光纤钠导星激光器若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钠导星激光技术可以解决大气湍流导致的成像畸变,在天文和军事上有重要应用。钠导星光纤激光器体积小,光束质量好,是近些年来重点发展的钠导星激光技术。随着单频拉曼光纤放大器输出功率的提高,光纤钠导星激光器的输出功率有了大幅提升。进一步功率的提升,依赖于1120nm光纤激光泵浦源功率的提升。另外,研究其它种类的1178nm单频光纤放大器,比如掺镱带隙光子晶体光纤放大器等,对于钠导星激光技术的发展也是非常必要的。论文主要围绕钠导星光纤激光的上述关键技术展开理论和实验研究,主要内容包括:
     1、回顾了钠导星激光器的发展历程,指出光纤激光器是钠导星激光发展的一个重要方向。针对掺镱光纤在钠导星光纤激光中的重要作用,本文主要研究了1120nm掺镱光纤激光器与1178nm掺镱放大器。
     2、采用保偏掺镱光纤,实现了百瓦级线偏振1120nm光纤激光器。首先,利用保偏光纤光栅偏振轴交叉对准技术,获得了1064nm与1120nm线偏振激光输出。其次,将1120nm线偏振激光的输出功率提高至百瓦量级,输出模式可以调制成微秒脉冲形式,并从理论上对实验现象进行了分析与解释。最后,研究了1120nm激光在1178nm单频拉曼放大器和1070nm包层泵浦拉曼放大器中的应用。从实验上得到了44W单频1178nm拉曼光纤激光,从理论上分析出包层拉曼放大器的输出功率可至10kW量级。
     3、利用主动调Q技术,实现了掺镱1120nm全光纤单模激光输出。在重复频率1kHz时,得到了111mW1120nm激光输出,脉冲宽度为140ns,峰值功率为0.8kW;相应地,在10kHz重复频率时,平均功率为285mW,脉冲宽度为180ns,峰值功率约为120W。利用1018nm光纤激光器泵浦1120nm调Q激光器,验证了同带泵浦可以提高自激振荡的阈值,实验结果表明1018nm激光泵浦相对976nm半导体泵浦条件下,1120nm调Q激光器的峰值功率提高了4倍。
     4、采用掺镱带隙光子晶体光纤,实现了单频1178nm激光输出。建立了包含放大自发辐射、受激布里渊散射及带隙损耗的速率方程模型,研究了种子光功率与光纤长度对1178nm激光的影响。实验中利用3W种子与20m光纤,在80W泵浦条件下,得到10.3W激光输出。相同泵浦条件下,利用8.5W种子光与6m增益光纤,输出了13.6W激光。
Image distortion caused by atmosphere turbulence can be solved by laser guidestar technology, which has a variety of applications in military and astronomy.Fiber-based Sodium laser guide star is promising candidate technology due to itscompact volume and excellent beam quality. With the development of single frequencyRaman fiber amplifier, the output power of Sodium guide star laser has been improveddramatically. However, further improvement of the output power is restricted by thehigh power1120nm pump source.Except that, research on different single frequencyfiber laser at1178nm, such as Yb-doped photonic bandgap fiber, is necessary toSodium guide star laser. The thesis investigates these key technologies of fiber guidestar laser theoretically and experimentally, whose primary contents are present asfollows:
     1. By reviewing the history of Sodium guide star laser, we point out thatfiber-based Sodium laser is one improtant candidate to guide star laser system.Due tothe significance of Yb-doped fiber to Sodium guide star laser, this paper mainlyresearchs on Yb-doped fiber laser at1120nm and fiber amplifier at1178nm.
     2. With polarization maintaining (PM) Yb-doped fiber, a100W fiber laser at1120nm is achieved. Firstly, employing FBGs polarization selection technology, linearlypolarized fiber laser at1064nm and1120nm are abtained. Secondly, the output powerof linearly polarized1120nm fiber laser is developed to100W, the operation mode canbe modulated to micro second pulses, and the experimental phonomenons areexplaining theoretically. Lastly, the applications of1120nm fiber laser to single ramanaplifiber at1178nm and1070nm fiber laser pumped cladding Raman fiber laser.Singlefrequency1178nm fiber laser of44W is achieved experimentally, and claddingpumped Raman fiber laser at1120nm can be calculated to10kW thoeretically.
     3. Employing actively Q-switched technology,all-fiber single mode laser at1120nm is demonstrated. At repetition rate of1kHz, output power of111mW at1120nm isobtained with a pulse width of140ns and peak power of0.8kW. Correspondingly, atrepetition rate of10kHz, the output power is285mW with a pulse width of180ns andpeak power of120W. The threshold of parasitic oscillation tandem pumped by1018nmfiber laser is4times higher than that pumped by976nm diode laser.
     4. Single frequency Yb-doped photonic bandgap fiber amplifier at1178nm isdemonstrated. Rate equation model including ASE, stimulated Brillouin scattering (SBS)and bandgap loss was employed to research the effects of seed power and fiber lengthon fiber amplifier at1178nm. Output power of10.3W was obtained at pump power of80W with injected seed of3W and20m fiber. Correspondingly,13.6W output powerwas obtained with injected seed of8.5W and6m fiber.
引文
[1]中国天文台. CTMT.2009, http://ctmt.bao.ac.cn.
    [2] R. Foy. Laser Guide Stars: Principle, Cone effect and Tilt Measurement [M].2006.
    [3] F. Herbert, A. Kenneth, B. Horst, et al. Laser guide-star measurements atLawrence Livermore National Laboratory [C]. SPIE.1993,192052-60.
    [4] R. Q. Fugate. Using Lasers to Create Artificial Stars [J]. Leos Newsletter.1996,10(5):3-7.
    [5] H. Friedman, G. Erbert, T. Kuklo, et al. Laser Systems for the Generation ofSodium Layer Guide Stars [C]. SPIE.1996,1393-97.
    [6] A. Quirrenbach, W. Hackenberg, H. Holstenberg, et al. Sodium laser guidestar system of ALFA [C]. SPIE.1997,312635-43.
    [7] S. Rabien, R. I. Davies, T. Ott, et al. Design of PARSEC, the VLT laser [C].SPIE.2003,4839393-401.
    [8] S. Rabien, R. I. Davies, T. Ott, et al. Test performance of the PARSEC lasersystem [C]. SPIE.2004,5490981-988.
    [9] http://www2011.mpe.mpg.de/ir/parsec.
