石油烃厌氧降解菌的筛选及其降解特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,石油污染对环境、人类的生产和生活造成了严重的影响,石油污染的治理,特别是土壤和地下水的生物修复技术已经成为了研究热点。生物修复技术包括原位和异位生物修复,对于石油污染源比较分散的土壤和地下水环境,采用原位生物修复具有明显的优势,由于土壤和地下水的缺氧特性,特别是在高温干旱等极端环境下,使得原位厌氧生物修成为可能。本文首先通过分析16个月原位强化修复石油污染土壤的理化性质和纵向分布特征,探讨厌氧降解在原位修复过程中的作用;其次,采集克拉玛依油田的污染土壤样品,选择合适的电子受体,筛选土著嗜热石油烃厌氧降解菌,并对可培养的单菌进行了分子生物学鉴定,确定了厌氧降解混合菌KLA14-2的最佳培养条件;对混合菌KLA14-2进行环境影响因素考察,分析两种不同性质原油的降解特性;最后,在底物降解范围和群落结构稳定性研究的基础上,选择单环芳烃甲苯和多环芳烃萘为模式物,考察KLA14-2对甲苯和萘的降解特性,利用紫外、红外和GC-MS等方法对甲苯和萘代谢产物进行了分析,推测可能的代谢途径,得到以下几个结论:
     (1)经16个月原位强化修复后各土层的石油烃得到一定程度的去除,表层土饱和分和芳香分去除率最高;底层土IN-1处于缺氧环境,存在硫酸盐还原和反硝化作用,使得土壤pH值从7.86±0.03降低至7.27±0.03,土壤总氮从2.53±0.13g/kg降低至0.77±0.04 g/kg;厌氧菌数量与胶质和沥青质去除率之间成正相关关系,对于污染源较为分散的污染区域,采用原位生物强化修复时可以考虑引入厌氧修复;
     (2)克拉玛依石油污染土壤硫酸盐含量丰富,硫酸盐适合做为石油烃厌氧降解菌的电子受体;经过初筛和复筛,得到一组稳定、降解效果较好的厌氧降解混合菌KLA14-2;经多次分离、纯化共获得四株可培养厌氧单菌,分子鉴定表明KLA14-2-1和KLA14-2-3分别属于地衣芽胞杆菌属(Bacillus licheniformis)和热嗜淀粉芽孢杆菌属(Bacillus thermoamylovorans),而KLA14-2-2和KLA14-2-4只能初步判断分别与可培养的脱硫肠状菌属(Desulfotomaculum)和铁细菌的亲缘关系较近,4株单菌的原油降解能力均较差,混合菌对原油的降解具有优势;
     (3)过低的接种量不利于KLA14-2降解原油,最佳接种量为2%;混合菌可以在50~60℃的温度下保持较好的原油降解能力,最适pH值范围为6~8,低于CMC浓度的表面活性剂(50mg/L)可以一定程度上促进混合菌KLA14-2对原油的降解;硫酸盐还原作用对厌氧降解原油的贡献最大,在三种电子受体共同存在时,三价铁能够促进厌氧降解混合菌KLA14-2的降解,硝酸根会抑制KLA14-2的降解;KLA14-2对不同性质原油具有不同的降解特性,能够利用稠油中的胶质等难降解组分;
     (4)混合菌的底物利用能力要强于单菌,其中混合菌KLA14-2对低浓度的8种石油烃化合物均具有较好的利用能力;PCR-ARDRA分析结果表明KLA14-2种群结构复杂,可培养和分离的微生物只占到了21.1%;在原油条件下,混合菌KLA14-2的群落结构变得更加简单,优势菌的种类发生变化,含量也由63.75%提高到73.75%;
     (5)混合菌KLA14-2对萘的耐受能力要差于甲苯,萘和甲苯的厌氧降解符合非竞争性底物抑制模型,各种混合电子受体条件下KLA14-2对甲苯和萘的降解能力普遍好于单一的电子受体,一定量的外加碳酸氢盐可加速萘的降解进程,对甲苯影响不大;
     (6)KLAL14-2厌氧降解甲苯主要代谢机理为苯甲基琥珀酸盐合成反应和苯甲酸盐合成反应,代谢产物有苯甲基琥珀酸和苯甲酸;厌氧降解萘的主要代谢机理为羧基化反应和甲基化反应,主要代谢中间产物有2-萘酸、萘基-2-甲基琥珀酸、5,6,7,8-四氢-2-萘酸、十氢萘酸、cis-2-羧基环已醋酸等。
In recent years, the oil pollution casused serious impact on the environment and human activities, especially the bioremediation technology used in oil polluted soil and groundwater has become a hot research topic. Bioremediation techniques include in situ and ex-situ bioremediation, and the in situ bioremediation has a great advantage in the contaminated area which polluted dispersively or the groundwater environment. Increasing evidence indicates that biodegradation of hydrocarbons takes place also in anoxic conditions. This opens new perspectives for the in situ treatment of contaminated soil and groundwater where reducing conditions below the surface limited the usefulness of O2 as an electron acceptor which could be supplied to stimulate the degradation of petroleum hydrocarbons. Under reducing conditions, other options have to be evaluated for enhancing the in situ biodegradation of organic contaminants. In this paper, firstly, the vertical distribution of physical and chemical properties of the oil contaminated soil with 16 months in situ bioremediation was studied, to analyze the role of anaerobic degradation during the in situ bioremediation process; Secondly, the