来获得基频反馈信号以构成振荡环路。通过改变布里渊散射的泵浦信号,就可实现了倍频光电振荡器输出信号的频率调节。实验中使用载波抑制的强度调制信号作为布里渊泵浦,当低频驱动信号频率在200MHz~2GHz范围变化时,可获得一个在21.4-25GHz范围内连续变化的倍频微波信号。
     基于微片激光器的可调微波信号源具有成本低、体积小、性能高和宽带调谐的优点,可满足未来通信系统对集成度的要求,是目前的研究热点,也是本文研究的一个重点。论文系统研究了基于微片激光器的可调微波信号源。在理论分析微片激光器基础上,设计并研制了Nd:YAG+LiNbO3复合腔微片激光器,其中Nd:YAG作为激光增益介质,LiNbO3作为电光调谐介质,并通过合理的泵浦使得谐振腔运行在基横模状态,保证其单模输出。通过改变加在电光晶体LiNbO3上的直流控制电压,由腔内双折射效应获得的相互正交的双频激光经拍频后即可产生频率连续线性可调的宽带微波信号。由于腔内两个正交激光模式是由同一个谐振腔产生,经历相同的相位波动、具有很好的相位相干性,因此拍频得到的微波信号具有很好的相位噪声性能。本方案实现的可调微波信号源具有结构紧凑、易于集成、调节带宽大、响应速度快、控制简单及信号质量高等优点。实验实现了调节灵敏度为3.02MIlz/V、最大输出频率14GHz的系统性能,其中14GHz信号在10kHz偏移处的相位噪声约为-82dBc/Hz。
Microwave photonics is an emerging interdisciplinary research area which studies the interaction of microwave and optical signals for applications such as photonic generation, distribution, processing and measurement of microwave/millimeter-wave signal; radio-over-Fiber (RoF) system; optically controlled phased array radar, and so on. As a key technique for microwave photonic system, generation of wideband and tunable microwave signal has attracted great interests in the past few years. With briefly introducing the historical development and main application areas of microwave photonics, this thesis is mainly concerned on the generation of widely tunable microwave/millimeter-wave signal based on microwave photonics, and propose several novel methods both theoretically and experimentally, including microwave source based on optical frequency multiplication (OFM); tunable microwave source based on frequency-doubling optoelectronic oscillator (OEO) and microwave source based on microchip laser.
     The OFM generation of millimeter wave signal based on optical self-heterodyning, generating high frequency millimeter wave signal through processing low frequency signal in optical domain, has low requirement for device and high cost performance. By configuring a fiber ring resonator combined with an tunable optical filter, a60GHz millimeter wave with six-time frequency multiplication of a lOGHz microwave signal is obtained, while the frequency tenability can be realized by adjusting the frequency of driven signal.
     The tunable microwave source based on frequency-doubling OEO has excellent phase noise performance. After fully studying the principle of OEO, we first propose a simple realization of frequency-doubling optoelectronic oscillator using a phase modulator and a chirp fiber Bragg grating (CFBG). In this OEO configuration, a phase modulator in combination with an optical filter is working as doubled-sideband phase modulation to produce a frequency-doubling microwave signal, while the CFBG ensures the oscillation of feedback driving signal at fundamental frequency with its dispersion effect. As a result, high quality fundamental signal at8GHz and frequency-doubling signal at16GHz are simultaneously obtained. Furthermore, on the basis of frequency-doubling optoelectronic oscillator mentioned above, removing the CFBG, we introduce Stimulated Brillouin Scattering effect to provides the narrowband filtering and ensure the oscillation of the feedback driving signal at fundamental frequency. By varying the Brillouin pump signal introduced via double sideband-carrier suppression (DSB-CS) modulation, the frequency tunability of the frequency-doubling OEO is realized over a wide range. In experiment, a continuous tunable frequency-doubling signal from21.4GHz to25GHz is generated when the diving signal applied on the intensity modulator is tuned from200MHz to2GHz.
