复合生物反应器—膜分离技术处理城市污水的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文是国家自然科学基金重点项目“西部干旱缺水地区水资源再生利用研究”的专题之一,针对城市污水的特点,采用复合淹没式膜生物反应器中试装置对其进行了处理试验与回用研究。复合膜生物反应器是在传统活性污泥反应器中投加悬浮载体,形成悬浮生长的活性污泥和附着生长的生物膜两种微生物共同承担生物降解的作用,并将淹没式微滤(MF)膜组件安置于复合生物反应器内,以实现固液分离的目的。
     对复合生物反应器和活性污泥反应器处理城市污水的功效进行了对比试验,探讨了复合生物反应器中微生物比耗氧速率与出水底物浓度之间的相关关系;研究了复合淹没式膜生物反应器处理城市污水及回用的特性,从微生物维持能角度出发,计算了系统的维持能和污泥产率系数;分析了复合系统微生物组成的特点,对同时硝化反硝化的现象和机理进行了研究,并对其动力学问题进行了数学描述;对影响膜污染的一些控制因素进行了试验检验,建立了膜过滤污染机理评价模型;初步分析了膜生物反应器污水处理系统的技术经济性。论文的主要工作及其成果包括以下几个方面:
     1.在对等的试验条件下,对复合生物反应器和传统活性反应器两系统处理城市污水的功效进行了对比分析。试验表明复合生物反应器出水中色度、COD、TOC、NH_3-N的浓度比活性污泥反应器低,证明HBR系统比CAS系统具有较高的污染物去除能力和较强的抗冲击负荷能力,硝化作用显著。因生物膜的存在,HBR改善了活性污泥易膨胀、流失和沉降性差等缺点,使HBR系统比活性污泥系统具有更佳的运行稳定性。对好氧复合生物处理系统而言,微生物的比耗氧速率更能准确地反映其活性程度,且微生物的比耗氧速率与出水底物COD之间存在Monod关系。复合生物反应器生物降解过程中,生物膜起着重要作用。
     2.采用复合淹没式膜生物反应器试验装置在西安市北石桥污水净化中心对城市污水进行了处理试验。试验结果表明,系统出水浊度小于1NTU(平均值为0.59NTU),SS未检出,色度值在9-39度之间(平均值为30度),COD浓度为6.0-22.8mg/L(平均值为14.5mg/L,去除率达95.5%),NH_3-N浓度在0.1-1.6mg/L之间(平均去除率为97.8%),TN浓度在
This dissertation is a component of the key project 'Study on the recycling and reuse of water resources for the arid and water-deficient area in west China' founded by National Natural Science Foundation of China (NSFC). A hybrid submerged membrane bioreactor (HSMBR) was devised for municipal wastewater treatment and reuse, combining both suspended growth-activated sludge and attached growth-biofilm in one bioreactor by adding suspended carriers into the mixed suspension, a submerged MF membrane module was equipped in the bioreactor for solid/liquid separation.The comparison of treated effects between hybrid bioreactor (HBR) and conventional activated sludge bioreactor (CAS) was analyzed. The properties of the HSMBR process for municipal wastewater treatment and reuse was studied, the coefficient of maintenance, E, and the theoretical conversion (sludge) yield, y, were therefore calculated on the basis of the maintenance energy of bacteria in growing cultures. In addition, the microorganism characteristics and these simultaneous nitrification and denitrification were studied, and the kinetics was described mathematically. The controlling parameters on membrane fouling were detected experimentally. Finally, the primary cost analysis of membrane bioreactor for wastewater treatment was evaluated. The main results of this study are as follows:1. The efficiencies of HBR and CAS for wastewater treatment were compared at parallel operational conditions. The experimental results showed that the color, COD, TOC and NH3-N of effluent in HBR system were lower than that in CAS system as well as increased organics removal and shock loading rate, marked nitrification. The attached growth-biofilm in HBR system can improved the disadvantages caused by sludge expansion and poor settlement, with the result of good operational stability in HBR process. According to the aerobic HBR system, the SOUR can reflects the extent of microbial viability and activity and the SOUR can be related to the equilibrium substrate concentration similar to the classical Monod equation. The biofilm plays a main role in biodegradation comparison with activated sludge.
