用户名: 密码: 验证码:
仿人型乒乓球机械手运动学及动力学控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
仿人型乒乓球机械手是模拟人手臂结构设计制造、用来击打乒乓球的机械手臂,具有6个以上自由度,可以灵活地实现绝大部分人手臂可以实现的动作。这类手臂是链式旋转关节机械手,与传统机械手臂相比,具有结构小巧、重量轻、速度快、控制灵活等特点。除了在手臂终端安装乒乓球拍完成击打乒乓球的任务以外,还可以安装各种夹具、灵巧手指等机构,完成各种演示、抓取等任务。其控制方法具有可扩展性,容易应用于焊接、喷涂、教学等机械手臂的控制中。该控制方法的研究也为家庭服务型机器人领域的机械手臂应用奠定坚实的基础。
     本实验室设计制造的仿人型乒乓球机械手臂为7自由度手臂,三个版本的机械手臂都可以在位置、速度和电流三种控制模式下运行。位置模式对应的控制指令为各关节角度转换成的码盘读数,电机控制中的速度和力矩环由电机控制盒实现。速度模式也被称为运动学控制,对应的控制指令为各关节角速度,力矩控制环由控制盒实现。由于直流伺服电机电流与力矩成正比关系,因此电流模式也称为力矩模式,对应手臂动力学控制。该模式对应的控制指令为电机电流,控制盒使实际电机电流跟踪指令电流。本文的研究包含参数识别、运动学和动力学控制方法,主要研究内容包括:
     1)针对机械手臂加工、组装等环节的不精确导致的手臂DH模型参数(也称为运动学参数、几何参数)不准问题,提出了一种使用Leica三维激光测量装置、基于大量测量数据的参数标定方法。通过标定得到DH模型参数的修正值,大幅提高了手臂终端的三维空间定位精度。对于动力学模型参数的识别,提出了一种基于二次优化的动力学参数识别方法。并针对识别参数构成的惯性矩阵非正定的问题,提出一种特征值调整使惯性矩阵正定化的方法,使得最终获得的动力学参数满足惯性矩阵正定化的条件。同时,本文给出了基于Solidworks三维建模的动力学参数估计方法。
     2)提出一种针对点到点任务的冗余化方法,将传统的非冗余6维点到点任务投影到低维空间实现,使障碍避免等次任务可以通过冗余控制方法实现。同时本文给出了低维投影的示例以及投影函数需满足的数学条件。
     3)针对冗余机械手臂多任务控制问题,提出一种扩展最小二乘方法,将关节限制以外的其他次任务转化为虚拟关节的关节限制问题,再应用加权最小二乘方法解决。并通过直接设定权重矩阵的逆矩阵和一步预测的方法设定其中加权矩阵的权值,实现冗余机械手臂在较多次任务约束情形下的控制问题。只要同时到达限制阈值的次任务数目不多于手臂的冗余自由度数目,该方法可同时保证主任务跟踪精度和多于手臂自由度数目的次任务的实现。
     4)给出了仿人型机械手臂的动力学控制方法。针对动态LuGre摩擦力补偿问题,提出一种使用简化观测器观测鬃毛偏折状态的方法,并结合自适应控制律,使用Lyapunov方法分析了使用简化观测器的自适应控制的稳定性。单关节和多关节情形下的实验结果证明(?)该方法在动态摩擦力补偿中的优越性。
     5)提出了一种适用于动力学参数中含有一定不确定性的机械手臂的碰撞检测算法。该算法基于动量守恒推导而出,构造一个扰动观测器观测手臂受到外部作用力的大小,并根据该观测器的结果判断是否与外部物体发生碰撞。在是否发生碰撞的判定中使用了观测器结果和其相邻周期变化量作为共同指标,并使用一个高通滤波器滤除观测结果中的低频分量,以减少不确定动力学参数带来的影响。该方法可有效的检测到外部碰撞的发生,并控制机械手臂远离碰撞区域,保证机械手臂与人的安全。
Humanoid pingpong manipulator, imitating the mechanical structure of human arm, is built to play pingpong, with 6 or more degrees of freedom. It can move with dexterity like a human arm. The humanoid pingpong manipulator is a kind of traditional serial link manipulator with rotational joints. It is more compact in structure, lighter in weight, faster and more dexterous in moving than the normal industrial robots. Besides the pingpong playing task, the grasping task could be fulfilled if the pingpong pat at the end of the manipulator is replaced with gripper or dexterous robotic fingers. The control methods for pingpong manipulator could be adopted to welding, spaying or educational robots. The study on the control law of pingpong manipulator offers technical help to the widespread use of humanoid manipulators in the service robot field.
     The three editions of humanoid pingpong manipulators we built could run at position mode, velocity mode and current mode. The control mode is divided into three based on the input of the servo amplifier which drives the motor of the joint. The input of amplifier is the joint angles when the manipulator is running at position mode. Velocity mode means that the input is joint velocities and current mode corresponds to motor currents. The current mode is called torque mode, since the current of DC servo is in direct proportion to the motor torque. The major research works and contributions of this thesis include:
     1) In order to handle the uncertainty of DH parameters which is lead by imprecisely manufac-ture and assembly, a kinematic calibration method is presented. The Leica Geosystems Absolute Tracker is used to get the exact position of the manipulator end-effector. The kinematic errors are determined by least-norm calculation of numbers of measuring data. The position accuracy of the end-effector is approved with the compensation kinematic errors. And, a dynamic parameter identification method is proposed, which is based on quadratic programming. A new method to make the inertia matrix positive definite is developed via doing quadratic programming twice. The dynamic parameters estimation based on the Solidworks model is also given.