     The tunable microwave source based on microchip laser, which has the advantages of low cost, compact size, high performance and wideband tenability, and can effectively meet the need of integration for future communication system, is not only a hot spot for research, but also a focus of this thesis. We fully investigating the principle of microchip laser, design and fabricate a composite cavity microchip laser, which consists of Nd.YAG crystal acting as active medium and LiNbO3acting as electro-optical tuning component. Varying the controlling voltage applied on the LiNbO3, a continuously tunable microwave signal can be easily obtained by beating the dual-frequency laser with two orthogonal polarization modes that generated by the intra-cavity birefringence. Because the two optical modes share the same cavity and experience the same phase fluctuations, a good phase noise performance heterodyning signal is expected due to the good phase coherence. This configuration has several unique advantages, such as compact size, flexible integration, wideband tunability, high respond speed and excellent signal quality. In experiment, a widely electrically tunable microwave source with tuning range of14GHz and tuning sensitivity of3.02MHz/V is demonstrated, while the phase noises of14GHz signals is about-82dBc/Hz.
引文
[1]C. T. Lin, A. Ng'oma, W. Y. Lee, C. C. Wei, C. Y. Wang, T. H. Lu, J. Chen, W. J. Jiang, and C. H. Ho, "12×2 MIMO radio-over-fiber system at 60 GHz employing frequency domain equalization," Opt. Express, Vol.20, No.1, pp. 562-576, Jan.2012.
    [2]C. T. Lin, A. Ng'oma, W. Y. Lee, C. Y. Wang, T. H. Lu, W. J. Jiang, C. H. Ho, C. C. Wei. J. Chen, and S. Chi, "MIMO-Enhanced radio-over-fiber system at 60 GHz," ECOC Technical Digest,2011 OS A.
    [3]M. Weiss, A. Stohr, F. Lecoche, and B. Charbonnier,"27 Gbit/s photonic wireless 60 GHz transmission system using 16-QAM OFDM," in Proc. IEEE Int. Topical Meeting,2009.
    [4]J. P. Yao, "Microwave photonics," IEEE J. Lightw. Technol., Vol.27, No.3, pp. 314-335, Feb.2009.
    [5]J. Capmany and D. Novak, "Microwave photonics combines two worlds,' Nature Photonics, Vol.1, pp.319-330, Jun.2007.
    [6]W. Li and J. E Yao, "Microwave and terahertz generation based on photonically assisted microwave frequency twelvetupling with large tenability," IEEE Photon. J., Vol.2, No.6, pp.954-959, Dec.2010.
    [7]X. Zou, and J. Yao, "An optical approach to microwave frequency measurement with adjustable measurement range and resolution," IEEE Photon. Technol. Lett., Vol.20, No.23, pp.1989-1991, Dec.2008.
    [8]H. Chi, X. Zou, and J. P. Yao, "An approach to the measurement of microwave frequency based on optical power monitoring," IEEE Photon. Technol. Lett., Vol.20, No.14, pp.1249-1251, July 2008.
    [9]X. Zou, H. Chi, and J. P. Yao, "Microwave frequency measurement based on optical power monitoring using a complementary optical filter pair, " IEEE Trans. Microw. Theory Tech., Vol.57, No.2, pp.505-511, Feb.2009.
    [10]H. Emami, N. Sarkhosh, L. Bui, and A. Mitchell, "Amplitude independent RF instantaneous frequency measurement system using photonic Hilbert transform," Opt. Express, Vol.16, No.18, pp.13707-13712, Sep.2008.
    [11]K. Wilner and A. R Van Den Heuvel. "Fiber-optic delay lines for microwave signal processing," Proc. IEEE, Vol.64, No.5, pp.805-807, May 1976.
    [12]R. A. Minasian, "Photonic signal processing of microwave signals," IEEE Trans. Microw. Theory Tech., Vol.54, No.2, pp.832-846, Feb.2006.
    [13]B. Ortega, J. Mora, J. Capmany, D. Pastor, R. G. Olcina and S. Sales, "Highly selective microwave photonic filters based on new FBGs-EDF recirculating cavities and tuned modulators," in Proc. IEEE Int. Topical Meeting.,2005.
    [14]J. A. Chiddix, H. Laor, D. M. Pangrac, L. D. Williamson and R. W. Wolfe, "AM video on fiber in CATV systems:Need and implementation," IEEE J. Sel. Areas Commun., Vol.8, No.7, pp.1229-1239, Sep.1990.