    2. The HSMBR process was experimented for municipal wastewater treatment in Xi'an Beishiqiao Wastewater Purification Center. The results show that, the filtrate turbidity was always lower than 1 NTU (average turbidity as 0.59 NTU), showing a remarkable SS removal by the HSMBR. Regarding color, it ranged from 9 to 39 c.u. (average color as 30 c.u.) in the filtrate. The average COD removal by the HSMBR was as high as 95.5%, resulting in a residual COD in the filtrate from 6.0 to 22.8 mg/L (average as 14.5 mg/L). The disinfection of membrane achieved 3-4log removal of F. coliform. This meets the requirement for any reuse purpose with the post-disinfection process. Taking into account the particular conditions imposed by the HSMBR, the kinetics was inspired by works of Pirt's maintenance energy of bacteria, and help to arrive at two parameters, named E and y, which represent the coefficient of maintenance and the theoretical conversion yield, respectively. The calculated results indicated that E=0.0285mgCOD/mgTB.h and y=0.129mgTB/mgCOD. The conclusion can be obtained that the HSMBR process was able to adapt the changes of influent quality and quantity owing to the two smaller values than that of activated sludge MBR process.3. The characteristics of microorganism in HSMBR process were detected periodically by electronic microscope. It can be seen that the bacteria containing zoogloea and filamentous bacteria attached sludge and biofilm, and filamentous bacteria can inhabit on the biofilm prior to the sludge. The biofilm played a key role in the wastewater purification, which the microbial multiformity on attached growth was more rich than on suspended growth. The scanning electronic microscope (SEM) images showed that the biofilm flocs structures were dense compared with sludge flocs, and two flocs were consist of most micrococcus and bacterium. The quantity of micrococcus on biofilm was als
引文
1 Samer Adham, Paul Gagiiardo. Membrane bioreactors for water repurification-Phase I Final Technical Report. City of San Diego CA, U.S.A. 1998.
    2 Samer Adham, P. Gagliardo, L. Boulos, J. Oppenheimer and R. Trussell. Feasibility of the membrane bioreactor process for water reclamation. Wat. Sci. Tech., 2001, 43(10): 203-209.
    3 Tom Stephenson, Simon Judd, Bruce Jefferson and Keith Brindle. Membrane bioreactor for wastewater treatment[M]. IWA Publishing, 2000.
    4 顾国维,何义亮编著.膜生物反应器—在污水处理中的研究和应用[M].北京:化学工业出版社,2002.
    5 Smith C. V., Gregorio D. O. and Talcott R. M. The use of ultrafiltration membranes for activated sludge separation. Proc 24rd Ind. Waste Conf., Purdue University, Ann Arbor Science, Ann Arbor, U.S.A. 1969, 1300-1310.
    6 Hard F. W., Clesceri L. S., Nemerow N. L. and Washington D. R. Solids separation by ultrafiltration for concentrated activated sludge. J. Wat. Pollut. Control Fed., 1970, 42: 2135-2148.
    7 黄霞.膜-生物反应器污水处理与回用技术的研究与应用.全国城市污水再生利用经验交流和技术研讨会.2003年10月.
    8 Aya H. Modular membranes for self-contained reuse systems. Wat. Qual. Intl., 1994, 4: 21-22.
    9 Kimura S. Japan's aqua renaissance '90 project. Wat. Sci. Tech., 1991, 23(7-9): 1573-1582.
    10 Choate E. T., Houldsworth D. and Butler G.A. Membrane enhanced anaerobic digestors. Proc. 37th Industrial Waste Conf, Purdue University, Ann Arbor Science, Arm Arbor, USA, 1983, 661-665.
    11 Anderson G. K., Saw C. B. and Femanades M. I. A. P. Application of porous membranes for biomass retention in biological wastewater treatment process. Process Biochem., 1986, 21,174-182.
    12 Botha G. R., Sanderson R. D. and Buckley C. A. Brief historical review of membrane development and membrane application in wastewater treatment in Southern Africa, Wat. Sci. Tech., 1992, 25(10): 1-4.
    13 Yamamoto K., Hiasa M., Mahamood T. and Matsua T. Direct solid-liquid separation using hollow fiber membrane in an activated sludge aeration tank. Wat. Sci. Tech., 1989, 21:43-54.
    14 岑运华.膜生物反应器在污水处理中的应用.水处理技术.1991,17(5):319-323.
    15 郑祥,魏源送,樊耀波,刘俊新.膜生物反应器在我国的研究进展.给水排水,2002,28(2):105-110.
    16 郑祥,刘俊新.膜生物反应器的技术经济分析.给水排水,2002,28(3):105-108.
    17 Cicek N. A review of membrane bioreactors and their potential application in the treatment of agricultural wastewater. Canadian Biosystems Engineering, 2003, 45: 6.37-6.49.
    18 张颖,顾平,邓晓钦.膜生物反应器在污水处理中的应用进展.中国给水排水,2002,18(4):90-92.
    19 Gnirss R. and Dittrich J. Microfiltration of municipal wastewater for disinfection and advanced phosphorus removal: results from trials with different small-scale pilot plants. Wat. Environ. Res., 2002, 72(5): 602-609.
    20 Cote E, Buisson H. Pound C. and Arakaki G. Immersed membrane activated sludge for the reuse of municipal wastewater. Desalination, 1997, 113(2-3):189-196.
    21 Cote E, Buisson H. and Praderie M. Immersed membrane activated sludge process applied to the treatment of municipal wastewater. Wat. Sci. Tech., 1998, 38(4-5): 437-442.
    22 彭跃莲,刘忠洲.膜生物反应器在废水处理中的应用.水处理技术,1999,25(2):63-69.
    23 Cote P., Bersillon J. L. and Faup G. Bubble free aeration using membranes: process analysis. J. Wat. Pollut. Control Fed., 1988, 60:1986-1992.
    24 Livingston A. G. Detoxification of industrial wastewaters in an extractive membrane bioreactor. Wat. Sci. Tech., 1996, 33(3): 1-8.