     2) A lower dimensional task function method for point-to-point tasks of non-redundant manip- ulator is developed in this thesis. A series of mapping functions which map the six-dimensional point-to-point task to a lower dimensional task space are given. In the lower dimensional task space the manipulator is changed to redundant one and redundant control laws could be adopted for the subtasks. And the conditions that the mapping function should satisfy are also given.
     3) A generalize-weighted least-norm method for the control of redundant manipulator with multi subtasks is developed. This method maintains the advantage of weighted least norm method which has fantastic ability to avoid joint limits. With a new concept of virtual joints, the subtasks performance criterions are changed to the virtual joints limits problem and solved by weighted (?)t norm method. With this generalized method, the number of subtasks to be deal with could be larger than the number of joints of the manipulator.
     4) An adaptive dynamic friction compensation method is developed in this thesis. With the dy-namic LuGre friction compensation, obtaining the internal bristle-deflection state is the most important in the control design. A simple nonlinear observer, which is a simplification of De Wit's nonlinear observer, is developed in this paper. The stability of the adaptive control is an-alyzed using the second Lyapunov theory. A low-pass filter is added to remove the influence of the high frequency noise of joint velocities measurements. The experiments on single joint or multiple joints verify the advantage of this method on the dynamic compensation of friction.
     5) For the collision safety problem of manipulator with inertia parameter uncertainties, a new collision detection algorithm is presented. A disturbance observer which is deduced from preser-vation of momentum is designed to evaluate the influence of the collision force. The variation of the observed results is added into the collision detection thresholds. For the damage limiting of the robot or the safety of the human body, two different safe reaction methods for velocity mode and torque mode control are also presented. The experiments demonstrate that the collision could be detected and the safety of the manipulator and human are guaranteed with this method.
引文
[1]SICILIANO B. Kinematic control of redundant robot manipulators:A tutorial [J]. Journal of Intelligent and Robotic Systems,1990,3(3):201-212.
    [2]BOOK W. Modeling, design, and control of flexible manipulator arms:a tutorial review [C]//Proceedings of the 29th IEEE Conference on Decision and Control,1990, vol.2, 500-506.
    [3]SICILIANO B, KHATIB O. Springer Handbook of Robotics [M]. Secaucus, NJ, USA: Springer-Verlag New York, Inc.,2007.
    [4]WAMPLER C, HOLLERBACH J, ARAI T. An implicit loop method for kinematic cali-bration and its application to closed-chain mechanisms [J]. IEEE Transactions on Robotics and Automation,1995, 11(5):710-724.
    [5]IKITS M, HOLLERBACH J. Kinematic calibration using a plane constraint [C]//Pro-ceedings of 1997 IEEE International Conference on Robotics and Automation,1997, vol. 4,3191-3196.
    [6]CHIU Y J, PERNG M H. Self-calibration of a general hexapod manipulator using cylinder constraints [J]. International Journal of Machine Tools and Manufacture,2003, 43(10):1051-1066.
    [7]ROTH Z, MOORING B, RAVANI B. An overview of robot calibration [J]. IEEE Journal of Robotics and Automation,1987,3(5):377-385.
    [8]ZHONG X L, LEWIS J. A new method for autonomous robot calibration [C]//Proceed-ings of 1995 IEEE International Conference on Robotics and Automation,1995, vol.2, 1790-1795.
    [9]MAVROIDIS C, DUBOWSKY S, DROUET P, et al. A systematic error analysis of robotic manipulators:application to a high performance medical robot [C]//Proceedings of 1997 IEEE International Conference on Robotics and Automation,1997, vol.2,980-985.
    [10]ZAK G, BENHABIB B, FENTON R G, et al. Application of the weighted least squares parameter estimation method to the robot calibration [J]. Journal of Mechanical Design, 1994,116(3):890-893.
    [11]ZIEGERT J, DATSERIS P. Basic considerations for robot calibration [C]//Proceedings of 1988 IEEE International Conference on Robotics and Automation,1988, vol.2,932-938.
    [12]IURASCU C, PARK F. Geometric algorithms for closed chain kinematic calibration [C]// Proceedings of 1999 IEEE International Conference on Robotics and Automation,1999, vol.3,1752-1757.
    [13]HA I C. Kinematic parameter calibration method for industrial robot manipulator using the relative position [J]. Journal of Mechanical Science and Technology,2008,22:1084-1090.
    [14]SANTOLARIA J, AGUILAR J J, YAG J A, et al. Kinematic parameter estimation tech-nique for calibration and repeatability improvement of articulated arm coordinate measur-ing machines [J]. Precision Engineering,2008,32(4):251-268.
    [15]LIU G, IAGNEMMA K, DUBOWSKY S, et al. A base force/torque sensor approach to robot manipulator inertial parameter estimation [C]//Proceedings of 1998 IEEE Interna-tional Conference on Robotics and Automation,1998, vol.4,3316-3321.
    [16]RADKHAH K, KULIC D, CROFT E. Dynamic parameter identification for the crs a460 robot [C]//2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007,3842-3847.
    [17]BENIMELI F, MATA V, VALERO F. A comparison between direct and indirect dynamic parameter identification methods in industrial robots [J]. Robotica,2006,24:579-590.
    [18]GAUTIER M, KHALIL W. Direct calculation of minimum set of inertial parameters of serial robots [J]. IEEE Transactions on Robotics and Automation,1990,6(3):368-373.
    [19]GAUTIER M. Numerical calculation of the base inertial parameters of robots [C]//Pro-ceedings of 1990 IEEE International Conference on Robotics and Automation,1990, vol. 2,1020-1025.