    [15]G. H. Smith, D. Novak, and C. Lim, "A millimeter-wave full-duplex radio-over-fiber star tree architecture incorporating WDM and SCM," IEEE Photon. Tech. Lett., Vol.10, No.11, pp.1650-1652, Nov.1998.
    [16]A. Nkansah, A. Das, N. J. Gomes, P. Shen, and D. Wake, "VCSEL-based single-mode and multimode fiber star/tree distribution network for millimeter-wave wireless systems," in Proc. IEEE Int. Topical Meeting.,2006.
    [17]A. Stohr, K. Kitayama, and D. Jager, "Full-duplex fiber-optic RF subcarrier transmission using a dual-function modulator/photodetector," IEEE Trans. Microwave Theory Tech., Vol.47, No.7, pp.1338-1341, Jul.1999.
    [18]H. Chettat, L. M. Simohamed, Y Bouslimani and H. Hamam, "RoF Networks: A comprehensive study," Int. Symposium on Wireless Pervasive Computing, pp.495-498,2008.
    [19]J. E. Roman, L. T. Nichols, K. J. Williams, R. D. Esman, G. C. Tavik, M. Livingston, and M. G. Parent, "Fiber-optic remoting of an ultrahigh dynamic range radar," IEEE Trans.Microwave Theory Tech., Vol.46, No.12, pp. 2317-2323, Dec.1998.
    [20]E. C. Niehenke and P. Hercafeld, "An optical link for W-band transmit/receive applications," in Tech. Dig. IEEE MTT-S Int. Microwave Symp., Vol.1, pp. 35-38, Jun.1997.
    [21]J. L. Corral, J. Marti, J. M. Fuster, R. Laming, and M. J. Cole, "Continuously variable true time-delay optical feeder for phased-array antenna employing chirped fiber gratings," IEEE Trans. Microwave Theory Tech., Vol.45, No.8, pp.1531-1536, Aug.1997.
    [22]H. Kim, "Cost-effective and dispersion-tolerant cascde modulation for millimeter-wave-over-fiber application," Opt. Comm., Vol.281, No.5, pp. 1108-1112,2008.
    [23]J. Ma, J. Yu, X. Xin, "The transmission performance of the single sideband optical millimeter-wave with BPSK signal in the duplex radio-over-fiber link," Opt. Comm., Vol.281, No.19, pp.4876-4881, Oct.2008.
    [24]A. Hirata, H. Takahashi, and R. Yamaguchi, "Transmission characteristics of the 120-GHz-band wireless link using radio-over-fiber system," IEEE J. Lightw. Technol., Vol.26, No.15, pp.2338-2334, Aug.2008.
    [25]J. Li, T. Ning and L. Pei, "Millimeter-wave radio-over-fiber system based on two-step heterodyne technique," Opt. Lett., Vol.34, No.20, pp.3136-3138, Oct.2009.
    [26]A. Casini and E Faccin, "Radio over fiber technologies and systems:new opportunities", in Proc. IEEE Int. Topical Meeting,2003.
    [27]A. Karim and J. Devenport, "High Dynamic Range Microwave Photonic Links for RF Signal Transport and RF-IF Conversion", IEEE J. Lightw. Technol., Vol.26, No.15, pp.2718-2724, Aug.,2008.
    [28]J. Devenport and A. Karim, "Optimization of an Externally Modulated RF Photonic Link," Fiber and Integrated Optics, Vol.27, No.1, pp.7-14,2007.
    [29]E. Ackerman, G. Betts, W. Burns, J. Prince, M. Regan, H. Roussell, and C. Cox, "Low Noise Figure, Wide Bandwidth Analog Optical Link," in Proc. IEEE Int. Topical Meeting,2005.
    [30]V. J. Urick, M. E. Godinez, P. S. Devgan, J. D. McKinney and F. Bucholtz, "Analysis of an Analog Fiber-Optic Link Employing a Low-Biased Mach- Zehnder Modulator Followed by an Erbium-Doped Fiber Amplifier," IEEE J. Lightw. Technol., Vol.27, No.12, pp.2013-2019, June 2009.
    [31]J. J. O'Reilly, P. M. Lane, and M. Capstick, "Optical Generation and Delivery of Modulated mm-waves for Mobile Communications," in Analogue Optical Fibre Communications, B. Wilson, Z. Ghassemlooy, and I. Darwazeh, Eds. London:The Institute of Electrical Engineers,1995.