    25 樊耀波,王菊思.水和废水处理中的膜生物反应器技术.环境科学,1995,16(5):19-81.
    26 B. Zhang, K. Yamamoto. Seasonal change of microbial population and activities in a building wastewater reuse system using a membrane separation activated sludge process. Wat. Sci. Tech., 1996, 34(5-6): 295-302.
    27 刘锐,黄霞等.膜-生物反应器和传统活性污泥工艺的比较.环境科学,2001,22(3):20-24
    28 Wisniewski C., Grasmick A. Floc size distribution in a membrane bioreactor and consequences for membrane fouling. Colloids Surfaces A: Physicochem. Eng. Aspects., 1998(138): 403-411.
    29 邢传红,Tardieu Eric,钱易.无机膜-生物反应器处理生活污水试验研究.环境科学,1997,18(3):1-4.
    30 孟耀斌等.分置式膜-生物反应器处理生活污水的抗冲击负荷能力.环境科学,2000,21(5):22-26.
    31 邢传宏,钱易等.错流式膜-生物反应处理生活污水及其生物学研究.环境科学,1997,18(6):23-26.
    32 郑祥,樊耀波.膜生物反应器运行条件下的优化及膜污染的控制.给水排水,2001,27(4):41-44.
    33 邢传宏,Tardieu E.,钱易.无机膜-生物反应器处理生活污水试验研究.环境科学,1997,18(3):1-4.
    34 邹联沛,王宝贞,张捍民.膜生物反应器中膜的堵塞与清洗的机理研究.给水排水,2000,26(9):73-75.
    35 EI Hani Bouhabila, Roger Ben Aim and Herve Buisson. Fouling characterisation in membrane bioreactors. Separation and Purification Technology, 2001, 22-23: 123-132.
    36 In-Song Chang, Soon-Ouk Bag and Chung-Hak Lee. Effects of membrane fouling on solute rejection during membrane filtration of activated sludge. Process Biochemistry, 2001, 36: 855-860.
    37 Bailey A. D., Hansford G. S. and Dold P. L. The use of crossflow microfiltration to enhanced the performance of an activated sludge reactor. Wat. Res., 1994, 28(2): 297-301.
    38 Trouve E., Urbain V. and Manem J. Treatment of municipal wastewater by a membrane bioreactor: results of a semi-industrial pilot-scale study. Wat. Sci. Tech., 1994, 30(4): 151-157.
    39 Lubbecke S., Vogeipohl A. and Dewjanin W. Wastewater treatment in a biological high performance system with high biomass concentration. Wat. Res., 1995, 29(3): 793-802.
    40 Muller E. B., Stouthamer A. H., Verseveld H. W. van and Eikelboom D. H. Aerobic domestic wastewater treatment in a pilot plant with complete sludge retention by cross-flow filtration. Wat. Res., 1995, 29(4): 1179-1189.
    41 Winnen H., Suidan M. T., Scarpino P. V., Wrenn B., Cicek N., Urbain V. and Manem J. Effectiveness of the membrane bioreactor in the biodegradation of high molecular-weight compounds. Wat. Sci. Tech., 1996, 34(9): 197-203.
    42 Ueda T., Hata K. and Kikuoka Y. Treatment of domestic sewage from rural settlements by a membrane bioreactor. Wat. Sci. Tech., 1996, 34(9): 189-196.
    43 Vigneswaran S., Yang B. S., Muttarnara S. and Maythanukhraw R. Application of air backflushing technique in membrane bioreactor. Proc. the 6th Asia-Pacific Regional Conference of IAWQ, Seoul, Korea, 1997, 1461-1467.
    44 Gunder B. and Krauth K. Replacement of secondary clarification by membrane separation-results with plate and hollow fiber modules. Wat. Sci. Tech., 1998, 38(4-5): 383-393.
    45 Davies W. J., Le M. S. and Heath C. R. Intensified activated sludge process with submerged membrane microfiltration. Wat. Sci. Tech., 1998, 38(4-5): 421-428.
    46 Chang I. S., Clech P. L., Jefferson B. and Judd S. Membrane fouling in membrane bioreactors for wastewater treatment. J. Environmental Engineering. 2002, 128(11): 1018-1029.
    47 赵红梅.城市污水水质特征及强化处理技术研究[M].西安建筑科技大学硕士学位论文,2003年6月.
    48 Krauth K. H. and Staab K. F. Pressurized biomembrane reactor for wastewater treatment. Proc. Hydrotop., Marseille, France, 1994, 555-562.
    49 Kempen R. Draaijer H. and Postma H. A membrane bioreactor for industrial effluent. MBR1-Proc. 1st Intl. Mtg. on Membrane Bioreactor for Wastewater Treatment, Cranfield University, UK, 1997.
    50 Mallon D. Steen F. Brindle K. and Judd S. Performance on a real industrial effluent using a ZenoGem MBR. MBR2-Proc. 2nd Intl. Mtg. on Membrane Bioreactor for Wastewater Treatment, Cranfield University, UK, 1999.