Karamay oil polluted soil samples were collected, and the appropriate electronic accepter was isolated, then the thermophilic anaerobic hydrocarbon degrading bacteria which used crude oil as carbon source were isolated, and the pure degrading strain was identified by molecular biology, the optimize culture condition of the mixed culture KLAL14-2 was obtained. In addition, the environment factors effected on the mixed culture KLA14-2 was studied, and the degradation characteristics of KLA14-2 on the two different kinds of crude oil was analyzed; Finally, the range of substrate degradation and the stability of community structure were studied, the degrading characteristics of toluene and naphthalene which presented the monocyclic aromatics hydrocarbons and polycyclic aromatic hydrocarbons were investigated, and possible the metabolic pathway was speculated through ultraviolet, infrared and GC-MS methods.
     The experiment results showed:
     (1) In-situ bioaugmentation strategy was used for bioremediation of oil contaminated soil with 16 months, the oil of each soil layer was degraded in a certain extent, the removal rates of saturate and aromatic component of the surface soil was highest; As sulfate reduction and nitrate reduction took place in subsurface soil, the pH reduced from 7.86±0.03 to 7.27±0.03, and the TN reduced from 2.53±0.13 g/kg to 0.77±0.04 g/kg; The removal rate of resin and asphaltene was related to the anaerobic bacterial count. The anaerobic bioremediation strategy should be considered, when the in-situ remediation was applied in the oil contaminated area which polluted dispersively;
     (2) The sulfate content of Karamy oil contaminated soil was abundant, the sulfate was suitable for anaerobic hydrocarbon degrading bacteria as electron acceptor; after primary and secondary screening, the stable and high hydrocarbon degrading rate mixed culture KLA14-2 was obtained. Crude oil degradation experiments of the four pure degrading bacteria (KLA14-2-1, KLA14-2-2, KLA14-2-3 and KLA14-2-4 which were isolated from the mixed culture KLA14-2) showed that these pure strain had a low crude oil removal ability, the single hydrocarbon degrading bacteria in crude oil degrading is not appropriate; Molecular identification results showed that KLA14-2-1 and KLA14-2-3 belong to Bacillus licheniformis and Bacillus thermoamylovorans respectively, and KLA14-2-2 and KLA14-2-4 could only be confirmed have a close genetic relationship of the Desulfotomaculum and iron bacteria respectively;
     (3) Lower inoculum inhibited the degrading, and 2% inoculum was more appropriate, the mixed culture KLA14-2 could maintain a high oil removal rate when the temperate was above 50℃; The optimal pH range was 6-8, and the concentration of surfactant (50mg/L) which lower than the CMC could promote the oil degradation of mixed culture KLAL14-2; Sulfate-reducing have the mainly effect on the anaerobic oil degradation process, ferric iron could promote the degradation of KLA14-2, and under the nitrate-reduction condition inhibited the degradation; KLA14-2 had vary degrading characteristics with different kinds of oil, could degraded the resin component of heavy oil;