    [20]ANTONELLI G, CACCAVALE F, CHIACCHIO P. A systematic procedure for the iden-tification of dynamic parameters of robot manipulators [J]. Robotica,1999,17:427-435.
    [21]CALAFIORE G, INDRI M, BONA B. Robot dynamic calibration:Optimal excitation trajectories and experimental parameter estimation [J]. Journal of Robotic Systems,2001, 18(2):55-68.
    [22]ANH H. Inverse dynamic model identification of 2-axes pam robot arm using neural mimo narx model [C]//2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics,2009,1282-1287.
    [23]AN C H, ATKESON C G, HOLLERBACH J M. Estimation of inertial parameters of rigid body links of manipulators [C]//24th IEEE Conference on Decision and Control,1985, vol.24,990-995.
    [24]SWEVERS J, VERDONCK W, DE SCHUTTER J. Dynamic model identification for industrial robots [J]. IEEE Control Systems Magazine,2007,27(5):58-71.
    [25]VICENTE MATA N F A V, FRANCESC BENIMELI. Dynamic parameter identifica-tion in industrial robots considering physical feasibility [J]. Advanced Robotics,2005, 19(1):101-119.
    [26]YOSHIDA K, KHALIL W. Verification of the positive definiteness of the inertial matrix of manipulators using base inertial parameters [J]. The International Journal of Robotics Research,2000,19(5):498-510.
    [27]MANOCHA D, CANNY J. Efficient inverse kinematics for general 6r manipulators[J]. IEEE Transactions on Robotics and Automation,1994,10(5):648-657.
    [28]PASHKEVICH A. Real-time inverse kinematics for robots with offset and reduced wrist [J]. Control Engineering Practice,1997,5(10):1443-1450.
    [29]WAMPLER C. Manipulator inverse kinematic solutions based on vector formulations and damped least-squares methods [J]. IEEE Transactions on Systems,Man and Cybernetics, 1986,16(1):93-101.
    [30]LEE S, BEJCZY A. Redundant arm kinematic control based on parameterization [C]// Proceedings of 1991 IEEE International Conference on Robotics and Automation,1991, vol.1,458-465.
    [31]周友行,何清华,邓伯禄.一种改进的爬山法优化求解冗余机械手运动学逆解[J].机器人.2003,25(1):35-38.
    [32]宁柯军,杨汝清,张伟军,翁新华.一种适合嵌入式系统实现的机械臂位置逆解算法与实验研究[J].机器人.2005,27(3):256-260.
    [33]SHIMIZU M, KAKUYA H, YOON W K, et al. Analytical inverse kinematic computa-tion for 7-dof redundant manipulators with joint limits and its application to redundancy resolution [J]. IEEE Transactions on Robotics,2008,24(5):1131-1142.
    [34]TONDU B. A closed-form inverse kinematic modelling of a 7r anthropomorphic upper limb based on a joint parametrization [C]//2006 6th IEEE-RAS International Conference on Humanoid Robots,2006,390-397.
    [35]KHATIB O. A unified approach for motion and force control of robot manipulators: The operational space formulation [J]. IEEE Journal of Robotics and Automation,1987, 3(l):43-53.
    [36]LUH J, WALKER M, PAUL R. Resolved-acceleration control of mechanical manipulators [J]. IEEE Transactions on Automatic Control,1980,25(3):468-474.
    [37]WEN J Y, KREUTZ-DELGADO K. The attitude control problem [J]. IEEE Transactions on Automatic Control,1991,36(10):1148-1162.
    [38]XIAN B, DE QUEIROZ M, DAWSON D, et al. Task-space tracking control of robot ma-nipulators via quaternion feedback [J]. IEEE Transactions on Robotics and Automation, 2004,20(1):160-167.
    [39]TSIOTRAS P. Stabilization and optimality results for the attitude control problem [J]. Journal of Guidance, Control, and Dynamics,1996,19(4):772-779.
    [40]BAYLE B, FOURQUET J Y, RENAUD M. Manipulability of wheeled mobile manipula-tors:Application to motion generation [J]. The International Journal of Robotics Research, 2003,22(7-8):565-581.
    [41]WEN J T. Pid control for robot manipulators [J]. CIRSSE Document,1990,54.
    [42]YUAN J. Closed-loop manipulator control using quaternion feedback [J]. IEEE Journal of Robotics and Automation,1988,4(4):434-440.
    [43]YOSHIKAWA T. Foundations of robotics:analysis and control [M]. Cambridge, MA, USA:MIT Press,1990.
    [44]L. SCIAVICCO B S. Solving the inverse kinematic problem for robotic manipulators [C]// Proceedings of 6th CISM-IFToMM Symp. Theory and Practice of Robots and Manipula-tors. MIT Press 1987,107-114.
    [45]CHIAVERINI S. Singularity-robust task-priority redundancy resolution for real-time kine-matic control of robot manipulators [J]. IEEE Transactions on Robotics and Automation, 1997,13(3):398-410.
    [46]CHEAH C, LIU C, SLOTINE J. Approximate jacobian adaptive control for robot ma-nipulators [C]//Proceedings of 2004 IEEE International Conference on Robotics and Au-tomation,2004, vol.3,3075-3080.
    [47]YOSHIKAWA T. Analysis and control of robot manipulators with redundancy [J]. Robotics Research. Edited by Brady M and Paul R.1st. Int. Symp. of Robotics Research, 1983,735-747.