    51 Mishhra P. N. Sutton P. M. and Mourato D. Industrial wastewater biotreatment optimization through membrane application. Proc. 8th Mtg. Air anf Waste Management Association, Nashville, 1996.
    52 Seo G. T., Lee T. S., Moon B. H., Choi K. S. and Lee H. D. Membrane separation activated sludge for residual organic removal in oil wastewater. Wat. Sci. Tech., 1997, 36(12): 275-282.
    53 Yamamoto K. and Win K. M. Tannery wastewater treatment using a sequencing batch membrane reactor. Wat. Sci. Tech., 1991, 23(7-9): 1639-1648.
    54 Ahn W. Y., Kang M. S. Yim S. K. and Choi K. H. Nitrification of leachate with submerged membrane bioreactor-Pilot scale. Proc. IWA Conf. Membrane Technology in Environmental Management. Tokyo, 1999.
    55 Dufresne R., Lavallee H., Lebrun R. and Lo S. Comparison of performance between membrane bioreactor and activated sludge system for the treatment of pulping process wastewaters. J. Tappi., 1998, 81: 131-135.
    56 Sutton P. M. Mishra P. N. and Crawford P. M. Combining biological and physical processes for complete treatment of oily wastewater, Int. Biodeter Biodeg., 1994, 33:3-21.
    57 郑祥,刘俊新.膜生物反应器的技术经济分析.给水排水,2002,28(3):105-108.
    58 刘雨,赵庆良,郑兴灿编著.生物膜法污水处理技术[M].北京:中国建筑工业出版社,2000.
    59 王建龙,吴立波,钱易.复合生物反应器处理废水特性的研究.中国给水排水,1998,14(2):29-32.
    60 时均,袁权,高从堦主编.膜技术手册[M].北京:化学工业出版社,2001.
    61 Vincent Urbain, Raymond Benoit and Jacques Manem. Membrane bioreactor: a new treatment tool. J. AWWA, 1996, 5:75-86.
    62 Mallevialle J., Odendaal P. E. and Wiesner M. R. Water treatment membrane processes[M]. McGraw-Hill, 1999.
    63 Chang I. S., Clech P. L. Jefferson B. and Judd S. Membrane fouling in membrane bioreactors for wastewater treatment. J. Environ. Engrg., 2002, 128(11): 1018-1029.
    64 Ueda T. and Hata K. Domestic wastewater treatment by a submerged membrane bioreactor with gravitational filtration. War. Res., 1999, 33(12): 2888-2892.
    65 顾平.中空膜生物床处理生活污水的中试研究.中国给水排水,2000,16(3):5-8.
    66 Goltara A., Martinez J. and Mendez R. Carbon and nitrogen removal from tannery wastewater with a membrane bioreactor. Wat. Sci. Tech., 2003, 48(1): 207-214.
    67 Choo K. H. and Stensel H. Sequencing batch membrane reactor treatment: nitrogen removal and membrane fouling evaluation. Wat. Env. Res., 2000, 72(4): 490-498.
    68 Nagaoka H. Nitrogen removal by a submerged membrane separation activated sludge process. Wat. Sci. Tech., 1999, 39(8):107-114.
    69 Rosenberger S., Kruger U., Witzig R., manz W., Szewzyk U. and Kraume M. performance of a bioreactor with submerged membranes for aerobic treatment of municipal waste water. Wat. Res., 2002, 36:413-420.
    70 Lesjean B., Gnirss R. and Adam C. Process configurations adapted to membrane bioreactors for enhanced biological phosphorous and nitrogen removal. Desalination, 2002, 149: 217-224.
    71 Ahn K. H., Song K. G, Cho E., Cho J. W., Yun H. J., Lee S. and Kim J. Y. Enhanced biological phosphorus and nitrogen removal using a sequencing anoxic/anaerobic membrane bioreactor(SAM) process. Desalination, 2003, 157: 345-352.
    72 Zhang D. J. and Verstraete. The treatment of high strength wastewater containing high concentrations of ammonium in a stage anaerobic and aerobic membrane bioreactor. J. Environ. Eng. Sci., 2002, (1):303-310.
    73 Cicek N., Franco J. R, Suidan M. T., Urbain V. and Manem J. Characterization and comparison of a membrane bioreactor and a conventional activated sludge system in the treatment of wastewater containing high-molecular-weight compounds. Wat. Environ. Res., 1999, 71: 64-70.
    74 刘锐,黄霞,刘若鹏,钱易.膜生物反应器与传统活性污泥工艺的比较.环境科学,2001,22(3):20-24.
    75 Chang J. Membrane bioreactor for the denitrification of drinking water supplies. J. Mem. Sci., 1993, 80:233-239.
    76 Urbain V. Membrane bioreactor: a new treatment tool. J. AWWA, 1996, 88(5): 75-86.
    77 Ergas S. J. and Rheinheimer D. E. Drinking water denitrification using a membrane bioreactor. Wat. Res., 2004, 38:3225-3232.
    78 黄霞,莫罹.MBR在净水工艺中的膜污染特征及清洗.中国给水排水,2003,19(5):8-12.