    [10] T. Jeys. Development of a Mesospheric Sodium Laser Beacon forAtmospheric Adaptive Optics [J]. The Lincoln Laboratory Journal.1991,4(2):133-150.
    [11] J. C. Bienfang, C. A. Denman, B. W. Grime, et al.20W of continuous wavesodium D2resonance radiation from sum-frequency generaation with injection-lockedlasers [J]. Opt. Lett.2003,28(22):2219-2221.
    [12] J. C. Bienfang, C. A. Denman, B. W. Grime, et al.20Watt CWAll-Solid-State589-nm Sodium Beacon Excitation Source Based on Doubly ResonantSum-Frequency Generation in LBO [C]. OSA/ASSP.2003,1-10.
    [13] R. Q. Fugate, C. A. Denman, P. D. Hillman, et al. Progress toward a50-wattfacility-class sodium guidestar pump laser [C]. SPIE.2004,54901010-1011.
    [14] C. A. Denman, P. D. Hillman, G. T. Moore, et al. Realization of a50-wattfacility-class sodium guidestar pump laser [C]. SPIE.2005,5707(2005):46-49.
    [15] T. J. KaneRobert, L. Byer. Monolithic, unidirectional single-mode Nd:YAGring laser [C]. Opt. Lett.1985,10(2):65-67.
    [16] A. Nillson, E. K. Gustafsonrobert, L. Byer. Eigenpolarization Theory ofMonolithic Nonplanar Ring Oscillators [C]. IEEE J. Quantum Elect.1989,25(4):767-790.
    [17] E. D. Black. An introduction to Pound-Drever-Hall laser frequencystabilization [C]. Am. J. Phys.2001,69(1):79-97.
    [18] A. J. Tracy, A. K. Hankla, C. Lopez, et al. High Power Solid-State SodiumBeacon Laser Guidestar for the Gemini North Observatory [C]. OSA/ASSP.2005.
    [19] A. K. Hankla, J. Bartholomew, K. Groff, et al.20W and50W Solid-StateSodium Beacon Guidestar Laser Systems for the Keck I and Gemini South Telescopes[C]. SPIE.2006,6272G-1-9.
    [20] I. Lee, M. Jalali, N. Vanasse, et al.20W and50W Guidestar Laser SystemUpdate for the Keck I and Gemini South Telescopes [C]. SPIE.2008,70157010N.
    [21] D. M. Pennington, J. W. Dawson, A. drobshoff, et al. Compact fiber laserapproach to589nm laser guide stars [C]. OSA/CLEO.2004.
    [22] D. M. Pennington, J. W. Dawson, R. J. Beach, et al. Compact fiber laser for589nm laser guide star generation [C]. Lasers and Electro-Optics Europe,2005.CLEO/Europe.
    [23] E. M. Dianov. Bismuth-doped optical fibers: a challenging active mediumfor near-IR lasers and optical amplifiers. Light: Science&Apllications [J].2012,1(12):1-7.
    [24] E. M. Dianov, A. V. Shubin, M. A. Melkumov, et al. High-power cwbismuth-fiber lasers [J]. J. Opt. Soc. Am. B.2007,24(8):1749-1755.
    [25] E. M. Dianov, V. V. Dvoyrin, V. M. Mashinsky, et al. CW bismuth fiberlaser [J]. Quantum Electron.2005,35(12):1083-1084.
    [26] A. B. Rulkov, A. A. Ferin, S. V. Popov, et al. Narrow-line,1178nm CWbismuth-doped fiber laser with6.4W output for direct frequency doubling [J]. Opt.Express.2007,15(9):5473-5476.
    [27] B. H. Chapman, E. Kelleher, K. M. Golant, et al. Amplification ofpicosecond pulses and gigahertz signals in bismuth-doped fiber amplifiers [J]. Opt.Lett.2011,36(8):1446-1448.
    [28] B. H. Chapman, E. J. R. Kelleher, S. V. Popov, et al. Picosecondbismuth-doped fiber MOPFA for frequency conversion [J]. Opt. Lett.2011,36(19):3792-3794.
    [29] R. Paschotta, J. Nilsson, A. C. Tropper, et al. Ytterbium-Doped FiberAmplifiers. IEEE J. Quantum Elect.1997,33(7):1049-1056.
    [30] H. M. Pask, R. Carman, D. C. Hanna, et al. Ytterbium-Doped Silica FiberLasers: Versatile Sources for the1-1.2um Region [J]. IEEE Journal of SelectedTopics in Quantum Electronics.1995,1(1):2-13.
    [31] A. Popp, A. Voss, Th. Graf, et al. Thin Disk Laser-pumped Ytterbiumdoped Fiber Laser with an Output Power in the kW range [C]. SPIE.2010,7721772102-772101-772112.
    [32] C. Wirth, O. Schmidt, A. Kliner, et al. High-power tandem pumped fiberamplifier with an output power of2.9KW [J]. Opt. Lett.2011,36(16):3061-3063.
    [33]刘泽金,肖虎,周朴,等.113W主振荡功率放大结构1018nm全光纤激光器[J].中国激光.2011,0305009-8.
    [34]吴武明,肖虎,许将明,等.光纤激光同带级联抽动的研究进展[J].激光与光电子学进展.2011,48(091402):091402-091401-091408.
    [35]杨未强,侯静,宋锐,等.高功率光纤激光器二级抽运技术的理论分析[J].物理学报.2011.
    [36] H. Xiao, P. Zhou, X. Wang, et al. Experimental Investigation on1018-nmHigh-Power Ytterbium-Doped Fiber Amplifier [J]. IEEE Photonic Tech. L.2012,24(13):1088-1090.
    [37] Jianhua Wang, Gui Chen, Lei Zhang, et al. High efficiency fiber laser at1018nm using Yb-doped phosphosilicate fiber [J]. Appl. Opt.2012,51(29):7030-7033.
    [38] Jeff Hecht. Photonic Frontiers: Fiber lasers ramp up the power. Laser FocusWorld [J].2009,45(12):53-58.
    [39] IPG. http://www.ipgphotonics.com.
    [40] F. Roser, C. Jauregui, J. Limpert, et al.94W980nm high brightnessYb-doped fiber laser [J]. Opt. Express.2008,16(22):17310-17318.
    [41] J. Boullet, Y. Zaouter, R. Desmarchelier, et al. High power ytterbium-dopedrod-type three-level photonic crystal fiber laser [J]. Opt. Express.2008,16(22):17891-17902.