    [48]DAS H, SLOTINE J E, SHERIDAN T. Inverse kinematic algorithms for redundant sys-tems [C]//Proceedings of 1988 IEEE International Conference on Robotics and Automa-tion,1988, vol.1,43-48.
    [49]封岸松,戴炬.冗余自由度机械手的避障控制[J].机器人.2002,24(3):213-216.
    [50]LIEGEOIS A. Automatic supervisory control of the configuration and behavior of multi-body mechanisms [J]. IEEE Transactions on Systems, Man and Cybernetics,1977, 7(12):868-871.
    [51]CHAN T F, DUBEY R. A weighted least-norm solution based scheme for avoiding joint limits for redundant joint manipulators [J]. IEEE Transactions on Robotics and Automa-tion,1995, 11(2):286-292.
    [52]RED E, FIELDING B. Predictive joint motion limiting in robotic applications [J]. Robot-ica,2003,21 (05):531-540.
    [53]CHUNG C Y, LEE B H, LEE J H. Obstacle avoidance for kinematically redundant robots using distance algorithm [C]//Proceedings of the 1997 IEEE/RSJ International Confer-ence on Intelligent Robots and Systems,1997, vol.3,1787-1793.
    [54]MACIEJEWSKIA A, KLEIN C A. Obstacle avoidance for kinematically redundant ma-nipulators in dynamically varying environments [J]. The International Journal of Robotics Research,1985,4(3):109-117.
    [55]ZHANG C, SUN H, JIA Q, et al. A novel division based self-motion algorithm for avoid-ing obstacles for redundant manipulators [C]//2007 IEEE International Conference on Automation and Logistics,2007,852-857.
    [56]ZLAJPAH L, NEMEC B. Kinematic control algorithms for on-line obstacle avoidance for redundant manipulators [C]//2002 IEEE/RSJ International Conference on Intelligent Robots and Systems,2002, vol.2,1898-1903.
    [57]SU C Y, STEPANENKO Y. Adaptive variable structure set-point control of underactuated robots [J]. IEEE Transactions on Automatic Control,1999,44(11):2090-2093.
    [58]ZERGEROGLU E, DIXON W, BEHAL A, et al. Adaptive set-point control of robotic manipulators with amplitude-limited control inputs [J]. Robotica,2000,18:171-181.
    [59]SU Y, MU ANDLLER P, ZHENG C. Global asymptotic saturated pid control for robot manipulators [J]. IEEE Transactions on Control Systems Technology,2010,18(6):1280-1288.
    [60]SU Y, DUAN B, ZHENG C. Nonlinear pid control of a six-dof parallel manipulator [J]. 2004 IEE Proceedings of Control Theory and Applications,2004,151(1):95-102.
    [61]SU Y, ZHENG C. Global asymptotic tracking of robot manipulators with a simple de-centralised non-linear pd-like controller [J]. IET Control Theory Applications,2010, 4(9):1605-1611.
    [62]NAIT-CHABANE K, DELARUE S, HOPPENOT P, et al. Strategy of approach for seizure of an assistive mobile manipulator [J]. Robotics and Autonomous Systems,2009, 57(2):222-235.
    [63]MARK W. SPONG M V, SETH HUTCHINSON. Robot Modeling and Control [M]. Wiley www.wiley.com,2005.
    [64]SICILIANO B, SCIAVICCO L, VILLANI L, et al. Robotics:Modelling, Planning and Control [M].1st ed. Springer Publishing Company, Incorporated,2008.
    [65]CACCAVALE F, NATALE C, SICILIANO B, et al. Resolved-acceleration control of robot manipulators:A critical review with experiments [J]. Robotica,1998,16(5):565-573.
    [66]HUANGA Q, ENOMOTO R. Hybrid position, posture, force and moment control of robot manipulators [C]//2008 ROBIO, IEEE International Conference on Robotics and Biomimetics,2009,1444-1450.
    [67]程勉.机械臂的位置与力的混合控制方法[J].自动化学报.1991,17(5):524-530.
    [68]LI Z, YANG Y, LI J. Adaptive motion/force control of mobile under-actuated manipu-lators with dynamics uncertainties by dynamic coupling and output feedback [J]. IEEE Transactions on Control Systems Technology,2010,18(5):1068-1079.
    [69]SHAH M, PATEL R. Transpose jacobian based hybrid impedance control of redundant manipulators [C]//Proceedings of 2005 IEEE Conference on Control Applications,2005, 1367-1372.
    [70]HUANG C Q, WANG X G, WANG Z G. A class of transpose jacobian-based npid regula-tors for robot manipulators with an uncertain kinematics [J]. Journal of Robotic Systems, 2002,19(11):527-539.
    [71]CACCAVALE F, CHIACCHIO P, MARINO A, et al. Six-dof impedance control of dual-arm cooperative manipulators [J]. IEEE/ASME Transactions on Mechatronics,2008, 13(5):576-586.
    [72]李杰,韦庆,常文森,张彭.基于阻抗控制的自适应力跟踪方法[J].机器人.1999,21(1):23-29.
    [73]王艳敏,冯勇.参数不确定柔性机械手的终端滑模控制[J].控制理论与应用.2008,25(6):1049-1052.
    [74]TIAN L, WANG J, MAO Z. Constrained motion control of flexible robot manipulators based on recurrent neural networks [J]. IEEE Transactions on Systems, Man, and Cyber-netics, Part B:Cybernetics,2004,34(3):1541-1552.
    [75]WANG L, CHAI T, ZHAI L. Neural-network-based terminal sliding-mode control of robotic manipulators including actuator dynamics [J]. IEEE Transactions on Industrial Electronics,2009,56(9):3296-3304.