    79 Bussion H., Cote P., Praderie M. and Paillard H. The use of immersed membranes for upgrading wastewater treatment plants. Wat. Sci. Tech., 1998, 37(9):89-95.
    80 Chang I. S., Bag S. O. and Lee C. H. Effects of membrane fouling on solute rejection during membrane filtration of activated sludge. Process Biochemistry, 2001, 36:855-860.
    81 Chang I. S., Clech P. L. Jefferson B. and Judd S. Membrane fouling in membrane bioreactors for wastewater treatment. J. Environ. Engrg., 2002, 128(11): 1018-1029.
    82 Field R. W., Wu D., Howell J. A. and Gupta B. B. Critical flux concept for microfiltration fouling. J. Mem, Sci., 1995, 100: 259-272.
    83 Silva C. M., Reeve D. W., Husain H., Rabie H. R. and Woodhouse K. A. Model for flux prediction in high microfiltration system. J. Mem. Sci., 2000, 173:87-98.
    84 Shimizu Y., Shimodera K. J. and Watanabe A. Cross flow microfiltration of bacterial cells. J. Ferment. Bioeng., 1993, 76: 493-500.
    85 Baker R. J., Fane A. Ca, Fell C. J. D. and Yoo B. H. factors affecting flux in crossflow filtration. Desalination, 1985, 53:81-93.
    86 Chang I. S., Gander M., Jefferson B. and Judd S. Low-cost membranes for use in a submerged MBR. Process Saf Envir. Prot., 2001, 79(3): 183-188.
    87 Kwon D. Y., Vigneswaran S., Fane A. G. and Ben Aim R. Experimental determination of critical flux in cross flow microfiltration. Sep. Purif Technol., 2000, 19:169-181.
    88 Ishiguro K., Imai K. and Sawada S. Effects of biological treatment conditions on permeate flux of UF membrane in a membrane/activated sludge wastewater treatment system. Desalination, 1994,98:119-126.
    89 Sato T. and Ishii Y. Effects of activated sludge properties on water flux of UF membrane used for human excrement treatment. Wat. Sci. Tech., 1991, 23: 1601-1608.
    90 Krauth K. H. and Staab K. F. Pressurized bioreactor with membrane filtration for wastewater treatment. Wat. Res., 1993, 27: 405-411.
    91 Shimizu Y., Okuno Y. I., Uryu K., Ohtsuho S. and Watanabe A. Filtration characteristics of hollow fiber MF membranes used in membrane bioreactor for domestic wastewater treatment. Wat. Res., 1996, 30: 2385-2392.
    92 Belfort G., Davis R. H. and Zydney A. L. The behavior of suspension and macromolecular solutions in crossflow ME J. Mem. Sci., 1994,96:1-58.
    93 Blatt W. E, Dravid A. and Michaels A. S. Solute polarization and cake formation in membrane ultrafiltration: cause, consequences and control techniques, in: J. E. Flinn (Ed.), Mem. Sci. Tech., Plenum Press, N. Y., 1970.
    94 Zydney A. L. and Colton C. K. A concentration polarization model for the filtrate flux in cross-flow MF of particulate suspensions. Chem. Eng. Commun., 1985,47:1-21.
    95 Green G and Belfort G Fouling of UF membranes: lateral migration and the particle trajectory model. Desalination, 1998,35:129-147.
    96 Sethi S. and Wiesner M. R. Modeling of transient permeate flux in cross-flow membrane filtration incorporating mutiple particle transport mechanisms. J. Mem. Sci., 1997, 136: 91-205.
    97 Suwa Y., Suzuki T., Toyohara H., Yamagishi T. and Urusgigawa Y. Single-stage single-sludge nitrogen removal by an activated-sludge process with cross-flow filtration. Wat. Res., 1992, 26:1149-1157.
    98 Berthold G. Replacement of secondary clarification by membrane separation results with tubular, plate and hollow fiber modules. Wat. Sci. Tech., 1999, 40(4-5): 311-320.
    99 刘俊新,丛丽,王宝贞,vail Groenestijn J.W.Doddema H.J.生物膜与活性污泥结合工艺脱氮除磷研究.中国给水排水,2000,16(12):1-5.
    100 Su J. L. and Ouyang C. F. Nutrient removal using a combined process with activated sludge and fixed biofilm. Wat. Sci. Tech., 1996, 34(1-2):477-486.
    101 Liu J. X., van Groenestijn J. W., Doddema H. J. and Wang B. Z. Removal of nitrogen and phosphorus using a new biofilm-activated sludge system. Wat. Sci. Tech., 1996, 34(1-2):315-322.
    102 Jones R. M., Sen D. and Lambert R. Full scale evaluation of nitrification performance in an integrated fixed film activated sludge process. Wat. Sci. Tech., 1998, 38(1):71-78.
    103 Wang J. L., Shi H. C. and Qian Y. Wastewater treatment in a hybrid biological reactor (HBR): effect of organic loading rates. Process Biochemistry, 2000, 36: 297-303.
    104 Lee H. S., Park S. J. and Yoon T. I. Wastewater treatment in a hybrid biological reactor using powdered minerals: effects of organic loading rates on COD removal and nitrification. Process Biochemistry, 20002, 38:81-88.