    [42] J. Lhermite, G. Machinet, C. Lecaplain, et al. High-energy femtosecondfiber laser at976nm [J]. Opt. Lett.2010,35(20):3459-3461.
    [43] J. Boullet, R. Dubrasquet, C. Medina, et al. Millijoule-class Yb-dopedpulsed fiber laser operating at977nm [J]. Opt. Lett.2010,35(10):1650-1652.
    [44] V. Khitrov, D. Machewirth, B. Samson, et al.1kW,15uJ liearly polarizedfiber laser operating at977nm [C]. SPIE.2006,6102610222.
    [45] A. Liem, J. Limpert, P. Riedel, et al.25W Ytterbium all fiber source at1120nm [C]. CLEO.2001,216.
    [46] G. Qin, S. Huang, Y. Feng, et al.784-nm amplified spontaneous emissionfrom Tm3+doped fluoride glass fiber pumped by an1120-nm fiber laser [J]. Opt. Lett.2005,30(3):269-272.
    [47] A. S. Kurkov, V. M. Paramonov, O. I. Medvedkov. Ytterbium fiber laseremitting at1160nm [J]. Laser Phys. Lett.2006,3(10):503-506.
    [48] Jianhua Wang, Lei Zhang, Jinmeng Hu, et al. Efficient liearly polarizedytterbium-doped fiber laser at1120nm [J]. Appl. Opt.2012,51(17):3801-3803.
    [49] Jianhua Wang, L. Zhang, J. Zhou, et al. High power liearly polarized Ramanfiber laser at1120nm [J]. Chin. Opt. Lett.2012,10(2):021406-021401-021403.
    [50] Jun Ota, A. Shirakawa, K. Ueda. High Power Yb-doped Double-Clad FiberLaser Directly Operating at1178nm. Jpn. J. Appl. Phys.2006,45(4): L117-L119.
    [51] A. Shirakawa, J. Ota, H. Maruyama, et al. Linearly polarized Yb-dopedFiber Laser Directly Operating at1178nm for589nm Generation. ASSP.2007,1-3.
    [52] K. Sinha, D. S. Hum, M. Digonnet, M. Fejer, and R. L. Byer. Linearlypolarized,3.35W narrow-linewidth,1150nm fiber master oscillator power amplifierfor frequency doubling to the yellow [J]. Opt. Lett.2007,321530-1532.
    [53] J. K. Sahu, M. P. Kalita, S. Alam, et al.12W Ytterbium Doped All FiberLaser at1179nm [J]. Opt. Express.2010,18(6):5920-5925.
    [54] A. Shirakawa, C. B. Olausson, H. Maruyama, et al. High power ytterbiumfiber lasers at extremely long wavelengths by photonic bandgap fiber technology [J].Opt. Fiber Technology.2010,16(2010):449-457.
    [55] C. B. Olausson, A. Shirakawa, H. Maruyama, et al. Power scalable longwavelength Yb-doped photonic bandgap fiber sources [C]. SPIE.2010,7580(758013):1-12.
    [56] C. B. Olausson, A. Shirakawa, M. Chen, et al.167W, power scalableytterbium-doped photonic bandgap fiber amplifier at1178nm [J]. Opt. Express.2010,18(16):16345-16352.
    [57] C. B. Olausson. Active photonic crystal fibers for high power applications[D]. Technical University of Denmark, Lyngby,2010.
    [58] M. P. Kalita, S. Alam, C. Codemard, et al. Multi-watts narrow-linewidth allfiber Yb-doped laser operating at1179nm [J]. Opt. Express.2010,18(6):5920-5925.
    [59] M. Chen, A. Shiakawa, X. Fan, et al. Single-frequency ytterbium dopedphotonic bandgap fiber amplifier at1178nm [J]. Opt. Express.2012,20(19):21044-21052.
    [60] A. Shirakawa, M. Chen, Xinyan Fan, et al. Single-frequency PhotonicBandgap Fiber Amplifier [C]. ASSP.2012.
    [61] X. Fan, M. Chen, A. Shirakawa, et al. High power Yb-doped photonicbandgap fiber oscillator at1178nm [J]. Opt. Express.2012,20(13):14471-14475.
    [62] Govind P. Agrawal. Nonlinear Fiber Optics [M].2001.
    [63] J. T. Murray, W.T.Roberts, et al. Fiber Raman Laser for Sodium Guide Star
    [C]. SPIE.1998,3353330-339.
    [64] Yan Feng, Shenghong Huang, Akira Shirakawa, et al. Multiple-color cwvisible lasers by frequency sum-mixing in a cascading Raman fiber laser [J]. Opt.Express.2004,12(9):1843-1847.
    [65] Yan Feng, L. R.TaylorDomenico Bonaccini Calia. Multiwatts narrowlinewidth fiber Raman amplifiers [J]. Opt. Express.2008,16(15):10927-10932.
    [66] Luke Taylor, Y. Feng, D. B. Calia. High power narrowband589nmfrequency doubled fiber laser source [J]. Opt. Express.2009,17(17):14687-14693.
    [67] Yan Feng, L. R.Taylor, D. B. Calia.150W highly efficient Raman fiberlaser [J]. Opt. Express.2009,17(26):23678-23683.
    [68] Y. Feng, L. R. Taylor, D. B. Calia.25W Raman fiber amplifier based589nm laser for laser guide star [J]. Opt. Express.2009,17(21):19021-19025.
    [69] Yan Feng, L. R. Taylor, D. B. Calia, et al.39W narrow linewidth Ramanfiber amplifier with frequency doubling to26.5W at589nm [C]. OSA/FiO,2009,1-2.
    [70] L. R. Taylor, Y. Feng, D. B. Calia.50W CW visible laser source at589nmobtained via frequency doubling of three coherently combined narrow-band Ramanfiber amplifiers [J]. Opt. Express.2010,18(8):8540-8555.
    [71]贾富强,卜轶坤,郑权,等. LD泵浦腔内和频连续589nm黄光激光器.激光与红外[J].2004,34(6):439-441.
    [72]吕彦飞,檀慧明钱龙生. LDA抽运Nd:YAG/KTP腔内和频589nm连续波激光器[J].光子学报.2005,34(9):1281-1284.
    [73]付喜宏,檀慧明,李义民,等.全固态单纵模593.5nm和频激光器[J].光学精密工程.2007,15(10):1469-1473.
    [74]卜轶坤,郑权,薛庆华,等. LD泵浦Nd:YVO4/LBO腔内和频连续黄光激光器[J].光子学报.2005,34(6):801-804.