    [32]R. P. Braun, G. Grosskopf, D. Rohde, and F. Schmidt, "Low-phase-noise millimeter-wave generation at 64 GHz and data transmission using optical sideband injection locking," IEEE Photon. Technol. Lett., Vol.10, No.5, pp. 728-730, May 1998.
    [33]J. Harrison and A. Mooradian, "Linewidth and offset frequency locking of external cavity GaAlAslasers," IEEE J. Quantum Electron., Vol.25, No.6, pp. 1152-1155, June 1989.
    [34]R. T. Ramos and A. J. Seeds, "Fast heterodyne optical phase-lock loop using double quantum well laser diodes," Electron.Lett., Vol.28, No.1, pp.82-83, Jan.1992.
    [35]X. F. Chen, Z. C. Deng, and J. P. Yao, "Photonic Generation of Microwave Signal Using a Dual-Wavelength Single-Longitudinal-Mode Fiber Ring Laser," IEEE Photon. Technol. Lett., Vol.20, No.14, pp.1249-1251, July 2008.
    [36]U. Gliese, T. N. Nielsen, M. Bruun, E. Lintz Christensen, K. E. Stubkjaer, S. Lindgren and B. Broberg, "A wideband heterodyne optical phase-locked loop for generation of 3-18 GHz microwave carriers," IEEE Photon. Technol. Lett., Vol.4, No.8, pp.936-938, Aug.1992.
    [37]L. Noel, D. Marcenac, and D. Wake, "Optical millimetre-wave generation technique with high efficiency, purity and stability," Electron Lett., Vol.32, No.21, pp.1997-1998, Oct.1996.
    [38]R. T. Ramos and A. J. Seeds, "Delay, linewidth and bandwidth limitations in optical phase-locked loop design," Electron. Lett., Vol.26, No.6, pp.389-391, Mar.1990.
    [39]D. Wake, C. R. Lima, and P. A. Davies, "Transmission of 60GHz signals over 100 km of optical fiber using a dual-mode semiconductor laser source," IEEE Photon. Technol. Lett, Vol.8, No.4, pp.578-580, Apr.1996.
    [40]X. Chen, Z. Deng, and J. P. Yao, "Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser," IEEE Trans. Micro. Theory, Vol.54, No.2, pp.804-809, Feb.2006.
    [41]X. Wang, W. Mao, M. Al-Mumin, S. A. Papert, J. Hong and G. Li, "Optical generation of microwave/millimeter-wave signals using Two-Section gain-coupled DFB lasers," IEEE Photon. Technol. Lett., Vol.11, No.10, pp. 1292-1294, Oct.1999.
    [42]T. Clark, M. Airola and R. Sova, "Demonstration of dual-polarization fiber ring laser for microwave generation," in Proc. IEEE Int. Topical Meeting., 2004.
    [43]J. J. O'Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, "Optical generation of very narrow line width millimeter-wave signals," Electron. Lett., Vol.28, No.25, pp.2309-2311,1992.
    [44]J. J. O'Reilly and P. M. Lane, "Remote delivery of video services using mm-wave and optics," IEEE J. Lightw. Technol., Vol.12, No.2, pp.369-375, Feb.1994.
    [45]J. J. O'Reilly and P. M. Lane, "Fiber-supported optical generation and delivery of 60 GHz signals," Electron.Lett., Vol.30, No.16, pp.1329-1330,1994.
    [46]P. Shen, N. J. Gomes, P. A. Davies, W. P. Shillue, P. G. Huggard and B. N. Ellison, "High-purity millimeter-wave photonic local oscillator generation and delivery," in Proc. IEEE Int. Topical Meeting.,2003.
    [47]J. J. O'Reilly and P. M. Lane, "Remote delivery of video services using mm-wave and optics," IEEE J. Lightw. Technol., Vol.12, No.2, pp.369-375, Feb.1994.
    [48]G. Qi, J. P. Yao, J. Seregelyi, C. Belisle, and S. Paquet, "Generation and distribution of wide-band continuously tunable mm-wave signal with an optical external modulation technique," IEEE Trans. Microw. Theory, Vol.53, No.10, pp.3090-3097,2005.