     (4) Substrate utilization ability experiments showed that the mixed culture were better than the pure bacteria, the KLA14-2 was ability to use 8 kinds of low concentration hydrocarbon substrates as carbon source; The PCR-ARDRA analysis showed that the KLA14-2 had a complex population structure, the culturable bacteria could be only to 21.1%, and the population structure of KLA14-2 used crude oil as carbon source was different with the original structure, the type of dominant bacteria were changed and the content increased from 63.75% to 73.75%;
     (5) The tolerance of mixed culture KLAL14-2 on naphthalene was worse than toluene, the anaerobic degradation of naphthalene and toluene was fitted to a non-competitive inhibition model, the toluene or naphthalene degradation ability of KLA14-2 on mixed electron acceptor conditions was better than each single electron acceptor conditions, the addition of a certain amount bicarbonate could accelerate the process of degradation of naphthalene, but toluene had little effect;
     (6) The major metabolic mechanism of KLA14-2 for degrading toluene were benzylsuccinate synthesis and benzoate synthesis, the major metabolic production were benzylsuccinate and benzoic acid; and the major metabolic mechanism of KLA14-2 for degrading naphthalene were carboxylation and methylation, the major metabolic production were 2-naphthoic acid, naphthyl-2-methylsuccinate, 5,6,7,8– tetrahydro -2-naphthoic acid, decalin acid and cis-2-carboxycyclohexylacetate.
引文
[1]丁克强,李培军,张海荣.真菌对石油污染的降解研究[J].微生物学杂志, 1999, 19(4):25-34
    [2] L.M.Whang, Liu, P. W. G., Ma, C. C., et al. Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil[J]. J. Hazard. Mater., 2008, 151(1):155-163
    [3]刘新华,昊永锋.土壤油类污染治理的水力冲洗和表活剂冲洗技术初步试验研究[J].环境科学学报, 1996, 16(4):418-424
    [4]武强,王志强,杨淑君,等.地下水曝气工程技术研究———以德州胜利油田地下水石油污染治理为例[J].地学前缘(中国地质大学(北京) ;北京大学), 2007, 14(6):214-221
    [5]耿春香,张秀霞.新疆百重井区油田开发对地下水环境的影响分析[J].重环境科学, 2001, 23(4):48-50
    [6]陈家军,王红旗,奚成刚,等.大庆油田开发中石油类污染物对地下水环境影响模拟分析[J].应用生态学报, 2001, 12(1):113-116
    [7]常慧萍.石油烃污染土壤的生物修复[J].生物学杂志, 2008, 25(1):55-56
    [8]李春荣,王文科,曹玉清.石油污染土壤的生物修复研究[J].农业环境科学学报, 2009, 28(2):234-238
    [9]丁克强,孙铁衍,李培军,等.石油污染土壤的生物修复技术[J].生态学杂志, 2000, 19(2):50-55
    [10]汪洋,史典义,聂春雨,等.石油污染土壤的微生物修复技术[J].生物技术, 2009, 19(2):94-96
    [11]苏增建,李敏.土壤石油污染的生物修复原理及研究进展[J].安徽农业科学, 2007, 35(6):1742-1744
    [12]陆秀君,郭书海,孙清,等.石油污染土壤的修复技术研究现状及展望[J].沈阳农业大学学报, 2003, 35(6):63-67
    [13] Swannell R. P., Lee, K., McDonagh, M. Field evaluations of marine oil spill bioremediation[J]. Microbiological Review, 1996, 60(2):342-365