    [75]付喜宏,檀慧明,李义民,等.激光二极管抽运复合腔和频连续波589nm激光器[J].中国激光.2007,34(8):1043-1047.
    [76]鲁远甫,谢仕永,薄勇,等.高功率准连续波腔内和频全固态黄光激光器[J].物理学报.2009,58(2):970-974.
    [77] Zhichao Wang, Qinjun Peng, Yong Bo, et al.60W yellow laser at561nmby intracavity frequency doubling of a diode-pumped Q-switched Nd:YAG laser [J].Opt. Commun.2011.
    [78] Zhichao Wang, Feng yang, S. Xie, et al. Multiwavelength green-yellowlaser based on a Nd:YAG laser with nonliear frequency conversion in a LBO crystal.Appl. Opt.2012,51(18):4196-4200.
    [79]许祖彦,谢仕永,薄勇,等.30W级第二代钠信标激光器研究[J].光学学报.2011,31(9):0900111-0900111-0900113.
    [80] S. Xie, Y. Bo, J. Xu, et al. A7.5W quasi-continuous-wave sodium D2lasergenerated from single-pass sum-frequency generation in LBO crystal [J]. Appl. Phys.B-Lasers O.2011,2011(102):781-787.
    [81]鲁燕华,黄园芳,张雷,等.钠导星激光器研究进展[J].激光与光电子学进展.2011,48(071406):071406-071401-071412.
    [82]鲁燕华,刘东,张雷,等.400Hz全固态和频钠导星激光器[J].光学学报.2009,29(7):1898-1901.
    [83]鲁燕华,刘东,张雷,等.全固态窄线宽钠导星激光器[J].中国激光.2009,36(7):1848-1851.
    [84]鲁燕华,张雷,刘东,等.7.13W全固态1319nm宏微脉冲激光器[J].强激光与粒子束.2009,21(11):1604-1606.
    [85]鲁燕华,张雷,刘晟西,等.15.5W全固态腔外和频589nm黄光激光器[J].中国激光.2010,37(9):2420-2423.
    [86]鲁燕华,张雷,马毅,等.高效率PPSLT准相位匹配和频钠导星激光器[J].光学学报.2010,30(8):2306-2310.
    [87]王锋,叶一东,鲁燕华,等.钠激光导星的共孔径发射接收与谱线匹配技术[J].强激光与粒子束.2010,22(8):1829-1833.
    [88]张雷,鲁燕华,刘东,等.6.2W外腔和频589nm黄光激光器[J].强激光与粒子束.2011,23(6):1501-1503.
    [89]张行愚,王青圃,常军,等.全固体腔内倍频Nd:YAG/SrWO4/KTP拉曼激光器[J].中国激光.2009,36(7):1798-1801.
    [90]王正平,胡大伟,张怀金,等. SrWO4晶体的紫外受激拉曼散射[J].无机材料学报.2009,24(3):563-565.
    [91]王正平,胡大伟,张怀金,等. BaWO4晶体的高效受激拉曼散射[J].中国激光.2009,36(8):2131-2135.
    [92]王正平,胡大伟,张怀金,等.外腔式BaWO4拉曼激光器[J].红外与激光工程.2009,38(4):683-686.
    [93]苏富芳,张行愚,王青圃,等.外腔式SrWO4拉曼激光器的输出特性研究[J].光学学报.2006,26(5):693-697.
    [94] Zhenhua Cong, Xingyu Zhang, Qingpu Wang, et al. Theoretical andexperimental study on the Nd:YAG/BaWO4/KTP yellow laser generating8.3Woutput power[J]. Opt. Express.2010,18(12):12111-12118.
    [95] Zhenhua Cong, Xingyu Zhang, Qingpu Wang, et al. Efficient diode endpumped actively Q-switched Nd:YAG/SrWO4/KTP yellow laser [J]. Opt. Lett.2009,34(17):2610-2612.
    [96] Yanfei Lu, Xihe Zhang, Shutao Li, et al. All-solid-state cw sodium D2resonance radiation based on intracavity frequency-doubled self-Raman laseroperation in double-end diffusion-bonded Nd3+:LuVO4crystal [J]. Opt. Lett.2010,35(17):2964-2966.
    [97] Y. F. Chen, K. W. Su. Efficient diode-pumped actively Q-switchedNd:YAG/BaWO4intracavity Raman laser [J]. Opt. Lett.2005,30(24):3335-3337.
    [98] Wang Zheng Ping, Hu Da Wei, Fang Xin, et al. Eye-safe Raman laser at1.5um Based on BaWO4Crystal [J]. Chin. Phys. Lett.2008,25(1):122-125.
    [99] Shutao Li, Xingyu Zhang, Qingpu Wang, et al. Diode-side-pumpedintracavity frequency-doubled Nd:YAG BaWO4Raman laser generating averageoutput power of3.14W at590nm [J]. Opt. Lett.2007,32(20):2951-2953.
    [100] Haohai Yu, Zhen Li, Andrew J.Lee, et al. A continuous wave SrMoO4Raman laser[J]. Opt. Lett.2011,36(4):579-581.
    [101] Haohai Yu, Nan Zong, Zhongben Pan, et al. Efficient high-power selffrequency doubling Nd:GdCOB laser at545and530nm. Opt. Lett.2011,36(19):3852-3854.
    [102] L. Zhang, J. Hu, J. Wang, et al. Stimulated-Brillouin-scattering-suppressedhigh-power single-frequency polarization-maintaining Raman fiber amplifier withlongitudinally varied strain for laser guide star. Opt. Lett.2012,37(22):4796-4798.
    [103]陈慧挺,楼祺洪,董景星,等.532nm激光泵浦硝酸钡晶体产生外腔拉曼激光.强激光与粒子束.2005,17(11):1617-1620.
    [104] Supriyo Sinha, Carsten Langrock, M. J.F.Digonnet, et al. Efficientyellow-light generation by frequency doubling a narrow-linewidth1150nm ytterbiumfiber oscillator [J]. Opt. Lett.2006,31(3):347-349.
    [105] A. S. Kurkov. Oscillation spectral range of Yb-doped fiber lasers. LaserPhys. Lett.2007,4(2):93-102.
    [106] H. Maruyama, A. Shirakawa, K. Ueda.1178nm linearly polarized all fiberlaser[C]. CLEOPR.2007,1-2.
    [107] P. Zhou, X. Wang, Y. Ma, et al. Review on Recent Progress on Yb-DopedFiber Laser in a Variety of Oscillation Spectral Ranges [J]. Laser Physics.2012,22(5):823-831.