    [49]G. Qi, J. P. Yao, J. Seregelyi, C. Belisle, and S. Paquet, "Optical generation and distribution of continuously tunable millimeter-wave signals using all optical phase modulator," IEEE J. Lightwave Technol., Vol.23, No.9, pp. 2687-2695, Sep.2005.
    [50]M. G. Larrode, A. M. J. Koonen, J. J. V. Olmos, E. J. M. Verdunnen and J. P. Turkiewicz, "Dispersion tolerant radio-over-fibre transmission of 16 and 64 QAM radio signals at 40 GHz," Electron. Lett., Vol.42, No.15, pp.872-874, June 2006.
    [51]A. Ng'oma, A. M. J. Koonen, I. T. Monroy, H. P. A. Boom, and G. D. Khoe, "Using optical frequency multiplication to deliver a 17 GHz 64 QAM modulated signal to a simplified radio access unit fed by multimode fiber," in Optical Fiber Communication Conference,2005.
    [52]M. G. Larrode, A. M. J. Koonen and J. J. Vegas Olmos, "Overcoming Modal Bandwidth Limitation in Radio-over-Multimode Fiber Links," IEEE Photon. Technol. Lett.,Vol.18, No.22, pp.2428-2430, Nov.2006.
    [53]M. G. Larrode, A. M. J. Koonen, and J. J. V. Olmos, "Fiber-based broadband wireless access employing optical frequency multiplication," IEEE J. Quantum Electron., Vol.12, No.4, pp.875-881, Aug.2006.
    [54]M. G. Larrode, A. M. J. Koonen, J. J. V. Olmos, and A. Ng'Oma, "Bidirectional radio-over-fiber link employing optical frequency multiplication," IEEE Photon. Technol. Lett., Vol.18, No.1, pp.241-243, Jan. 2006.
    [55]M. Mohamed, X. Zhang, B. Hraimel, and K. Wu, "Frequency sixupler for millimeter-wave over fiber systems," Opt. Express, Vol.16, No.14, pp. 10141-10151, July.2008.
    [56]T. Koonen, A. Ng'oma, and P. Smulders, "In-house network using muhimode polymer optical fiber for broadband wireless services," Photon. Network Comm., Vol.5, No.2. pp.177-187. Mar.2003.
    [57]M. Mohamed, X. Zhang. B. Hraimel, and K. Wu, "Efficient Photonic Generation of Millimeter-Waves Using Optical Frequency Multiplication in Radio-over-fiber Systems," in Proc. IEEE Int. Topical Meeting.,2007.
    [58]A. Ng'oma, A. M. J. Koonen. I. T. Monroy, H. P. A. Boom, and G. D. Khoe, "Using optical frequency multiplication to deliver a 17 GHz 64 QAM modulated signal to a simplified radio access unit fed by multimode fiber," in Optical Fiber Communication Conference,2005.
    [59]M. Garcia Larrode, A. M. J. Koonen, and J. J. Vegas Olmos, "Overcoming Modal Bandwidth Limitation in Radio-over-Multimode Fiber Links," IEEE Photon. Technol. Lett., Vol.18, No.22, pp.2428-2430, Nov.2006.
    [60]M. G. Larrode, A. M. J. Koonen, and J. J. V. Olmos, "Fiber-based broadband wireless access employing optical frequency multiplication," IEEE J. Quantum Electron., Vol.12, No.4, pp.875-881, Aug.2006.
    [61]J. Zhang, H. Chen, M. Chen, T. Wang, and S. Xie, "A photonic microwave frequency quadrupler using two cascaded intensity modulators with repetitious optical carrier suppression," IEEE Photon. Technol. Lett., Vol.19, No.14, pp.1057-1059, July 2007.
    [62]T. Sakamoto, T. Kawanishi, and M. Izutsu, "Asymptotic formalism for ultraflat optical frequency comb generation using a Mach-Zehnder modulator," Opt. Lett., Vol.32, No.11, pp.1515-1517, June 2007.
    [63]J. Yu. Z. Jia, T. Wang, and G. K. Chang, "Centralized lightwave radio-over-fiber system with photonic frequency quadrupling for high-frequency millimeter-wave generation," IEEE Photon. Technol. Lett., Vol. 19, No.19, pp.1499-1501, Oct.2007.