    105 Wanner J., Kucman K. and Grau P. Activated sludge process combined with biofilm cultivation. Wat. Res., 1988, 22(2):207-215.
    106 桂萍,黄霞,汪城文,钱易.膜-复合式生物反应器组合系统操作条件及稳定运行特性.环境科学,1998,19(2):35-38.
    107 张军,王宝贞,聂梅生.复合淹没式中空膜生物反应器处理生活污水的特性研究.中国给水排水,1999,15(9):13-16.
    108 何圣兵,王宝贞,王琳.生物膜-膜生物反应器处理生活污水的试验研究.给水排水,2002,28(11):21-24.
    109 Lee J. C., Kim J. S., Cho M. H., Park P. K. and Lee C. H. Potential and limitations of alum or zeolite addition to improve the performance of a submerged membrane bioreactor. Wat. Sci. Tech., 2001, 43(11):59-66.
    110 Jun B. H., Miyanaga K., Tanji Y. and Unno H. Removal of nitrogenous and carbonaceous substances by a porous carrier-membrane hybrid process for wastewater treatment. J. Biochemical Engineering, 2003,14:37-44.
    111 Liu R., Huang X., Wang C. W. and Qian Y. Study on hydraulic characteristics in a submerged membrane bioreactor process. Process Biochem., 200, 36:249-254.
    112 Ueda T., Hata K. and Kikuoka Y. Treatment of domestic sewage from rural settlements by a membrane bioreactor. Wat. Sci. Tech., 1996,34:189-196.
    113 Bouhabila E.H., Aim R. Ben and Buisson H. Microfiltration of activated sludge using submerged membrane with air bubbling. Desalination, 1998, 118:315-322.
    114 φOdegraad H., Rusten B. and Westrum T. The new moving bed biofilm reactor-Applications and results. Wat. Sci. Tech., 1994, 29(10-11): 157-165.
    115 Tyagi R. and Vembu K. Wastewater treatment by immobilized cells. CRC, Boca Raton, 1990.
    116 Atkinson B., Davies I. and How S. The overall rate of substrate uptake by microbial films, Parts Ⅰ and Ⅱ. Trans. Inst. Chem. Eng., 1974.
    117 Fadi Gebara. Activated sludge biofilm wastewater treatment system. Wat. Res., 1998, 33(1):230-238.
    118 郑祥,樊耀波.膜生物反应器运行条件的优化及膜污染的控制.给水排水,2001,27(4):41-44.
    119 彭跃莲,刘忠洲.稳定膜透水率的新方法—恒流控制.水处理技术,2001,27(4):214-216.
    120 张自杰主编.排水工程(下册)[M],第四版.北京:中国建筑工业出版社,2000.
    121 封莉,张立秋,王宝贞.一体式膜生物反应器的HRT的确定.中国给水排水,2002,18(11):62-64.
    122 邹联沛,王宝贞等.SRT对膜生物反应器出水水质的影响研究.中国给水排水,2000,16(7):16-18.
    123 Clcek N. et al. Effect of solids retention time on the performance and biological characteristics of membrane bioreactor. Wat. Sci. Tech., 2001, 43(11): 43-50.
    124 Huang X., Gui P. and Qian Y. Effects of sludge retention time on microbial behavior in submerged membrane bioreactor. Process Biochem., 2001, 36:1001-1006.
    125 Innocenti L., Bolzonella D., Pavan P. and Cecchi F. Effects of sludge age on the performance of a membrane bioreactor: influence on nutrient and metals removal. Desalination, 2002, 146:467-474.
    126 Park Y. K. and Lee C. H. Dyeing wastewater treatment by activated sludge process with a polyurethane fluidized bed biofilm. Wat. Sci. Tech., 1996, 34(5-6): 193-200.
    127 Su J. L. and Ouyang C. F. Nutrient removal using a combined process with activated sludge and fixed biofilm. Wat. Sci. Tech., 1996,34(1-2):477-486.
    128 Chuang S. H., Ouyang C. F., Yuang H. C. and You S.J. Effects of SRT and DO on nutrient removal in a AS-biofilm process. Wat. Sci. Tech., 1997,36(12):19-27.
    129 刘俊新,丛丽,王宝贞,van Groenestijn J.W.,Doddema H.J.生物膜与活性污泥结合工艺脱氮除磷研究.中国给水排水,2000,16(12):1-5.
    130 Park Y. K. and Lee C H. Dyeing wastewater treatment by activated sludge process with a polyurethane fluidized bed biofilm. Wat. Sci. Tech., 1996, 34(5-6): 193-200.
    131 Jerry Y. C. Huang, Meng-Dawn Cheng and James T. Mueller. Oxygen uptake rates for determing microbial activity and application. Wat. Res., 1985, 19(3): 373-381.
    132 Halil Hasar, Cumali kinaci, Ayhan Unlu. Viability of microbial mass in a submerged membrane bioreactor. Desalination, 2002, 150:263-268.
    133 高旭,龙腾锐.连续进出水-间歇曝气工艺污泥好氧速率研究.给水排水,2002,28(3):4-8.