    [108] C. A. Codemard, J. Ji, J. K. Sahu, et al.100W CW Cladding PumpedRaman Fiber Laser at1120nm. SPIE.2010,758075801N-75801-75807.
    [109] M. Rekas, O. Schmidt, H. Zimer, et al. Over200W average power tunableRaman amplifier based on fused silica step index fiber [J]. Appl. Phys. B-Lasers O.2012,107(3):711-716.
    [110] M. A. Melkumov, I. A. Bufetov, K. S. Kravtsov, et al. Lasing parametersof ytterbium-doped fibers doped with P2O5and Al2O3. Quantum Electron.2004,34(9):843-848.
    [111]常丽萍.掺镱双包层光纤放大器放大特性及其非线性现象研究[J].光学工程上海,2008).
    [112] Xiang PengLiang Dong. Temperature dependence of ytterbium-dopedfiber amplifers[J]. J. Opt. Soc. Am. B.2008,25(1):126-130.
    [113] D. C. Jones, A. M. Scott. A model of a fiber amplifier incorporatingamplified spontaneous emission [J]. SPIE.2004,533573-80.
    [114] Liping Chang, Wei Fan, Jialin Chen, et al. High power pulse amplificationof ytterbium-doped double-clad fiber amplifer [J]. Chin. Opt. Lett.2007,5(11):624-627.
    [115] Yong Wang, Hong Po. Dynamic Characteristics of Double Clad FiberAmplifiers for High Power Pulse Amplification[J]. J. Lightwave Technol.2003,21(10):2262-2270.
    [116]常丽萍,范薇,王利,等.掺镱双包层光纤放大器的放大特性[J].中国激光.2007,34(11):1492-1497.
    [117]陈爽,王玲,冯莹.光纤端面反射对高功率光纤放大器特性的影响[J].强激光与粒子束.2008,20(12):1997-2000.
    [118]冷进勇,陈胜平,郭少锋,等.高功率掺镱双包层光纤放大器的优化设计[J].中国激光.2009,3670-74.
    [119]汪帆,潘炜,罗斌,等.掺镱双包层光纤激光器典型参数对斜线效率的影响[J].强激光与粒子束.2004,16(12):1509-1512.
    [120]许党朋,李明中,吕新杰,等.高功率掺镱双包层光纤放大器放大特性理论模拟[J].强激光与粒子束.2007,19(7):1071-1076.
    [121]殷树鹏,闫平,李晨,等.连续掺镱光纤放大器的提取效率[J].中国激光.2008,35(6):835-839.
    [122]张俊,陈爽,冯莹.国产掺镱双包层光纤激光器的研究[J].激光技术.2008,32(4):420-423.
    [123]张亮,张健,秦莉,等.高能掺镱离子光纤激光器的研究[J].光子学报.2005,34(7):975-979.
    [124] A. S. Kurkov, S. A. Vasiliev, I. G. Korolev, et al. Fibre laser with anintracavity polariser based on a long-period fibre grating [J]. Quantum Electron.2001,31(5):421-423.
    [125] A. Shirakawa, Makoto Kamijo, Jun Ota, et al. Characteristics of LinearlyPolarized Yb-Doped Fiber Laser in an All-Fiber Configuration. IEEE PhotonicsTechnology Letters.2007,19(20):1664-1666.
    [126] Chi-Hung Liu, Almantas Galvanauskas, Victor Khitrov, et al. High-powersingle-polarization and single-transverse-mode fiber laser with an all-fiber cavity andfiber-grating stabilized spectrum [J]. Opt. Lett.2006,31(1):17-18.
    [127] Z. Yang, T. Chen, W. Ye, and Y. H. Shen. Linearly Polarized Tm DopedDouble Clad Fiber Laser Laser Physics [J].2010,201752-1755.
    [128] D. Lin, J. Li, R. Li, K. Ueda, G. Li, and X. Li. Efficient, high-power, andradially polarized fiber laser. Opt. Lett.2010,352290-2292.
    [129] Dong Xue, A.Damak, X. Gu. All fiber single polarized Yb-doped fiberlaser with a high extinction ratio. Opt. Commun.2010,2010(283):1059-1061.
    [130] Lei Zhang, Jianhua Wang, Xijia Gu, et al. A linearly-polarized tunableYb-doped fiber laser using a polarization dependent fiber loop mirror[J]. Opt.Commun.2012,2852410-2413.
    [131] N. Jovanovic, G. D. Marshall, A. Fuerbach, et al. Highly NarrowLinewidth, CW, All-Fiber Oscillator With a Switchable Linear Polarization [J]. IEEEPhotonics Technology Letters.2008,20(10):809-811.
    [132] V. M. Paramonov, A. S. Kurkov, O. I. Medvedkov, et al. Singlepolarization cladding pumped Yb-doped fiber laser. Laser Physics Letters.2007,4(10):740-742.
    [133] Xia Liu, Songtao Du, Jun Zhou, et al. Linearly polarized operation ofYb-doped fiber laser by Brewster's angle-polished fiber end. Chin. Opt. Lett.2010,8184-186.
    [134] G. B. Yongmin Jung, and David J. Richardson. Polarization maintainingoptical fiber [J]. Opt. Lett.2010,352034-2036.
    [135] J. Wang, J. Hu, L. Zhang, et al. A100W all-fiber liearly-polarizedYb-doped single-mode fiber laser at1120nm [J]. Opt. Express.2012,20(27):28373-28382.
    [136]范元媛.全光纤化高功率光纤激光器理论及实验研究[D].2012,上海光机所,上海.
    [137]冷进勇.窄线宽光纤放大器的理论和实验研究.2011.
    [138] D. C. Brown. Thermal, Stress, and Thermo-Optic Effects in High AveragePower Double-Clad Silica Fiber Lasers. IEEE Journal of Quantum Electronics.2001,37(2):207-217.
    [139] Yong Wang, Chang Qing Xu. Thermal Effects in Kilowatt Fiber Lasers.IEEE Photonic Tech. Lett.2004,16(1):63-65.
    [140]陈吉欣,隋展,陈福深,等.掺Yb3+双包层光纤激光器的热效应分析.激光技术.2006,30(3):268-270.
    [141]陈子伦,侯静,姜宗福.高功率掺镱双包层光纤激光器热效应理论研究.激光技术.2007,31(5):544-548.
    [142]李平雪,朱辰,邹淑珍,等.大功率掺镱双包层光纤激光器热效应分析和实验研究.激光与红外.2007,37(4):318-321.