    [64]H. Chi and J. Yao, "Frequency Quadrupling and Upconversion in a Radio Over Fiber Link," IEEE J. Lightwave Technol., Vol.26, No.15, pp.2706-271 1, Aug.2008.
    [65]M. Garcia Larrode, A. M. J. Koonen, J. J. Vegas Olmos, and E. J. M. Verdunnen, "Microwave signal generation and transmission based on optical frequency multiplication with a polarization interferometer," IEEE J. Lightwave Technol., Vol.25, No.6, pp.1372-1378, June 2007.
    [66]W. Z. Li, J. P. Yao, "Microwave generation based on optical domain microwave frequency octupling," IEEE Photon. Technol. Lett., Vol.22, No.1, pp.24-26, Jan.2010.
    [67]M. Mohamed, X. Zhang, B. Hraimel, and K. Wu, "Efficient Photonic Generation of Millimeter-Waves Using Optical Frequency Multiplication in Radio-over-fiber Systems," in Proc. IEEE Int. Topical Meeting.,2007.
    [68]C. S. Park and C. G. Lee, "Photonic frequency upconversion by SBS-based frequency tripling," IEEE J. Lightwave Technol., Vol.25, No.7, pp. 1711-1718, June 2007.
    [69]Y. K. Seo, C. S. Choi, and W. Y. Choi, "All-optical signal up-conversion for radio-on-fiber applications using cross-gain modulation in semiconductor optical amplifiers," IEEE Photon. Technol Lett., Vol.14, No.10, pp. 1448-1450, Oct.2002.
    [70]Q. Wang, H. Rideout, F. Zeng, and J. Yao, "Millimeter-wave frequency tripling based on four-wave mixing in a semiconductor optical amplifier," IEEE Photon. Technol. Lett., Vol.18, No.23, pp.2460-2462, Dec.2006.
    [71]P. Coppin and T. G. Hodgkison, "Novel optical frequency synthesis using optical feedback," Electron. Lett., Vol.26, No.1, pp.1155-1157, Jan.1990.
    [72]Z. F. Hu, Y. Chen, "48 optical Millimeter Waves Generated by Phase Modulation within an Active Fiber Ring Resonator," Acta Optica Sinica, Vol. 30, No.12, pp.3419-3424, Dec.2010.
    [73]F. Tian and X.G. Zhang, "Generation of 50 Stable Frequency-Locked Optical Carriers for Tb/s Multicarrier Optical Transmission Using a Recirculating Frequency Shifter," IEEE J. Lightwave Technol., Vol.29, No.8, pp. 1085-1091, Apr.2011.
    [74]X. S. Yao, L. Maleki, "Optoelectronic Oscillator for Photonics System," IEEE J. Quantum Electron., Vol.32, pp.1141-1149, July 1996.
    [75]X. S. Yao and G. Lutes, "A high-speed photonic clock and carrier recovery device;" IEEE Photon. Technol. Lett., Vol.8, No.5, pp.688-690. May 1996.
    [76]H. Tsuchida and M. Suzuki, "40-Gb/s optical clock recovery using an injection-locked optoelectronic oscillator," IEEE Photon. Technol. Lett., Vol. 17, No.1, pp.211-213, Jan.2005.
    [77]L. Huo, Y. Dong, C. Y. Lou, and Y. Z. Gao, "Clock extraction using an optoelectronic oscillator from high-speed NRZ signal and NRZ-to-RZ format transformation," IEEE Photon. Technol. Lett., Vol.15, No.7, pp.981-983, Jul. 2003.
    [78]T. Sakamoto, T. Kawanishi, and M. Izutsu, "Optoelectronic oscillator using push-pull Mach-Zehnder modulator biased at point for optical two-tone signal generation," in Conf. Lasers Electro-Optics, Vol.2, pp.877-879,2005.
    [79]H. Tsuchida, "Subharmonic optoelectronic oscillator,'" IEEE Photon. Technol. Lett., Vol.20, No.17, pp.1509-1511. Sep.2008.
    [80]M. Shin, V. Grigoryan, and P. Kumar, "Frequency-doubling optoelectronic oscillator for generating high-frequency microwave signals with lowphase noise," Electron. Lett., Vol.43,No.4, pp.242-244, Feb.2007.