    [14] Kim S.-J., Choi, D. H., Sim, D. S., et al. Evaluation of bioremediation effectiveness oncrude oil-contaminated sand[J]. Chemosphere, 2005, 59(6):845-852
    [15] Chakraborty R., Coates, J. D. Anaerobic degradation of monoaromatic hydrocarbons[J]. Applied Microbiology and Biotechnology, 2004, 64(4):437-446
    [16] Heider J., Spormann, A. M., Beller, H. R., et al. Anaerobic bacterial metabolism of hydrocarbons[J]. FEMS Microbiology Reviews, 1998, 22(5):459-473
    [17] Coates J. D., Woodward, J., Allen, J., et al. Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments[J]. Appl. Environ. Microbiol., 1997, 63(9):3589-3593
    [18] Widdel F., Rabus, R. Anaerobic biodegradation of saturated and aromatic hydrocarbons[J]. Current Opinion in Biotechnology, 2001, 12(3):259-276
    [19] Meckenstock R. U., Safinowski, M., Griebler, C. Anaerobic degradation of polycyclic aromatic hydrocarbons[J]. FEMS Microbiology Ecology, 2004, 49(1):27-36
    [20] Chang B., Chang, I., Yuan, S. Anaerobic degradation of phenanthrene and pyrene in mangrove sediment[J]. Bull Environ Contam Toxicol, 2008, 80(2):145-149
    [21] Edwards E. A., Wills, L. E., Reinhard, M., et al. Anaerobic degradation of toluene and xylene by aquifer microorganisms under sulfate-reducing conditions[J]. Appl. Environ. Microbiol., 1992, 58(3):794-800
    [22] McKelvie J. R., Lindstrom, J. E., Beller, H. R., et al. Analysis of anaerobic BTX biodegradation in a subarctic aquifer using isotopes and benzylsuccinates[J]. Journal of Contaminant Hydrology, 2005, 81(1-4):167-186
    [23] Grishchenkov V. G., Townsend, R. T., McDonald, T. J., et al. Degradation of petroleum hydrocarbons by facultative anaerobic bacteria under aerobic and anaerobic conditions[J]. Process Biochemistry, 2000, 35(9):889-896
    [24] Aitken C. M., Jones, D. M., Larter, S. R. Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs[J]. Nature, 2004, 431(7006):291-294
    [25] Liamleam W., Annachhatre, A. P. Electron donors for biological sulfate reduction[J]. Biotechnology Advances, 2007, 25(5):452-463
    [26] Shin W. S., Pardue, J. H., Jackson, W. A. Oxygen demand and sulfate reduction in petroleum hydrocarbon contaminated salt marsh soils[J]. Water Research, 2000, 34(4):1345-1353
    [27]黎霞,承磊,邓宇,等.石油烃厌氧生物降解研究进展[J].应用与环境生物学报, 2008, 14(2):283-289
    [28]豆俊峰,丁爱中,孙寓姣. BTEX污染物的厌氧降解机制及微生物特性分析[J].北京师范大学学报(自然科学版), 2009, 45(5-6):547-553
    [29] Kazy S., Monier, A., Alvarez, P. Assessing the correlation between anaerobic toluene degradation activity and bssA concentrations in hydrocarbon-contaminated aquifer material[J]. Biodegradation, 2010, 21(5):793-800
    [30] Timmis K. N., Widdel, F. in Cultivation of Anaerobic Microorganisms with Hydrocarbons as Growth Substrates. Vol. Springer Berlin Heidelberg, pp. 3787-3798.
    [31] Timmis K. N., Tierney, M., Young, L. Y. in Anaerobic Degradation of Aromatic Hydrocarbons. Vol. Springer Berlin Heidelberg, pp. 925-934.