    [143] Y. Fan, B. He, J. Zhou, et al. Thermal effects in kilowatt all-fiber MOPA.Opt. Express.2011,19(16):15162-15172.
    [144] J. Nilsson, J. D. Minelly, R. Paschotta, et al. Ring-doped cladding-pumpedsingle-mode three-level fiber laser [J]. Opt. Lett.1998,23(5):355-357.
    [145] A. B. Myers, M. O. Trulson, R. A. Mathies. Quantitation of homogeneousand inhomogeneous broadening mechanisms in trans-stilbene using absoluteresonance Raman intensities [J]. Appl. Phys. Lett.1985,83(10):5000-5007.
    [146] E. Desurvire, J. W. Sulhoff, J. L. Zyskind, et al. Study of SpectralDependence of Gain Saturation and Effect of Inhomogeneous Broadening inErbium-Doped Aluminosilicate Fiber Amplifiers. IEEE Photonic Tech. Lett.1990,2(9):653-655.
    [147] B. Laurent, J. A. Marie, J. Bernard. Homogeneous and inhomogeneousbroadening measurements of EDFA C and L bands. OSA/OAA.2001, OTuB1-1.
    [148] V. A. Fromzel, C. R. Prasad. Influence of a small inhomogeneousbroadening of Cr3+:LiSrAlF6emission line on the laser performance [J]. Journal ofPhysics and Chemistry of Solids.2001,62865-871.
    [149]冯建和,纪越峰,管克俭. EDFA增益谱的精确测量[J].光子学报.2001,30(5):543-545.
    [150] M. Bolshtyansky. Spectral Hole Burning in Erbium-Doped FiberAmplifiers [J]. J Lightwave Technol.2003,21(4):1032-1038.
    [151]谭莉.长波段掺铒光纤放大器的理论及实验研究[D].2003.天津大学,天津.
    [152]田大伟,董波,胡曙阳,等.多波长掺铒光纤激光器技术研究[J].激光与光电子学进展.2005,42(9):6-10.
    [153]孟献丰,陆春华,张其土,等.稀土掺杂BAP玻璃的制备及性能研究[J].光学技术.2007,33(4):617-620.
    [154]冯本珍.掺铒光纤放大器放大特性分析[J].阜阳师范学院学报.2010,27(1):34-36.
    [155]张华荣,李成,余向阳.非均匀展宽对超短激光脉冲传播特性的影响[J].光子学报.2010,39(1):6-12.
    [156] M. J. F. Digonnet. Rare-Earth-Doped Fiber Lasers and Amplifiers.2001.
    [157] T. Sato, T. Horiguchi, M. Tateda, et al. Spectral linewidth broadening insynchronous Raman fiber amplification caused by cross phase modulation effects andits suppression [J]. Opt. Lett.1997,22(12):880-882.
    [158] I. Dajani, C. Vergien, C. Robin, et al. Experimental and theoreticalinvestigations of photonic crystal fiber amplifier with260W output[J]. Opt. Express.2009,17(26):24317-24333.
    [159] T. T. Alkeskjold. Single-mode large-mode area fiber amplifier withhigher-order mode suppression and distributed passband filtering of ASE and SRS [C].SPIE.2010,7580758012-758011-758013.
    [160] J. Hansryd, F. Dross, M. Westlund, et al. Increase of the SBS Threshold ina Short Highly Nonliear Fiber by Applying a Temperature Distribution[J]. J.Lightwave Technol.2001,19(11):1691-1697.
    [161] J. Boggio, J. D. Marconi, H. L. Fragnito. Experimental and NumericalInvestigation of the SBS-Threshold Increase in an Optical Fiber by Applying StrainDistributions[J]. J. Lightwave Technol.2005,23(11):3808.
    [162] R. Engelbrecht, J. Hagen, M. Schmidt. SBS Suppression in VariablyStrained Fibers for Fiber Amplifiers and Fiber Lasers with a High Spectral PowerDensity [C]. SPIE.2005,5777795-798.
    [163] V. Harrison. Suppression of stimulated Brillouin scattering in high-powersingle-frequency fiber amplifiers[J]. Opt. Lett.2006,31161-162.
    [164] R. Engelbrecht, A. Dobroschke, B. Schmauss. SBS shaping andsuppressing by arbitrary strain distributions realized by a fiber coiling machine [J].Journal of LATEX files.2007,6(1):1-6.
    [165] J. E. Rothenberg, P. A. Thielen, M. Wickham, et al. Suppression ofStimulated Brillouin Scattering in Single-Frequency Multi-Kilowatt Fiber Amplifiers
    [C]. SPIE.2008,687368730O-68731-68737.
    [166] I. Dajani, C. Zeringue, T. Bronder, et al. A theoretical treatment of twoapproaches to SBS mitigation with two-tone amplification [J]. Opt. Express.2008,16(18):14233.
    [167] Anping Liu. Stimulated Brillouin scattering in single frequency fiberamplifiers with delivery fibers [J]. Opt. Express.2009,17(17):15201-15209.
    [168] Anping Liu, Xin Chen, Ming Jun Li, et al. Comprehensive Modeling ofSingle Frequency Fiber Amplifiers for Mitigating Stimulated Brillouin Scatting. J.Lightwave Technol.2009,27(13):2189-2198.
    [169] C. Vergien, I. Dajani, C. Zeringue. Theoretical analysis of single frequencyRaman fiber amplifier system operating at1178nm [J]. Opt. Express.2010,18(25):26214-26229.
    [170] I. Dajani, C. Zeringue, C. Lu, et al. Stimulated Brillouin scatteringsuppression through laser gain competition: scalability to high power [J]. Opt. Lett.2010,35(18):3114-3116.
    [171]冷进勇,刘弛,郭少锋,等.高功率单频光纤放大器中温度分布对受激布里渊散射的影响[J].中国激光.2010,37(10):2491-2495.
    [172]冷进勇,吴武明,陈胜平,等.采用多级放大结构的单频拉曼放大器的数值模拟[J].中国激光.2010.
    [173]冷进勇,吴武明,陈胜平,等.单频拉曼光纤放大器中受激布里渊散射的抑制[J].中国激光.2010,37(9):2334-2339.
    [174] C. Zeringue, C. Vergien, I. Dajani. Pump-limited,203W, single-frequencymonolithic fiber amplifier based on laser gain competition[J]. Opt. Lett.2011,36(5):618-620.