    [76]ZHANG Y, WANG J. Obstacle avoidance for kinematically redundant manipulators using a dual neural network [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,2004,34(l):752-759.
    [77]胡慧,刘国荣.机械手的在线鲁棒自适应神经网络跟踪控制[J].控制理论与应用.2009,26(3):337-341.
    [78]孙富春,孙增圻,张钹.基于观测器的机械手神经网络自适应控制[J].自动化学报.1999,25(3):295-302.
    [79]李英,朱明超,李元春.基于速度观测模型的可重构机械臂补偿控制[J].控制理论与应用.2008,25(5):891-897.
    [80]吴玉香,胡跃明.二阶动态滑模控制在移动机械臂输出跟踪中的应用[J].控制理论与应用.2006,23(3):411-415.
    [81]林雷,王洪瑞,任华彬.基于模糊变结构的机械臂控制[J].控制理论与应用.2007,24(4):643-645(650).
    [82]张宇,杨唐文,孙增圻.基于神经滑模的柔性连杆机械手末端位置控制[J].机器人.2008,30(5):404-409(415).
    [83]CHERN T L, WU Y C. Integral variable structure control approach for robot manipulators [J]. IEE Proceedings of Control Theory and Applications,1992,139(2):161-166.
    [84]SU C Y, LEUNG T P. A sliding mode controller with bound estimation for robot manip-ulators [J]. IEEE Transactions on Robotics and Automation,1993,9(2):208-214.
    [85]SUN Q, ZOU X, ZOU H, et al. Intelligent design and kinematics analysis of picking robot manipulator [C]//2010 International Conference on Measuring Technology and Mecha-tronics Automation (ICMTMA),2010, vol.2,493-496.
    [86]WANG J, XU D, TAN M, et al. Control strategy for a low cost manipulator to transport and align ic mask-plates [J]. IEEE Transactions on Control Systems Technology,2009, 17(5):1018-1027.
    [87]李杰,韦庆,常文森.机器人控制器中应用加速度反馈的几个问题讨论[J].自动化学报.2001,27(3):318-324.
    [88]WANG G, LI Y. Integrated sensing and filter design for a single-link flexible manipulator [J]. IEEE Transactions on Robotics and Automation,2004,20(3):559-564.
    [89]ZHANG J, WANG H. Iterative learning-based minimum tracking error entropy controller for robotic manipulators with random communication time delays [J]. IET Control Theory Applications,2008,2(8):682-692.
    [90]SHEN Y, SUN D, LIU Y H, et al. Asymptotic trajectory tracking of manipulators us-ing uncalibrated visual feedback [J]. IEEE/ASME Transactions on Mechatronics,2003, 8(1):87-98.
    [91]杨书生,钟宜生.参数摄动机械臂鲁棒控制器的演化设计[J].机器人.2006,28(2):160-163.
    [92]邓辉,孙富春,孙增圻.机械手的模糊逆模型鲁棒控制[J].自动化学报.2001,27(4):521-530.
    [93]张袅娜,张德江,尤文.基于鲁棒滑模观测器的两关节柔性机械手控制[J].控制理论与应用.2009,26(7):722-726.
    [94]GALICKI M. An adaptive regulator of robotic manipulators in the task space [J]. IEEE Transactions on Automatic Control,2008,53(4):1058-1062.
    [95]KHALIGH Y, NAMVAR M. Adaptive control of robot manipulators including actuator dynamics and without joint torque measurement [C]//2010 IEEE International Conference on Robotics and Automation(ICRA),2010,4639-4644.
    [96]ZHU W H, DOYON M. Adaptive control of harmonic drives [C]//2004 43rd IEEE Con-ference on Decision and Control,2004, vol.3,2602-2608.
    [97]ZERGEROGLU E, SAHIN H, OZBAY U, et al. Robust tracking control of kinemati-cally redundant robot manipulators subject to multiple self-motion criteria [C]//Computer Aided Control System Design,2006 IEEE International Conference on Control Applica-tions,2006,2860-2865.
    [98]ZHAO D, LI S, ZHU Q, et al. Robust finite-time control approach for robotic manipulators [J]. IET Control Theory Applications,2010,4(1):1-15.
    [99]BASCETTA L, ROCCO P. Revising the robust-control design for rigid robot manipulators [J]. IEEE Transactions on Robotics,2010,26(1):180-187.
    [100]李晓理,王书宁.多模型自适应控制在机器人手臂控制当中应用[J].机器人.2002,24(1):16-19.
    [101]蒋平,陈辉堂,王月.机器人自学习控制的稳定性分析方法及其应用[J].自动化学报.1997,23(4):462-467.
    [102]吴玉香,王灏,毛宗源等机器人轨迹跟踪的间接自适应模糊控制[J].控制理论与应用.2004,21(5):748-756.
    [103]陈力,刘延柱.空间机械臂本体与末端抓手协调运动的自适应控制方法[J].控制理论与应用.2002,19(2):274-278.
    [104]王景,王昊瀛,刘良栋,梁斌.空间机械臂的鲁棒复合自适应控制[J].自动化学报.2002,28(3):378-384.
    [105]LIU C H. A comparison of controller design and simulation for an industrial manipulator [J]. IEEE Transactions on Industrial Electronics,1986,33(1):59-65.
    [106]LIU M H, LIN W. Multivariable self-tuning control with decoupling robotic manipulators [J]. IEE Proceedings of Control Theory and Applications,1988,135(1):43-48.
    [107]MORENO J, KELLY R. Pose regulation of robot manipulators with dynamic friction com-pensation [C]//2005 44th IEEE Conference on Decision and Control and 2005 European Control Conference CDC-ECC'05.2005,4368-4372.