    134 Jerry Y. C. Huang, Meng-Dawn Cheng. Measurement and new applications of oxygen uptake rates in activated sludge processes. J. Water Pollut. Control Fed., 1984, 56(3):259-265.
    135 董春娟,吕炳南.污水生物处理中的溶解性微生物产物(SMP).中国给水排水,2002,20(1):22-25.
    136 Huang X., Liu R. and Qian Y. Behavior of soluble microbial products in a membrane bioreactor. Process Biochemistry, 2000, (36):401-406.
    137 Fan X. J., Urbain V., Qian Y. and Manem J. Nitrification and mass balance with a membrane bioreactor for municipal wastewater treatment. Wat. Sci. Tech., 1996, 34(1-2): 129-136.
    138 李红兵.中空纤维膜生物反应器处理生活污水的特性.环境科学,1999,20(2):53-56.
    139 Yeoman S., Stephenson T., Lester J. N. and Perry R. The removal of phosphorous during wastewater treatment: a review. Environ. Pollut. A., 1988, 49:183-233.
    140 Till S. W., Judd S. and McLoughin B. Reduction of faecal coliform bacteria in sewage effluents using a microporous polymeric membranes. Wat. Res., 1998, 32: 1417-1422.
    141 Ueda T. and Horan N. J. Fate of indigenous bacteriophage in a membrane bioreactor. Wat. Res., 2000, 34: 2151-2159.
    142 Adham S., Merlo Rion P. and Paul Gagliardo P. E. Membrane bioreactor for water reclamation-Phase Ⅱ, Final technical report. Nov., 2000.
    143 Pitt S. J. The maintenance energy of bacteria in growing cultures. Proc. Roy. Soc., London Ser. B., 1965,163:224-231.
    144 Pirt S. J. Maintenance energy: a general model for energy-limited and energy sufficient growth. Arch. Microbiol., 1982,133:300-302.
    145 Bouillot R, Canales A., Pareilleux A., Huyard A. and Goma G. Membrane bioreactors for the evaluation of maintenance phenomena in wastewater treatment. J. Ferment. Bioeng., 1990, 69(3): 178-183.
    146 Wisniewski C., Leon Cruz A. and Grasmick A. Kinetics of organic carbon removal by a mixed culture in a membrane bioreactor. J. Biochem. Eng., 1999, 3:61-69.
    147 杨造燕,顾平.膜生物反应器在城市生活污水处理回用中的应用.2001年膜技术应用国际会议论文集,杭州,2001.
    148 Mason C. A., Bryers J. D. and Hamer G. Activity, dead and lysis during microbial growth in chemostat. Chem. Eng. Commun., 1986, 45:163-176.
    149 许保玖,龙腾锐.当代给水与废水处理原理[M].北京:高等教育出版社,2000.
    150 Guest R. K. and Smith D. W. A potential new role for fungi in a wastewater MBR biological nitrogen reduction system. J. Environ. Eng. Sci., 2002, 1:433-437.
    151 Witzig R., Manz W., Rosenberger S., Kruger U., Kraume M. and Szewzyk U. Microbiological aspects of a bioreactor with submerged membranes for aerobic treatment of municipal wastewater. Wat. Res., 2002, 36:394-402.
    152 张自杰主编.废水处理理论与设计[M].北京:中国建筑工业出版社.2003.
    153 郭劲松,黄天寅,龙腾锐.生物脱氮除磷工艺中的微生物及其相互关系.环境污染治理技术与设备,2000,1(1):8-15.
    154 Satoh H. Deterioration of enhanced biological phosphate removal by the domination of microorganisms without poly-paseumulation. Wat. Sci. Tech., 1994, 30(6):203-211.
    155 Chuang S. H., Ouyang C. F. and Wang Y. B. Kinetics competition between phosphate release and denitrification on sludge under anoxic condition. Wat. Res., 1996,30(12):2961-2968.
    156 Jun B. H., Miyanaga K., Tanji Y. and Unno H. Removal of nitrogenous and carbonaceous substances by a porous carrier-membrane hybrid process for wastewater treatment. J. Biochemical Engineering, 2003, 14:37-44.
    157 Gupta A. B. and Gupta S. K. Simultaneous carbon and nitrogen removal from high strength domestic wastewater in an aerobic RBC biofilm. Wat. Res., 2000, 35(7):1714-1722.
    158 Kerrn, Jespersen J. P. and Henze M. Biological phosphorus uptake under anoxic and aerobic conditions. Wat. Res., 1993, 27:617-624.
    159 Kubra T., Smoiders G. J. F., van Loosdrecht M. C. M. and Heijnen J. J. Biological phosphorus removal from wastewater by an anaerobic-anoxic SBR. Wat. Sci. Tech., 1993, 27:241-252.
    160 Kubra T., Smoiders G. J. F., van Loosdrecht M. C. M. and Heijnen J. J. Effect of cyclic oxygen exposure on the activity of denitrifying phosphorus removing bacteria. Wat. Sci. Tech., 1996, 34:33-40.