    [175] J. Leng, S. Chen, W. Wu, et al. Analysis and simulation of singlefrequency Raman fiber amplifiers [J]. Opt. Commun.2011,284(12):2997-3003.
    [176] M. Zmuda. Stimulated Brillouin Scattering (SBS) Suppression Techniques
    [C]. AFRL.2007.
    [177] M. Zmuda. Stimulated Brillouin Scattering Suppression Techniques inhigh power fiber amplifiers. Optical Science and Engineering.2009, Doctor111.
    [178] J. Ji, C. A. Codemard, M. Ibsen, et al. Analysis of the Conversion to theFirst Stokes in Cladding-Pumped Fiber Raman Amplifiers. IEEE J. Sel. Top Quant.2009,15(1):129-140.
    [179] J. J. Christophe, A. Codemard, J. K. Sahu and J. Nilsson.100W CWcladding pumped Raman fiber laser at1120nm [C]. SPIE.2010,758075801N.
    [180] J. T. Murray, W. L. Austin, R. C. Powell. Intracavity Raman conversionand Raman beam cleanup [C]. Opt. Mater.1999,11353-371.
    [181] A. M. Oien, P. Tucker, G. Bennett, et al. Solid state Raman laser forfrequency conversion and beam cleanup of high average power lasers [C]. SPIE.2000,4065708-718.
    [182] M. B. Crookston. Single-mode Raman fiber laser in a multimode fiber.2003. AIR University.
    [183] T. H. RussellW. B. Roh. Laser beam cleanup using stimulated Ramanscattering in fiber [C]. SPIE.2003,4829361-362.
    [184] D. Borlaug, R. R. Rice, B. Jalali. Raman beam cleanup in silicon in themid-infrared [J]. Opt. Express.2010,18(12):12411-12414.
    [185] Ya Xian Fan, Fu Yun Lu, Shu Ling Hu, et al. Narrow-linewidth widelytunable hybrid Q-switched double-clad fiber laser [J]. Opt. Lett.2003,28(7):537.
    [186] Ya-Xian Fan. Tunable high-peak-power, high-energy hybrid Q-switcheddouble-clad fiber laser [J]. Opt. Lett.2004,29(7):724-726.
    [187] C. D. Brooks, F. D. Teodoro. Multimegawatt peak power, single transversemode operation of a100um core diameter, Yb-doped rodlike photonic crystal fiberamplifier [J]. Appl. Phys. Lett.2006,89(111119):1-4.
    [188] V. V. Dvoyrin, V. M. Mashinsky, E. M. Dianov. Yb-Bi pulsed fiberlasers[J]. Opt. Lett.2007,32(5):451-453.
    [189] J. Y. Huang, W. Z. Zhuang, W. C. Huang, et al. Hybrid Q-switchedYb-doped fiber laser. Opt. Express.2011,19(10):9364-9370.
    [190] W. Yang, J. Hou, B. Zhang, et al. Semiconductor saturable absorber mirrorpassively Q-switched fiber laser near2um. Appl. Optics.2012,51(23):5664-5667.
    [191] C. D. Brooks, F. D. Teodoro.1-mJ energy,1-MW peak-power,10-Waverage-power, spectrally narrow, diffraction-limited pulses from a photonic-crystalfiber amplifier [J]. Opt. Express.2005,13(22):8999-9002.
    [192] T. V. Andersen, P. P. Millan, S. R. Keiding, et al. All-fiber activelyQ-switched Yb-doped laser [J]. Opt. Commun.2006,260(1):251-256.
    [193] M. Eichhorn. Development of a high-pulse-energy Q-swithed Tm-dopeddouble-clad fluoride fiber laser and its application to the pumping of mid-IR lasers [J].Opt. Lett.2007,32(9):1056-1058.
    [194] M. Leigh, W. Shi, J. Zong, et al. Compact, single-frequency all-fiberQ-switched laser at1um [J]. Opt. Lett.2007,32(8):897-899.
    [195] O. Schmidt, J. Rothhardt, F. Roser, et al. Millijoule pulse energyQ-switched short-length fiber laser [J]. Opt. Lett.2007,32(11):1551-1553.
    [196] J. Geng, Q. Wang, J. Smith, et al. All-fiber Q-switched single-frequencyTm-doped laser near2um [J]. Opt. Lett.2009,34(23):3713-3715.
    [197] P. Li, X. Zhang, S. Zou, et al. A Q-Switched980nm Yb Doped SingleMode Fiber Amplifier and Its Frequency Doubling [J]. Photonics and Optoelectronic.2010,1-3.
    [198] R. J. Williams, N. Jovanovic, G. D. Marshall, et al. All-optical, activelyQ-switched fiber laser [J]. Opt. Express.2010,18(8):7714-7723.
    [199] I. L. Villegas, C. Laborde, A. Diez, et al. Yb-Doped Strictly All-FiberLaser Actively Q-Switched by Intermodal Acousto-Optic Modulation [J]. LaserPhysics.2011,21(9):1650-1655.
    [200] M. Laurila, J. Saby, T. T. Alkeskjold, et al. Q-switching and efficientharmonic generation from a single-mode LMA photonic bandgap rod fiber laser [J].Opt. Express.2011,19(11):10824-10833.
    [201] S. Tokita, M. Murakami, S. Shimizu, et al.12W Q-switched Er:ZBLANfiber laser at2.8um [J]. Opt. Lett.2011,36(15):2812-2814.
    [202] F. Stutzki, F. Jansen, A. Liem, et al.26mJ,130W Q-switched fiber lasersystem with near diffraction limited beam quality [J]. Opt. Lett.2012,37(6):1073-1075.
    [203] P. Kadwani, N. Modsching, R. Sims, et al. Q-switched thulium-dopedphotonic crystal fiber laser [J]. Opt. Lett.2012,37(10):1664-1666.
    [204] R. Petkovsek, J. Saby, F. Salin, et al. SCPEM-Q-switching of afiber-rod-laser [J]. Opt. Express.2012,20(7):7415-7421.
    [205] S. Yoo, A. S. Webb, R. J. Standish, et al. Q-switched neodymium-dopedY3Al5O12-based silica fiber laser [J]. Opt. Lett.2012,37(12):2181-2183.
    [206] T. Hu, D. H. Stuart, D. Jackson. Actively Q-switched2.9um Ho3+Pr3+-doped fluoride fiber laser [J]. Opt. Lett.2012,37(11):2145-2147.