    [108]TAN Y, CHANG J, TAN H. Adaptive backstepping control and friction compensation for ac servo with inertia and load uncertainties [J]. IEEE Transactions on Industrial Electron-ics,2003,50(5):944-952.
    [109]ARMSTRONG-HELOUVRY B, DUPONT P, WIT C C D. A survey of models, analysis tools and compensation methods for the control of machines with friction [J]. Automatica, 1994,30(7):1083-1138.
    [110]DAHL P R. A solid friction model [R]. AEROSPACE CORP EL SEGUNDO CA,1968.
    [111]CANUDAS DE WIT C, OLSSON H, ASTROM K, et al. A new model for control of systems with friction [J]. IEEE Transactions on Automatic Control,1995,40(3):419-425.
    [112]CANUDAS DE WIT P A A B B, C. NOEL. Adaptive friction compensation in robot manipulators:Low velocities [J]. The International Journal of Robotics Research,1991, 10(3):189-199.
    [113]TAN Y, KANELLAKOPOULOS I. Adaptive nonlinear friction compensation with para-metric uncertainties [C]//Proceedings of the 1999 American Control Conference,1999, vol.4,2511-2515.
    [114]ZHU Y, PAGILLA P. Static and dynamic friction compensation in trajectory tracking control of robots [C]//Proceedings of IEEE International Conference on Robotics and Automation, ICRA'02.2002, vol.3,2644-2649.
    [115]CANUDAS-DE WIT C, KELLY R. Passivity analysis of a motion control for robot ma-nipulators with dynamic friction [J]. Asian Journal of Control,2007,9(1):30-36.
    [116]XIE W F. Sliding-mode-observer-based adaptive control for servo actuator with friction [J]. IEEE Transactions on Industrial Electronics,2007,54(3):1517-1527.
    [117]NAJMAEI N, KERMANI M. Prediction-based reactive control strategy for human-robot interactions [C]//2010 IEEE International Conference on Robotics and Automation (ICRA),2010,3434-3439.
    [118]黄云天,陈卫东,孙逸翔.基于碰撞检测的护理型操作臂的安全性设计与实现[J].机器人.2011,33(1):40-45.
    [119]段磊强,周军,张铎,谭松林.用虚拟连杆构造冗余残差对多关节机械臂进行故障诊断[J].机器人.2004,26(2):176-181.
    [120]焦建民,周军,李欢.故障容错串联机械臂设计方法研究[J].机器人.2003,25(7):643-647.
    [121]JIN M, KANG S H, CHANG P H. Robust compliant motion control of robot with nonlin-ear friction using time-delay estimation [J]. IEEE Transactions on Industrial Electronics, 2008,55(1):258-269.
    [122]WEN J, MURPHY S. Stability analysis of position and force control for robot arms [J]. IEEE Transactions on Automatic Control,1991,36(3):365-371.
    [123]BICCHI A, BAVARO M, BOCCADAMO G, et al. Physical human-robot interaction: Dependability, safety, and performance [C]//2008 10th IEEE International Workshop on Advanced Motion Control,2008,9-14.
    [124]HADDADIN S, ALBU-SCHAFFER A, HIRZINGER G. Safety evaluation of physical human-robot interaction via crash-testing [C]//In Robotics:Science and Systems Conf. RSS2007.2007,217-224.
    [125]HADDADIN S, ALBU-SCHAFFER A, DE LUCA A, et al. Collision detection and reac-tion:A contribution to safe physical human-robot interaction [C]//2008 IEEE/RSJ Inter-national Conference onIntelligent Robots and Systems,2008,3356-3363.
    [126]DE LUCA A, MATTONE R. Sensorless robot collision detection and hybrid force/motion control [C]//2005 Proceedings of the IEEE International Conference on Robotics and Automation,2005,999-1004.
    [127]DE LUCA A, FERRAJOLI L. Exploiting robot redundancy in collision detection and re-action [C]//2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008,3299-3305.
    [128]H. FASSLER H A V, ZURICH J W. A robot ping pong player:Optimized mechanics, high performance 3d vision, and intelligent sensor control [J]. Robotersysteme,1990, 6(3):161-170.
    [129]ANDERSON R L. A Robot Ping-Pong Player:Experiment in Real-Time Intelligent Con-trol [M]. MIT Press,1988.
    [130]MIYAZAKI F, TAKEUCHI M, MATSUSHIMA M, et al. Realization of the table tennis task based on virtual targets [C]//Proceedings of the 2002 IEEE International Conference on Robotics and Automation,2002, vol.4,3844-3849.
    [131]HAYATI S, TSO K, ROSTON G. Robot geometry calibration [C]//Proceedings of the 1988 IEEE International Conference on Robotics and Automation,1988, vol.2,947-951.
    [132]LIGHTCAP C, HAMNER S, SCHMITZ T, et al. Improved positioning accuracy of the pa10-6ce robot with geometric and flexibility calibration [J]. IEEE Transactions on Robotics,2008,24(2):452-456.
    [133]VEITSCHEGGER W, WU C H. Robot calibration and compensation [J]. IEEE Journal of Robotics and Automation,1988,4(6):643-656.
    [134]HE R, ZHAO Y, YANG S, et al. Kinematic-parameter identification for serial-robot cali-bration based on poe formula [J]. IEEE Transactions on Robotics,2010,26(3):411-423.
    [135]AILON A, GIL M I, LOZANO R. Estimation and regulation of the rate of convergence of a rigid robot to a set-point with applications to spacecraft attitude control [J]. Nonlinear Analysis:Real World Applications,2003,4(4):525-539.
