用户名: 密码: 验证码:
空间机器人动力学建模与鲁棒控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对多刚体空间机器人存在的弱扰动惯性力矩(由本体姿态运动产生的扰动力矩、以及由科氏力和离心力产生的扰动力矩等),由于动力学关系的复杂性,空间机器人弱扰动惯性力矩的计算是非常耗时的,同时由于参数的不确定性和机器人运动测量精度的限制,其精确计算也往往是困难的。本文用李雅普诺夫法设计了鲁棒控制器,不但在系统参数发生变化的情况下具有鲁棒性,而且实时性很好。
     本文在所提出的鲁棒控制器中设计了合适的补偿控制量,对机器人的弱扰动惯性力矩进行补偿,降低了控制算法的复杂程度,极大地减少了计算时间。在补偿控制量的计算上,本文应用粒子群算法(PSO)搜索出机器人弱扰动惯性运动系数矩阵的约束空间,解决了估计弱扰动惯性力矩的技术障碍。
     动力学仿真表明本文提出的控制器具有很好的鲁棒性和实时性,而且在某些任务空间内,补偿控制量可以在一定程度上抵消未补偿的控制量,从而减小输出控制力矩。此外,应用设计的控制器对2关节与6关节空间机器人进行轨迹跟踪控制仿真,对比分析了2关节与6关节空间机器人的实时性,通过该分析,进一步证明了设计的鲁棒控制器具有较好的实时性和鲁棒性。最后,对空间机器人的在姿态进行控制,验证了姿态与轨迹跟踪之间的耦合关系,在轨迹跟踪控制精度提高的同时能够进一步提高姿态运动的快速性和准确性。
According to space robot with weak disturbing inertial torque(disturbing torque produced by the attitude motion of Base and produced by Coriolis and Centrifugal forces), Firstly, the calculation of weak disturbing inertial torque of the space robot is extraordinarily time consumption for the complexity of dynamics. Meanwhile, for the parameters uncertainties and the limitation of measuring accuracy of the motion parameters, it is difficult to calculate it exactly. In the thesis, robust controller is designed based on the method of Lyapunov. The controller has good robust and excellent real time when the system parameters of space manipulator have some variations.
     In the thesis, there is suitable control to compensate weak disturbing inertial torque. Besides, the algorithm complexity of controller is decreased and the time consumption of the control is greatly reduced. PSO algorithm is applied to optimize the weak disturbing inertial matrix of the constrained space and the technical obstacle of weak disturbing inertial torque estimate is solved.
     Simulation shows that there are good robust and real time. In some task space, the uncompensated control can be compensated by the compensation. Therefore, the control torque can be reduced. Besides, the controller is respectively applied to control 2 joint and 6 joint space manipulators. Robust controller is proved that there is good real time and robust by the comparison and analysis of the 2 joint and 6 joint space robot. Finally, the coupling relationship is verified by attitude control. The simulated results show that the accuracy and rapidity of the responsibility can be improved while the precision of the trajectory tracking is improved.