    [207] O. Barmenkov, A. V. Kiryanov, M. V. Andres. Experimental study of theNonlinear dynamics of an actively Q-switched Ytterbium-doped fiber laser [J]. IEEEJournal of Quantum Electronics.2012,48(11):1484-1493.
    [208]何晶,赵宏明,周军,等.单端光纤耦合的声光调Q全光纤化光纤激光器[J].中国激光.2012,39(5):0502008-0502001-0502005.
    [209] P. Cerny, H. Jelinkova. Near-quantum-limit efficiency of picosecondstimulated Raman scattering in BaWO4crystal [J]. Opt. Lett.2002,27(5):360-362.
    [210]刘波.拉曼倍频黄光激光器的研究[D].2007.山东大学,济南.
    [211]李述涛.全固体黄光激光器[D].2008.山东大学,济南.
    [212] H. Zhu, Y. Duan, G. Zhang, et al. Efficient second harmonic generation ofdouble-end diffusion-bonded Nd:YVO4self-Raman laser producing7.9W yellowlight [J]. Opt. Express.2009,17(24):21544-21550.
    [213] N. Zong, Q. Cui, Q. Ma, et al. High average power1.5um eye-safe Ramanshifting in BaWO4crystals. Appl. Opt.2009,48(1):7-10.
    [214]陈晓寒.1.18微米全固态拉曼激光器的高效运转及人眼安全拉曼激光器[D].2009.山东大学济南.
    [215]赵宏明.脉冲光纤激光器调Q特性的研究[M].上海,2008.
    [216]蓝信钜.激光技术[M].2000.
    [217] Yong Wang, A. M. Rios, Hong Po. Analysis of a Q-switched ytterbiumdoped double clad fiber laser with simultaneous mode locking [J]. Opt. Commun.2003,224113-123.
    [218] E. Cormier. High power fiber lasers emitting at1030nm and976nm [C].CMDO.2010.
    [219] C. A. Codemard, J. K. Sahu, J. Nilsson. Tandem Cladding-Pumping forControl of Excess Gain in Ytterbium-Doped Fiber Amplifiers [J]. IEEE J. QuantumElect.2010,46(12):1860-1869.
    [220] J. Zhu, P. Zhou, Y. Ma, et al. Power scaling analysis of tandem-pumpedYb-doped fiber lasers and amplifiers [J]. Opt. Express.2011,19(19):18645-18654.
    [221] Zhen Li, Jun Zhou, Bing He, et al. Diode-pumped1018nm ytterbiumdoped double clad fiber laser [J]. Chin. Opt. Lett.2011,9(9):091401-091403.
    [222]肖虎,董小林,周朴,等.1018nm光源及光纤激光同带抽运实验研究[J].光学学报.2012,32(3):0314001--0314005.
    [223]漆云凤,刘驰,周军,等.128W单频线编振光纤放大器特性研究[J].物理学报.2010,59(6):3942-3948.
    [224] R. Su, P. Zhou, H. Xiao, et al.150W high average power, singlefrequency nanosecond fiber laser in strictly all fiber format [J]. Appl. Opt.2012,15(16):3655-3659.
    [225] Jindan Shi, S. Alam, M. Ibsen. Sub-watt threshold, kilohertz-linewidthRaman distributed-feedback fiber laser [J]. Opt. Lett.2012,37(9):1544-1546.
    [226] C. Liu, Y. Qi, Y. Ding, et al. All-fiber, high power single frequencylinearly polarized ytterbium doped fiber amplifier [J]. Chin. Opt. Lett.2011,9(3):031402-031401-031403.
    [227] D. N. Payne, Y. Jeong, J. Nilsson, et al. Kilowatt-class single-frequencyfiber sources [C]. SPIE.2005,5709133-142.
    [228] Y. Jeong, J. Nilsson, J. K. Sahu, et al. Single-frequency, single-mode,plane-polarized ytterbium-doped fiber master oscillator power amplifier source with264W of output power [J]. Opt. Lett.2005,30(5):459-461.
    [229] Y. Jeong, J. Nilsson, J. K. Sahu, et al. Power Scaling of Single-FrequencyYtterbium-Doped Fiber Master-Oscillator Power-Amplifier Sources up to500W.IEEE J. Sel. Top Quant.2007,13(3):546-550.
    [230] I. Dajani, C. Zeringue, C. Lu, et al. Stimulated Brillouin scatteringsuppression through laser gain competition: scalability to high power [J]. Opt. Lett.2010,35(18):3114-3116.
    [231] C. Zeringue, C. Vergien, I. Dajani. Pump-limited,203W, single-frequencymonolithic fiber amplifier based on laser gain competition [J]. Opt. Lett.2011,36(5):618-620.
    [232] S. Xu, Z. Yang, W. Zhang, et al.400mW ultrashort cavity low noisesingle frequency Yb3+-doped phosphate fiber laser [J]. Opt. Lett.2011,36(18):3708-3710.
    [233] T. Theeg, M. Frede, H. Sayinc, et al. High power monolithic all-fibercounter propagating pumped single frequency amplifier [C]. OSA/OFC/NFOEC2011.2011,1-3.
    [234] M. Karow, C. Basu, D. Kracht, et al. TEM00mode content of a two stagesingle frequency Yb-doped PCF MOPA with246W of output power [J]. Opt.Express.2012,20(5):5319-5323.
    [235] Ren Zhu, Juntao Wang, Jun Zhou, et al. Single frequency pulsed lasersource with hybrid MOPA configuration [J]. Appl. Opt.2012,51(17):3826-3831.
    [236] Y. Feng, S. Huang, A. Shirakawa, et al.589nm Light Source Based onRaman Fiber Laser [J]. Jpn. J. Appl. Phys.2004,43(6A): L722-L724.
    [237] J. Broeng, C. B. Olausson, J. K. Lngso, et al. Actively Doped Solid CorePhotonic Bandgap Fiber [C]. OSA/OFC/NFOEC.2010.
    [238] A. Shirakawa, M. Chen, Y. Yamahara, et al. Single-Frequency PhotonicBandgap Fiber Amplification [C]. OSA/CLEO.2011.
    [239] L. J. Henry, J. Grosek, G. Moore, et al. Generation of50W of1178nm viaAmplification of the Second Stokes [C]. ASSP.2012.
    [240]王劲文,董小鹏,周金龙.基于延时零拍法的DFB光纤激光器线宽测量[J].厦门大学学报.2007,46(3):322-325.
    [241]俞本立,钱景仁,杨瀛海,等.窄线宽激光的零拍测量法[J].中国激光.2001,28(4):351-354.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700