    [32] Boopathy R. Anaerobic biodegradation of no. 2 diesel fuel in soil: a soil column study[J]. Bioresource Technology, 2004, 94(2):143-151
    [33]邓栋,刘翔. Btex厌氧降解纯菌株的筛选及降解效率影响因素研究[J].农业环境科学学报, 2008, 27(5):1991-1996
    [34]张兰英,阿布巴卡尔·达布雷,林学钰,等.模拟地下水环境微生物降解甲苯的研究[J].环境科学学报, 2002, 22(5):634-636
    [35] Randwan S. S., Al-Awadhi, H., Sorkhoh, A. N., et al. Rhizospheric hydrocarbon-utilingmicroisms as potentialconl butorsto phytoremediation for the oily Kuwaiti desert[J]. Mcrobiol.Res., 1998, 153(3):247-251
    [36] Fredette V., Planet, C., Roy, A. Numerical data concerning the sensitivity of anaerobic bacteria to oxygen[J]. Journal of Biotechnology, 1967, 94(6):2012-2017
    [37] Coates J. D., Anderson, R. T., Woodward, J. C., et al. Anaerobic Hydrocarbon Degradation in Petroleum-Contaminated Harbor Sediments under Sulfate-Reducing and Artificially Imposed Iron-Reducing Conditions[J]. Environmental Science & Technology, 1996, 30(9):2784-2789
    [38] Zengler K., Karsten, Heider, J., et al. Phototrophic utilization of toluene under anoxic conditions by a new strain of Blastochloris sulfoviridis[J]. Arch Microbiol, 1999, 172(4):204-212
    [39] Bonin P., Cravo-Laureau, C., Michotey, V., et al. The anaerobic hydrocarbonbiodegrading bacteria:an overview[J]. Ophelia, 2004, 58(8):243-254
    [40] Evans P. J., Mang, D. T., Kim, K. S., et al. Anaerobic degradation of toluene by a denitrifying bacterium[J]. Appl. Environ. Microbiol., 1991, 57(4):1139-1145
    [41] ANDERS H.-J., KAETZKE, A., KAMPFER, P., et al. Taxonomic Position of Aromatic-Degrading Denitrifying Pseudomonad Strains K 172 and KB 740 and Their Description as New Members of the Genera Thauera, as Thauera aromatica sp. nov., and Azoarcus, as Azoarcus evansii sp. nov., Respectively, Members of the Beta Subclass of the Proteobacteria[J]. nternational Union of Microbiological Societies, 1995, 45(2): 327-333
    [42] Shinoda Y., Sakai, Y., Uenishi, H., et al. Aerobic and Anaerobic Toluene Degradation by a Newly Isolated Denitrifying Bacterium, Thauera sp. Strain DNT-1[J]. Appl. Environ. Microbiol., 2004, 70(3):1385-1392
    [43] Grishchenkov V. G., Slepen'kin, A. V., Boronin, A. M. Anaerobic degradation of biphenyl by the facultative anaerobic strain Citrobacter freundii BS2211[J]. Appl Biochem Microbiol, 2002, 38(2):125-128
    [44] Spormann A. M., Widdel, F. Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria[J]. Biodegradation, 2000, 11(2):85-105
    [45] Fries M. R., Zhou, J., Chee-Sandford, J., et al. Isolation, characterization, and distribution of denitrifying toluene degraders from a variety of habitats[J]. Appl Environ Microbiol, 1994, 60(8):2802-2810
    [46] Song B., H?ggblom, M. M., Zhou, J., et al. Taxonomic characterization of denitrifying bacteria that degrade aromatic compounds and description of Azoarcus toluvorans sp. nov. and Azoarcus toluclasticus sp. nov.[J]. Int J Syst Bacteriol, 1999, 49:1129-1140
    [47] Dolfing J., Zeyer, J., Binder-Eicher, P., et al. Isolation and characterization of a bacterium that mineralizes toluene in the absence of molecular oxygen[J]. Arch Microbiol, 1990, 154(4):336-341