引文
[1] K. Yoshida and K. Hashizume. Zero Reaction Maneuver: Flight Validation with ETS-VII Space Robot and Extension to Kinematically Redundant Arm,Proceedings IEEE International Conference on Robotics and Automation, 2001, 2(1): 441~446
    [2]朱雷.自由浮动冗余度空间机器人运动规划与力矩优化方法研究[D].南京航空航天大学, 2008
    [3]梁斌.舱外自由移动机器人系统[J].控制工程. 2001, 5
    [4] Z. Hugo and H. G. Bcakhaus. Laser Based Rendezvous Sensors in Test on the European Proximity Operations Simulator, AIAA 92-4549-CP:1138-1146
    [5] Yoshida and Kazuya. Engineering Test Satellite VII Flight Experiments for Space Robot Dynamics and Control. International Journal Of Robotics Research, 2003, 22(5): 321~335
    [6]刘凯.小卫星自主临近作业机动飞行制导技术研究[D].西北工业大学. 2007
    [7]谢国伟.空间机器人的运动控制研究[D].哈尔滨:哈尔滨工业大学控制科学与工程系, 2006, 6
    [8] B. Liang, Y. Xu and M. Bergerman. Mapping a Space Manipulator to a Dynamically Equivalent Manipulator, ASME Journal of Dynamic Systems. 1998, (120): 1-7
    [9]刘玮.空间机械手电联试系统的设计与研究[D].北京邮电大学. 2008
    [10]柳长安.多自由飞行空间机器人协调控制研究[D].哈尔滨工业大学, 2001
    [11] E. Papadopoulos and S. Dubow sky. On the Nature of Control Algorithms for Free Floating Space Manipulators[J]. IEEE Trans Robotics Automat. 1991, 7(5): 750- 758
    [12] Z. Vafa and S. Dubow sky. On the Dynamics of Manipulators in Space Using the Virtual Manipulator Approach[J]. IEEE P roc Robotics. Automat, 1987: 579- 585
    [13] Abiko, Hirzinger. Computational efficient algorithms for operational space formulation of branching arms on a space robot[J]. Intelligent Robots and Systems, 2008, 10: 3312-3317
    [14]梁斌,刘良栋,李庚田.空间机器人的动力学等价机械臂[J].自动化学报. 1998, 24 (6): 761- 767
    [15]刘秀超.空间冗余度机器人运动学规划及动力学控制中的混沌抑制[D].南京航空航天大学. 2010
    [16] D. Nenchev and Y. Umetani. Analysis of a Redundant Free Flying Spacecraft/Manipulator System[J]. IEEE Trans Robotics Automat. 1992, 8 (1): 1- 6
    [17] D. N. Nenchev. A Controller for a Redundant Free Flying Space Robot with Spacecraft Attitude/Manipulator Motion[C]. Coordination. Proc of the IEEE/RSJ Int Conf on Intelligent Robots and Systems, 1993: 2108- 2114
    [18]柳长安,李国栋,吴克河,洪炳融.自由飞行空间机器人研究综述[J].机器人, 2002, 24(4): 380-384
    [19] E. Papadopoulos. On the Design of Zero Reaction Manipulators[J]. Transactions of the ASME Journal of Mechanical Design. 1996, 118: 372- 376
    [20] E Papadopoulos, S Dubow sky. Coordinated manipulator spacecraft motion control for space robotic systems[J]. IEEE Proc Robotics Automat 1991, 04: 1696- 1701
    [21] K. Yoshida, R. Kurazume and Y. Umetani. Torque Optimization Control in Space Robots with a Redundant A rm[J]. IEEE/RSJ Int Workshop on Intelligent Robots and Systems, 1991: 1647- 1652
    [22] Y. Chen and L. T. Watson. Optimal Trajectory Planning for a Space Robot Docking with a MovingTarget Via Homology Algorithms[J]. Journal of Robotic Systems. 1995, 12 (8): 531- 540
    [23]何光彩.自由飞行空间机器人姿态控制研究.哈尔滨工业大学博士论文. 1999
    [24] Koichi Matsuda, Yoic Hi Kanemitsui, and Shinya Kijimoto. Attitude control of a space robot using the nonholonomic structure[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, 1998, 8, 10-12. Boston, MA
    [25] Galicki. An Adaptive Regulator of Robotic Manipulators in the Task Space[J].Automatic Control. 2008, 5: 1058-1062