    [81]S. Pan and J. Yao, "A frequency-doubling optoelectronic oscillator using a polarization modulator," IEEE Photon. Technol. Lett., Vol.21, No.13, pp. 929-931, Jul.2009.
    [82]J. D. Bull, N. A. Jaeger, H. Kato, M. Fairburn, A. Reid, and P. Ghanipour, "40-GHz electro-optic polarization modulator for fiber optic communications systems," in Proc. SPIE, Vol.5577, pp.133-143, Dec.2004.
    [83]J. Mari, F. Ramos, V. Polo, J. M. Fuster, J. L. Corral, "Millimeter-Wave Signal Generation and Harmonic Upconversion Through PM-IM Conversion in Chirped Fiber Gratings," Fiber and Integrated Optics, Vol.19, No.2, pp. 187-198,2000.
    [84]S. Poinsot, H. Porte, J. Goedgebuer, W. T. Rhodes, and B. Boussert, "Continuous radio-frequency tuning of an optoelectronic oscillator with dispersive feedback," Opt. Lett., Vol.27, No.15, pp.1300-1302, Aug.2002.
    [85]E. Shumakher, S.O. Duill, and G. Eisenstein, "Optoelectronic oscillator tunable by an SO A based slow light element," IEEE J. Lightw. Technol., Vol. 27, No.18, pp.4063-4068, Sep.2009.
    [86]S. Pan and J. P. Yao, "Wideband and frequency-tunable microwave generation using an optoelectronic oscillator incorporating a Fabry-Perot laser diode with external optical injection," Opt. Lett., Vol.35, No.11, pp.1911-1913, Jun. 2010.
    [87]W. Li and J. P. Yao, "An optically tunable optoelectronic oscillator," IEEE J. Lightw. Technol., Vol.28, No.18, pp.2640-2645, Sep.2010.
    [88]H. Shahoei, M. Li, and J. P. Yao, "Continuously tunable time delay using an optically pumped linearly chirped fiber Bragg grating," IEEE J. Lightw. Technol., Vol.29, No.10, pp.1465-1472, May 2011.
    [89]B. Yang, X. F. Jin, H. Chi, X. M. Zhang, S. L. Zheng, S. H. Zou, H. S. Chen, E. Tangdiongga, and T. Koonen, "Optically tunable frequency-doubling Brillouin optoelectronic oscillator with carrier phase-shifted double sideband modulation." IEEE Photon. Technol. Lett., Vol.24, No.12, pp.1051-1053, 2012.
    [90]R. H. Stolen, E. P. Ippen, "Stimulated Brillouin scattering in optical fibers," Appl. Phys. Lett., Vol.21, No.11, pp.539-541, Dec.1972.
    [91]G. P.Agrwal (美)著;贾东方,余震虹等译。非线性光纤光学及应用。北京:电子工业出版社,2002。
    [92]C. L. Tang, "Saturation and spectral characteristics of Stokes emission in the stimulated Brillouin process," J. Appl. Phys., Vol.37, No.8, pp.2945-2955, July 1966.
    [93]T. Kurashima, T. Horiguchi and M. Tateda, "Thermal effects of Brillouin gain spectra on single-mode fiber," IEEE Photon. Technol. Lett., Vol.2, No.10, pp. 718-720, Oct.1990.
    [94]I. Ozdur, M. Akbulut, N. Hoghooghi, D. Mandridis, M. U. Piracha, and P. J. Delfyett, "Optoelectronic loop design with 1000 finesse Fabry-Perot etalon,' Opt. Lett., Vol.35, No.6, pp.799-801, Mar.2010.
    [95]J. J. Zayhowski, "Microchip lasers," Optical Materials, Vol.11, pp.255-267, 1999.
    [96]N. MacKinnon, B.D. Sinclair, "A laser diode array pumped, Nd:YVO4/KTP, composite material microchip laser," Opt. Comm., Vol.105, pp.183-187, Feb. 1994.
    [97]D. G. Matthews, R. S. Conroy, B. D. Sinclair, and N. MacKinnon, "Blue microchip laser fabricated from Nd:YAG and KNbO3," Opt. Lett., Vol.21, No. 3, pp.198-200,1996.
    [98]J. J. Zayhowski, "Diode-pumped microchip lasers electro-optically Q switched at high pulse repetition rates," Opt. Lett., vol.17, no.17, pp.1201-1203,1992.