    [48] Rabus R., Widdel, F. Anaerobic degradation of ethylbenzene and other aromatic hydrocarbons by new denitrifying bacteria[J]. Arch Microbiol, 1995, 163(2):96-103
    [49] Hess A., Zarda, B., Hahn, D., et al. In situ analysis of denitrifying toluene and m-xylene-degrading bacteria in a diesel fuel-contaminated laboratory aquifer column[J]. ApplEnviron Microbiol, 1997, 63(6):2136-2141
    [50] Ball H. A., Johnson, H. A., Reinhard, M., et al. Initial reactions in anaerobic ethylbenzene oxidation by a denitrifying bacterium, strain EB1[J]. J Bacteriol, 1996, 178(19):5755-5761
    [51] Harms G., Rabus, R., Widdel, F. Anaerobic oxidation of the aromatic plant hydrocarbon p-cymene by newly isolated denitrifying bacteria[J]. Arch Microbiol, 1999, 172:303-312
    [52] Ehrenreich P., Behrends, A., Harder, J., et al. Anaerobic oxidation of alkanes by newly isolated denitrifying bacteria[J]. Arch Microbiol, 2000, 173(1):58-64
    [53] Chakraborty R., Coates, J. D. Hydroxylation and Carboxylation--Two Crucial Steps of Anaerobic Benzene Degradation by Dechloromonas Strain RCB[J]. Appl. Environ. Microbiol., 2005, 71(9):5427-5432
    [54] Rockne K. J., Chee-Sanford, J. C., Sanford, R. A., et al. Anaerobic Naphthalene Degradation by Microbial Pure Cultures under Nitrate-Reducing Conditions[J]. Appl. Environ. Microbiol., 2000, 66(4):1595-1601
    [55] Cravo-Laureau C., Labat, C., Joulian, C., et al. Desulfatiferula olefinivorans gen. nov., sp. nov., a long-chain n-alkene-degrading, sulfate-reducing bacterium[J]. Int J Syst Evol Microbiol, 2007, 57(11):2699-2702
    [56] Rueter P., Rabus, R., Wilkes, H., et al. Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria[J]. Nature, 1994, 372(1):455-458
    [57] Galushko A., Minz, D., Schink, B., et al. Anaerobic degradation of naphthalene by a pure culture of a novel type of marine sulphate-reducing bacterium[J]. Environ Microbiol, 1999, 1(5):415-420
    [58] Phelps C. D., Kerkhof, L. J., Young, L. Y. Molecular characterization of a sulfate-reducing consortium which mineralizes benzene[J]. FEMS Microbiol Ecol, 1998, 27:269-279
    [59] Harms G., Zengler, K., Rabus, R., et al. Anaerobic Oxidation of o-Xylene, m-Xylene, and Homologous Alkylbenzenes by New Types of Sulfate-Reducing Bacteria[J]. Appl. Environ. Microbiol., 1999, 65(3):999-1004
    [60] Kniemeyer O., Fischer, T., Wilkes, H., et al. Anaerobic Degradation of Ethylbenzene by a New Type of Marine Sulfate-Reducing Bacterium[J]. Appl. Environ. Microbiol., 2003,69(2):760-768
    [61] Musat F., Galushko, A., Jacob, J., et al. Anaerobic degradation of naphthalene and 2-methylnaphthalene by strains of marine sulfate-reducing bacteria[J]. Environ Microbiol, 2009, 11(1):209-219
    [62] Cravo-Laureau C., Matheron, R., Joulian, C., et al. Desulfatibacillum alkenivorans sp. nov., a novel n-alkene-degrading, sulfate-reducing bacterium, and emended description of the genus Desulfatibacillum[J]. Int J Syst Evol Microbiol, 2004, 54(5):1639-1642
    [63] Rabus R., Nordhaus, R., Ludwig, W., et al. Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium[J]. Appl Environ Microbiol, 1993, 59(5):1444-1451
    [64] Aeckersberg F., Bak, F., Widdel, F. Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium[J]. Arch Microbiol, 1991, 156(1):5-14