    [26] X.W. Liang, X. H. Huang, M. Wang and X. J. Zeng. Adaptive Task-Space Tracking Control of Robots without Task-Space- and Joint-Space-Velocity Measurements[J]. Robotics.2010, 8(26): 733-742
    [27] B. Xian. Task-Space Tracking Control Of Robot Manipulators Via Quaternion Feedback[J]. Robotics and Automation. 2004, 2(20): 160-167
    [28] Y. L. Gu and Y. S. Xu. A Normal Form Augmentation Approach to Adaptive Control of Space Robot Systems[C]. Proc. of the IEEE Int. Conf on Robotics and Automation. 1993: 731– 737
    [29] L. Chen. Adaptive and Robust Composite Control of Coordinated Motion of Space Robot System with Prismatic Joint [C]. Proc. of the 4th World Congress on Intelligent Control and Automation. 2002, 2:1255– 1259
    [30] A. Green and J. Z. Sasiadek. Intelligent Tracking Control of a Free-Flying Flexible Space Robot Manipulator[C]. AIAA, Navigation and Control Conference, 2007
    [31] Yime, E. Saltaren and R. J. Diaz. Robust Adaptive Control of the Stewart-Gough Robot in the Task Space[C]. American Control Conference (ACC), 2010, 5248– 5253
    [32]颜世佐,谢箭,刘国良,强文义.空间机器人鲁棒复合自适应控制[J].控制工程, 2009, 16: 149-154
    [33]徐文福.自由飘浮空闻机器人系统基座姿态调整[J].机器人, 2006, 28(3):291-296
    [34]丰保民,马广程,温奇咏,王常虹.任务空间内空间机器人鲁棒智能控制器设计[J].宇航学报,2007, 28(4): 914-920
    [35] K. Seweryn and M. Banaszkiewicz. Optimization of the Trajectory of a General Free–Flying Manipulator During the Rendezvous Maneuver[C]. AIAA Guidance, Navigation and Control Conference. 2008
    [36]周宗锡.刚体姿态控制及其在机器人控制中的应用研究[D].西安:西北工业大学, 2002, 7
    [37]吕建婷.三轴稳定卫星姿态控制算法研究.哈尔滨:哈尔滨工业大学, 2007,12
    [38]周江华,苗育红,李宏等.四元数在刚体姿态仿真中的应用研究[J].飞行力学, 2000, 18(4): 28-32
    [39] Yoon and Lundberg. Euler Angle Dilution of Precision in GPS Attitude Determination[J]. Aerospace and Electronic Systems. 2002, 8(37):1 077-1083
    [40] Campa, Camarillo and Arias. Kinematics Modeling and Control of Robot Manipulators Via Unit Quaternions: Application to a Spherical Wrist[J]. Decision and Control. 2006, 5: 6474-6479
    [41]周江华,苗育红,王明海.姿态运动的Rodriguez参数描述[J].宇航学报, 2004, 9(25): 515-519
    [42]程杨,杨涤,崔祜涛.利用修正罗德里格参数进行飞行器姿态估计[J].飞行力学, 2002, 12(4): 18-20
    [43]谢国伟,强文义.空间机器人的运动控制研究[D].哈尔滨:哈尔滨工业大学, 2006
    [44] R. A. Freeeman and P. V. Kokotovic. Inverse Optimality in Robust Stabilization[J]. Control and Optimization, 1996, 34 (4): 1365-1391
    [45] J. J. E. Slotine and W. Li. Applied Nonlinear Control[J]. New: Prentice Hall, 1991
    [46] F. Martinez. Stochastic Stability Analysis of the Linear Continuous and Discrete PSO Models[J]. 2011, 6(15): 405-423
    [47]刘关俊.基于粒子群算法的移动机器人路径规划研究[D].中南大学, 2007
    [48] J.Kennedy and R. Eberhart. Partiele Swarm Optimization[C]. Proc. IEEEInt. Conf on NeuralNetWorks, 1995: 1942-1948
    [49] V. Kalivarapu and E. Winer. A Statistical Analysis of Particle Swarm Optimization with and without Digital Pheromones[C]. AIAA/ASME/ASCE/AHS/ASC Structural Dynamics, and Materials Conference. 2007, 3
    [50] G. Venter, Jaroslaw and S. Sobieski. Parallel Particle Swarm Optimization Algorithm Accelerated by Asynchronous Evaluations[J]. Aerospace Computing, Information, and Communication 2006, 3: 123-137
    [51]韩万伟.自由漂浮空间机器人运动规划[D].哈尔滨:哈尔滨工业大学控制科学与工程系, 2007, 7, 49-50

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700