    [136]METTA G, SANDINI G, KONCZAK J. A developmental approach to visually-guided reaching in artificial systems [J]. Neural Networks,1999,12(10):1413-1427.
    [137]SAMSON C, ESPIAU B, BORGNE M L. Robot Control:The Task Function Approach [M]. Oxford University Press,1991.
    [138]OETOMO D, JR M H A. Singularity robust algorithm in serial manipulators [J]. Robotics and Computer-Integrated Manufacturing,2009,25(1):122-134.
    [139]ANTONELLI G. Stability analysis for prioritized closed-loop inverse kinematic al-gorithms for redundant robotic systems [J]. IEEE Transactions on Robotics,2009, 25(5):985-994.
    [140]BAILLEEUL J. Avoiding obstacles and resolving kinematic redundancy [C]//Proceedings of the 1986 IEEE International Conference on Robotics and Automation,1986, vol.3, 1698-1704.
    [141]ESPIAU B, CHAUMETTE F, RIVES P. A new approach to visual servoing in robotics [J]. IEEE Transactions on Robotics and Automation,1992,8(3):313-326.
    [142]KLEIN C, AHMED S. Repeatable pseudoinverse control for planar kinematically re-dundant manipulators [J]. IEEE Transactions on Systems, Man and Cybernetics,1995, 25(12):1657-1662.
    [143]FUNDA J, TAYLOR R, ELDRIDGE B, et al. Constrained cartesian motion control for teleoperated surgical robots [J]. IEEE Transactions on Robotics and Automation,1996, 12(3):453-465.
    [144]MANSARD N, CHAUMETTE F. Directional redundancy for robot control [J]. IEEE Transactions on Automatic Control,2009,54(6):1179-1192.
    [145]NAKAMURA Y, HANAFUSA H, YOSHIKAWA T. Task-priority based redundancy con-trol of robot manipulators [J]. The International Journal of Robotics Research,1987, 6(2):3-15.
    [146]EGELAND O. Task-space tracking with redundant manipulators [J]. IEEE Journal of Robotics and Automation,1987,3(5):471-475.
    [147]SCIAVICCO L, SICILIANO B. A solution algorithm to the inverse kinematic problem for redundant manipulators [J]. IEEE Journal of Robotics and Automation,1988,4(4):403-410.
    [148]BAILLIEUL J. Kinematic programming alternatives for redundant manipulators [C]// Proceedings of the 1985 IEEE International Conference on Robotics and Automation, 1985, vol.2,722-728.
    [149]CLEARY K, TESAR D. Incorporating multiple criteria in the operation of redundant manipulators [C]//Proceedings of the 1990 IEEE International Conference on Robotics and Automation,1990, vol.1,618-624.
    [150]SHEN W, GU J. Multi-criteria kinematics control for the pa10-7c robot arm with ro-bust singularities[C]//2007 IEEE International Conference on Robotics and Biomimetics, 2007,1242-1248.
    [151]WHITNEY D. Resolved motion rate control of manipulators and human prostheses [J]. IEEE Transactions on Man-Machine Systems,1969,10(2):47-53.
    [152]MANSARD N, KHATIB O, KHEDDAR A. A unified approach to integrate unilateral constraints in the stack of tasks [J]. IEEE Transactions on Robotics,2009,25(3):670-685.
    [153]KHAYATI K, BIGRAS P, DESSAINT L A. A multistage position/force control for con-strained robotic systems with friction:Joint-space decomposition, linearization, and mul-tiobjective observer/controller synthesis using lmi formalism [J]. IEEE Transactions on Industrial Electronics,2006,53(5):1698-1712.
    [154]R D. Torque control in harmonic drives with nonlinear dynamic friction compensation [J]. Journal of Robotics and Mechatronics,2004,16(4):388-396.
    [155]HUANG S, TAN K, LEE T. Adaptive friction compensation using neural network approx-imations [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C:Applications and Reviews,2000,30(4):551-557.
    [156]ERFANIAN V. K M. Adaptive trajectory control and dynamic friction compensation for a flexible-link robot [J]. Journal of Mechanics,2010,26:205-217.
    [157]MALAGARI S, DRIESSEN B J. Globally exponential continuous controller/observer for position tracking in robot manipulators with hysteretic joint friction [J]. Robotica,2010, 28:759-763.
    [158]NICOSIA S, TOMEI P. Robot control by using only joint position measurements [J]. IEEE Transactions on Automatic Control,1990,35(9):1058-1061.
    [159]KELLY R. Pd control with desired gravity compensation of robotic manipulators [J].The International Journal of Robotics Research,1997,16(5):660-672.
    [160]DE WIT C C, BASTIN G, SICILIANO B. Theory of Robot Control [M].1st ed. Secaucus, NJ, USA:Springer-Verlag New York, Inc.,1996.
    [161]SLOTINE J J E, LI W. On the adaptive control of robot manipulators [J]. The International Journal of Robotics Research,1987,6(3):49-59.
    [162]BERGHUIS H, NIJMEIJER H. A passivity approach to controller-observer design for robots [J]. IEEE Transactions on Robotics and Automation,1993,9(6):740-754.
    [163]LIU G, GOLDENBERG A A. Comparative study of robust saturation-based control of robot manipulators:Analysis and experiments [J]. The International Journal of Robotics Research,1996,15(5):473-491.
    [164]WANKYUN CHUNG L C F, HSU S H. Springer Handbook of Robotics:Part A Chapter 6 Motion Control [M]. Springer Berlin Heidelberg,2008.