    [65] Aeckersberg F., Rainey, F., Widdel, F. Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions[J]. Arch Microbiol, 1998, 170(5):361-369
    [66] So C. M., Young, L. Y. Isolation and characterization of a sulfate-reducing bacterium that anaerobically degrades alkanes[J]. Appl Environ Microbiol, 1999, 65(7):2969-2976
    [67] Ommedal H., Torsvik, T. Desulfotignum toluenicum sp. nov., a novel toluene-degrading, sulphate- reducing bacterium isolated from an oil-reservoir model column[J]. Int J Syst Evol Microbiol, 2007, 57(12):2865-2869
    [68] Lovley D. R., Baedecker, M. J., Lonergan, D. J., et al. Oxidation of aromatic contaminants coupled to microbial iron reduction[J]. Nature, 1989, 339:297-300
    [69] Kunapuli U., Jahn, M. K., Lueders, T., et al. Anaerobic degradation of monoaromatic hydrocarbons by two novel iron-reducing bacteria: Description of Desulfitobacterium aromaticivorans sp. nov., and Geobacter toluoenoxydans sp. nov[J]. Int J Syst Evol Microbiol, 2009:ijs.0.003525-003520
    [70] Tor J., Lovley, D. Anaerobic degradation of aromatic compounds coupled to Fe(III) reduction by Ferroglobus placidus[J]. Environ Microbiol, 2001, 3(4):281-287
    [71]李湛江,韦朝海,任源,等.硝基苯降解菌生长特性及其降解活性[J].环境科学, 1999, 22(5):20-24
    [72]向廷生,万家云,蔡春芳.硫酸盐还原菌对原油的降解作用和硫化氢的生成[J].天然气地球科学, 2004, 15(2):171-173
    [73]李红梅,刘东.一株苯酚厌氧降解菌的选育及其降解苯酚的研究[J].环境科学与技术, 2007, 30(10):31-34
    [74]黎霞,承磊,汪卫东,等.一株油藏嗜热厌氧杆菌的分离、鉴定及代谢产物特征[J].微生物学报, 2008, 48(8):995-1000
    [75] Kodama Y., Watanabe, K. Isolation and Characterization of a Sulfur-Oxidizing Chemolithotroph Growing on Crude Oil under Anaerobic Conditions[J]. Appl. Environ. Microbiol., 2003, 69(1):107-112
    [76]马立安,向廷生,张敏,等.硫酸盐还原菌对原油降解作用的研究[J].长江大学学报(自然科学版)农学卷, 2008, 5(4):85-88
    [77]郑承纲,俞理,吴庆红,等.一株烃降解菌Rhodococcus ruber Z25研究[J].深圳大学学报(理工版), 2009, 26(3):234-239
    [78] Rabus R., Widdel, F. Utilization of alkylbenzenes during anaerobic growth of pure cultures of denitrifying bacteria on crude oil[J]. Appl Environ Microbiol, 1996, 62(1):1238-1241
    [79] Dou J., Liu, X., Ding, A. Anaerobic degradation of naphthalene by the mixed bacteria under nitrate reducing conditions[J]. Journal of Hazardous Materials, 2009, 165(1-3):325-331
    [80] Dou J., Liu, X., Hu, Z., et al. Anaerobic BTEX biodegradation linked to nitrate and sulfate reduction[J]. Journal of Hazardous Materials, 2008, 151(2-3):720-729
    [81] Dou J., Liu, X., Hu, Z. Anaerobic BTEX degradation in soil bioaugmented with mixed consortia under nitrate reducing conditions[J]. Journal of Environmental Sciences, 2008, 20(5):585-592
    [82] Dou J., Liu, X., Hu, Z. Substrate interactions during anaerobic biodegradation of BTEX by the mixed cultures under nitrate reducing conditions[J]. Journal of Hazardous Materials, 2008, 158(2-3):264-272
    [83] Venosa A. D., Zhu, X. Biodegradation of Crude Oil Contaminating Marine Shorelines and Freshwater Wetlands[J]. Spill Science & Technology Bulletin, 2003, 8(2):163-178
    [84] Timmis K. N., Boll, M., Heider, J. in Anaerobic Degradation of Hydrocarbons: Mechanisms of C–H-Bond Activation in the Absence of Oxygen. Vol. Springer BerlinHeidelberg, pp. 1011-1024.