    [99]J. J. Zayhowski, "Diode-pumped passively Q-switched picosecond microchip lasers," Opt. Letters, Vol.19. No.18, pp.1427-1429,1994.
    [100]A. J. C. Vieira, "A Mode-Locked Microchip Laser Optical Transmitter for Fiber Radio," IEEE Transac. Microw. Theory and Tech., Vol.49, No.10, Oct. 2001.
    [101]J. J. Zayhowski, A. Mooradian, "Single frequency microchip Nd laser," Opt. Lett., Vol.14, No.1, pp.24-26,1989.
    [102]T. Taira, A. Mukai, and Y. Nozawa, "Single mode oscillation of laser diode pumped Nd:YVO4 microchip laser," Opt. Lett., Vol.16, No.24, pp. 1955-1957,1991.
    [103]P. Gavrilovic, "Temperature-tunable single frequency microcavity lasers fabricated from flux-grown YCeAG:Nd," Appl. Phys. Lett., Vol.60, No.14, pp.1652-1654, Apr.1992.
    [104]何京良博士学位论文,大功率全固态Nd:YVO4激光器,北京:中国科学院物理研究所,1998。
    [105]M. S. Ding, M. O. Al-Nuaimi, "Characterisation of building reflection and scatter of microwaves using Fresnel-Kirchhoff diffraction theory," Microwave Conference,26th European, Vol.2, pp.621-624,1996.
    [106]J. J. Zayhowski, "The effect of spatial hole burning and energy diffusion on the single mode operation of standing wave lasers," IEEE J. Quantum Electron., Vol.26, No.12, pp.2052-2057, Dec.1990.
    [107]R. Wang and Y. Li, "Dual-polarization spatial-hole-burning-free microchip laser," IEEE Photon. Technol. Lett., Vol.21, No.17, pp.1214-1216, Sep. 2009.
    [108]A. McKay and J. M. Dawes. "Tunable terahertz signals using a helicoidally polarized ceramic microchip laser," IEEE Photon. Technol. Lett., Vol.21, No. 7, pp.480-482, Apr.2009.
    [109]C. N. Huang, H. Guo, Y. Li, and S. H. Zhang, "A novel tunable dual-frequency laser with large frequency difference," Chinese Journal of Laser, Vol.11, No.4, pp.251-254,2002.
    [110]J. L. Gouet, L. Morvan, M. Alouini, J. Bourderionnet, D. Dolfi, and J. P. Huignard, "Dual-frequency single-axis laser using a lead lanthanum zirconate tantalate (PLZT) birefringent etalon for millimeter wave generation:beyond the standard limit of tunability," Opt. Lett., Vol.32, No.9, pp.1090-1092, May. 2007.
    [111]M. Brunel, A. Amon, and M. Vallet, "Dual-polarization microchip laser at 1.53μm," Opt. Lett., Vol.30, No.18, pp.2418-2420, Sep.2005.
    [112]I. E. Ievlev and I. V. Koryukin, "Continuous two-wave lasing in microchip Nd:YAG lasers," Quantum Electron., Vol.41, No.8, pp.715-721,2011.
    [113]A. McKay, J. Dawes, P. Dekker, and D. Courts, "A comparison of tunable, passively-stabilized two-frequency solid-state lasers for microwave generation," in Proc. IEEE Int. Topical Meeting.,2005
    [114]M. Alouini, B. Benazet, M. Vallet, and M. Brunel, "Offset phase locking of Er:Yb:glass laser eigenstates for RF photonics applications," IEEE Photon. Technol. Lett. Vol.13, No.4, pp.367-369, Apr.2001.
    [115]A. McKay, P. Dekker, D. W. Coutts, and J. M. Dawes, "Enhanced self-heterodyne performance using a Nd-doped ceramic YAG laser," Opt. Commun., Vol.272, No.2, pp.425-430, Apr.2007.
    [116]G. Bouwmans, B. Segard, P. Glorieux, P. A. Khandokhin, N. D. Milovsky, and E. Shirokov, "Polarization dynamics of longitudinally monomode bipolarized microchip solid-state lasers," Radio phys. and Quantum Electron., Vol.47, No. 10-11, pp.729-742,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700