    161 Henze M., Harremoes P, Cour Jansen J. J. and Arvin E.污水生物与化学处理技术[M].北京:中国建筑工业出版社,1999.
    162 高廷耀,周增炎,朱晓君.生物脱氮工艺中的同步硝化反硝化现象.给水排水,1998,24(12):6-9.
    163 曹国民,赵庆祥,张彤.单级生物脱氮技术的进展.中国给水排水,2000,16(2):20-24.
    164 Daigger G. T., Litteton H. X. Orbal氧化沟同时硝化反硝化及生物除磷的机理研究.中国给水排水,1999,15(3):1-7.
    165 Yoo H., Ahn K. H. and Lee H. J. Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrification (SND) via nitrite in an intermittently-areated reaction. Wat. Res., 1999, 33(1):145-154.
    166 Anthonisen A. C. Inhibition of nitrification by ammonia and nitrous acid. JWPCF, 1976,48(5):835-852.
    167 Cecen F. and Gonenc I.E. Nitrogen removal characteristic of nitrification and denitrification filter. Wat. Sci. Tech., 1994, 29(10-11): 409-416.
    , #146
    168 杨殿海,王峰,夏四清.废水处理中同步硝化/反硝化研究进展.上海环境科学,2003,22(12):878-882.
    169 Dincer Ali R. and Kargi E Kinetics of sequential nitrification and denitrification processes. Enzyme and Microbial Tech., 2000, 27:37-42.
    170 Field R. W., Wu D., Howell J. A. and Gupta B. B. Critical flux concept for microfiltration fouling. J. Mem, Sci., 1995, 100: 259-272.
    171 Silva C. M., Reeve D. W., Husain H., Rabie H. R. and Woodhouse K. A. Model for flux prediction in high microfiltration system. J. Mem. Sci., 2000,173:87-98.
    172 Ishiguro K., Imai K. and Sawada S. Effects of biological treatment conditions on permeate flux of UF membrane in a membrane/activated sludge wastewater treatment systems. Desalination, 1994, 98:119-126.
    173 Hong S. P., Bae T. H., Tak T. M., Hong S. and Randall A. Fouling control in activated sludge submerged hollow fiber membrane bioreactors. Desalination, 2002, 143: 219-228.
    174 Field R. W., Wu D., Howell J. A. and Gupta B. B. Critical flux concept for microfiltration fouling. J. Mem., Sci., 1995, 100:259-272.
    175 Jiang T., Kennedy M. D. and Walter G. J. van der Meer. The role of blocking and cake filtration in MBR fouling. Desalination, 2003, 157:335-343.
    176 Lim A. L. and Bai R. Membrane fouling and cleaning in microfiltration of activated sludge wastewater. J. Mem. Sci., 2003, 216:279-290.
    177 Bai R. B. and Leow H. F. Microfiltration of activated sludge wastewater-the effect of system operation parameters. Sep. Purif Technol., 2002,29:189.
    178 Madaeni S. S. Mechanism of virus removal using membranes. Filtration and Separation, 1997, (1-2):61-65.
    179 Yuan W., Kocic A. and Zyney A. L. Analysis of humic acid fouling during microfiltration using a pore blockage-cake filtration model. J. Mem. Sci., 2002,198:51.
    180 Hwang K.J. and Lin T. T. Effect of morphology of polymeric membrane on the performance of cross-flow microfiltration. J. Mem. Sci., 2002,199:41.
    181 王琳,王宝贞编著.分散式污水处理与回用[M].北京:化学工业出版社,2003.
    182 邢传红,文湘华,钱易.管式膜-生物反应器处理城市污水的工艺设计.中国给水排水,1999,15(1):1-5.
    183 王锦.超滤水处理特性和膜污染研究[博士学位论文].西安建筑科技大学,2001.
    184 Suratt W. G. Estimating the costs of membrane water treatment plants. Proc. of the American Water Works Association Membrane processes Conf., Orlando, Fla., 1991,631-647.
    185 Churchouse S. and Wildgoose D. Membrane bioreactors hit the big time-from lab to full-scale application. MBR2-Proc. 2nd Intl. Mtg. on Membrane Bioreactors for Wastewater Treatment. Cranfield University, 1998.
    186 Gander M, Jefferson B. and Judd S. Aerobic MBRs for domestic wastewater treatment: a review with cost considerations. Sep. Puri. Tech., 2000, 18: 119-130.
    , #147
    187 Scott K. Handbook of Industrial Membranes, Elsevier, Oxford, 1995.
    188 Owen G., Bandi M., Howell J. A. and Churchouse S. J. Economic assessment of membrane processes for water and wastewater treatment. J. Mem. Sci., 1995, 102:77-91.
    189 Zhang S.Y., Houten R. et al. Sewage treatment by a low energy membrane bioreactor. Bioresource Technology, 2003, 90:185-192.
    190 Yoon S. H., Kim H. S. and Yeom I. T. The optimum operational condition of membrane bioreactor (MBR): cost estimation of aeration and sludge treatment. Wat. Res., 2004, 38:37-46.
    191 杨造燕,匡志花,顾平,田淑媛.膜生物反应器无剩余污泥排放的研究.城市环境与城市生态.1999,12(1):16-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700