    [165]LEWIS F L, DAWSON D M, ABDALLAH C T. Control of Robot Manipulators [M].1st ed. Upper Saddle River, NJ, USA:Prentice Hall PTR,1993.
    [166]SLOTINE J J E, LI W. Applied nonlinear control [M]. Upper Saddle River, NJ:Pearson, 1991.
    [167]SPONG M W, THORP J S, KLEINWAKS J M. Robust microprocessor control of robot manipulators [J]. Automatica,1987,23(3):373-379.
    [168]ORTEGA R, SPONG M W. Adaptive motion control of rigid robots:A tutorial [J]. Auto-matica,1989,25(6):877-888.
    [169]EL-TAHAN W F X M K H E T M. Intelligent friction compensation (ifc) in a harmonic drive [C]//Proc. NECEC, St. John's, NF, Canada.2002.
    [170]DE WIT P, C. C. LISCHINSKY. Adaptive friction compensation with partially known dy-namic friction model [J]. International Journal of Adaptive Control and Signal Processing, 1997,11:1099-1115.
    [171]ERDEN M, TOMIYAMA T. Human-intent detection and physically interactive control of a robot without force sensors [J]. IEEE Transactions on Robotics,2010,26(2):370-382.
    [172]KULIC D, CROFT E. Pre-collision safety strategies for human-robot interaction [J]. Au-tonomous Robots,2007,22:149-164.
    [173]SUGAHARA Y, NOHA K, KOSUGE K, et al. Experimental study on manipulator de-sign for low collision impact force [C]//2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics,2009,899-904.
    [174]SCHRAFT R, MEYER C, PARLITZ C, et al. Powermate; a safe and intuitive robot as-sistant for handling and assembly tasks [C]//Proceedings of the 2005 IEEE International Conference on Robotics and Automation,2005,4074-4079.
    [175]HEINZMANN J, ZELINSKY A. Quantitative safety guarantees for physical human-robot interaction [J]. The International Journal of Robotics Research,2003,22(7-8):479-504.
    [176]HYON S H, HALE J, CHENG G. Full-body compliant human-humanoid interaction: Balancing in the presence of unknown external forces [J]. IEEE Transactions on Robotics, 2007,23(5):884-898.
    [177]YOSHIKAWA T, KHATIB O. Compliant motion control for a humanoid robot in con-tact with the environment and humans [C]//2008 IEEE/RSJ International Conference on Intelligent Robots and Systems,2008,211-218.
    [178]HADDADIN S, ALBU-SCHAFFER A, HIRZINGER G. Safe physical human-robot in-teraction:Measurements, analysis and new insights [G]//KANEKO M, NAKAMURA Y. Robotics Research.vol.66, Springer Berlin/Heidelberg,2011,395-407.
    [179]HEINZMANN J, ZELINSKY A. A safe-control paradigm for human-robot interaction [J]. Journal of Intelligent & Robotic Systems,1999,25:295-310.
    [180]CHIDDARWAR S S, BABU N R. Conflict free coordinated path planning for multiple robots using a dynamic path modification sequence [J]. Robotics and Autonomous Sys-tems,2011,59(7-8):508-518.
    [181]PERVEZ A, RYU J. Safe physical human robot interaction-past, present and future [J]. Journal of Mechanical Science and Technology,2008,22:469-483.
    [182]JEONG S, TAKAHASHI T. Impact force reduction of manipulators using a dynamic ac-celeration polytope and flexible collision detection sensor [J]. Advanced Robotics, January 2009,23:367-383(17).
    [183]JE H W, BAEK J Y, LEE M. Current based compliance control method for minimizing an impact force at collision of service robot arm [J]. International Journal of Precision Engineering and Manufacturing,2011,12:251-258.
    [184]POVSE B, KORITNIK D, KAMNIK R, et al. Emulation system for assessment of human-robot collision [J]. Meccanica,2010,1-9.
    [185]HADDADIN S, ALBU-SCHAFFER A, HIRZINGER G. The role of the robot mass and velocity in physical human-robot interaction-part i:Non-constrained blunt impacts [C]// 2008 IEEE International Conference on Robotics and Automation,2008,1331-1338.
    [186]LUCA A D, ALBU-SCHAFFER A, HADDADIN S, et al. Collision detection and safe reaction with the dlr-iii lightweight manipulator arm [C]//2006 IEEE/RSJ International Conference on Intelligent Robots and Systems,2006,1623-1630.
    [187]EBERT D, HENRICH D. Safe human-robot-cooperation:image-based collision detection for industrial robots [C]//2002. IEEE/RSJ International Conference on Intelligent Robots and Systems,2002, vol.2,1826-1831.
    [188]JE H W, BAEK J Y, LEE M C.A study of the collision detection of robot manipulator without torque sensor [C]//ICCAS-SICE,2009,4468-4471.
    [189]CHEN W, SUN Y, HUANG Y. A collision detection system for an assistive robotic ma-nipulator [G]//LI K, LI X, MA S, et al. Life System Modeling and Intelligent Computing, vol.97, Springer Berlin Heidelberg,2010,117-123.
    [190]MORINAGA S, KOSUGE K. Collision detection system for manipulator based on adap-tive impedance control law [C]//Proceedings of the 2003 IEEE International Conference on Robotics and Automation,2003, vol.1,1080-1085.
    [191]XIA J, XIE Z, FANG H, et al. Collision detection of flexible joint manipulator by us-ing joint torque sensors [C]//2009 IEEE/ASME International Conference onAdvanced Intelligent Mechatronics,2009,1816-1821.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700