    [85] Zobell. Action of microorganisms on hydrocarbons[J]. Bacteriol. Rev., 1946, 10(1):1-49
    [86] Atlas R. M. Microbialdegradation of petroleum hydrocarbons: an environmental perspective[J]. Microbiol. Rev., 1981, 45(1):180-209
    [87] Haines J. R., Alexander, M. Microbial degradation of high molecular weight alkanes[J]. Appl. Environ. Microbiol., 1974, 28(6):1084-1085
    [88] Atlas R. M. Petroleum biodegradation and oil spill bioremediation[J]. Marine Pollution Bulletin, 1995, 31(4-12):178-182
    [89] Khelifi N., Grossi, V., Hamdi, M., et al. Anaerobic Oxidation of Fatty Acids and Alkenes by the Hyperthermophilic Sulfate-Reducing Archaeon Archaeoglobus fulgidus[J]. Appl. Environ. Microbiol., 2010, 76(9):3057-3060
    [90] Aktas D. F., Lee, J. S., Little, B. J., et al. Anaerobic Metabolism of Biodiesel and Its Impact on Metal Corrosion[J]. Energy & Fuels, 2010, 24(5):2924-2928
    [91] Callaghan A., Gieg, L., Kropp, K., et al. Comparison of mechanisms of alkane metabolism under sulfate-reducing conditions among two bacterial isolates and a bacterial consortium[J]. Applied and Environmental Microbiology, 2006, 72(6):4274-4282
    [92] Johnson H., Pelletier, D., Spormann, A. Isolation and characterization of anaerobic ethylbenzene dehydrogenase, a novel Mo-Fe-S enzyme[J]. J Bacteriol, 2001, 183(15):4536-4542
    [93] So C. M., Young, L. Y. Initial Reactions in Anaerobic Alkane Degradation by a Sulfate Reducer, Strain AK-01[J]. Appl. Environ. Microbiol., 1999, 65(12):5532-5540
    [94] Rabus R., Wilkes, H., Behrends, A., et al. Anaerobic initial reaction of n-alkanes in a denitrifying bacterium: evidence for (1-methyl-pentyl)succinate as initial product and for involvement of an organic radical in n-hexane metabolism[J]. Journal of Bacteriology, 2001, 183(5):1707-1715
    [95] Heider J. Adding handles to unhandy substrates: anaerobic hydrocarbon activation mechanisms[J]. Current Opinion in Chemical Biology, 2007, 11(2):188-194
    [96] So C. M., Phelps, C. D., Young, L. Y. Anaerobic Transformation of Alkanes to Fatty Acids by a Sulfate-Reducing Bacterium, Strain Hxd3[J]. Appl. Environ. Microbiol., 2003, 69(7):3892-3900
    [97] Heider J., Fuchs, G. Microbial Anaerobic Aromatic Metabolism[J]. Anaerobe, 1997, 3(1):1-22
    [98] Boll M., Fuchs, G., Heider, J. Anaerobic oxidation of aromatic compounds and hydrocarbons[J]. Current Opinion in Chemical Biology, 2002, 6(5):604-611
    [99] Parisi V. A., Brubaker, G. R., Zenker, M. J., et al. Field metabolomics and laboratory assessments of anaerobic intrinsic bioremediation of hydrocarbons at a petroleum-contaminated site[J]. Microbial Biotechnology, 2009, 2(2):202-212
    [100] Leuthner B., Leutwein, C., Schulz, H., et al. Biochemical and genetic characterization of benzylsuccinate synthase from Thauera aromatica: a new glycyl radical enzyme catalysing the first step in anaerobic toluene metabolism[J]. Mol Microbiol, 1998, 28(3):615-628
    [101] Biegert T., Fuchs, G., Heider, J. Evidence that anaerobic oxidation of toluene in the denitrifying bacterium Thauera aromatica is initiated by formation of benzylsuccinate from toluene and fumarate[J]. Eur J Biochem, 1996, 238(3):661-668
    [102] HR B., AM, S. Benzylsuccinate formation as a means of anaerobic toluene activation by sulfate-reducing strain PRTOL1[J]. Appl Environ Microbiol, 1997b, 63:3729-3731
    [103] Nderson R. T., Lovley, D. R. Naphthalene and benzene degradation under Fe(III)-reducing conditions in petroleum-contaminated aquifers[J]. Bioremed J, 1999, 3(2):121-135
    [104] Lovley D. R., Woodward, J. C., Chapelle, F. H. Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands[J]. Nature, 1994, 370:128-131
    [105] Coates J., Chakraborty, R., Lack, J., et al. Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas[J]. Nature, 2001, 411:1039-1043
    [106] Coates J. D., Chakraborty, R., McInerney, M. J. Anaerobic benzene biodegradation--a new era[J]. Research in Microbiology, 2002, 153(10):621-628
    [107] Caldwell M., Suflita, J. Detection of phenol and benzoate as intermediates of anaerobic benzene biodegradation under different terminal electron-accepting conditions[J]. Environ Sci Technol, 2000, 34(1):1216-1220
    [108] Phelps C., Zhang, X., Young, L. Use of stable isotopes to identify benzoate as a metabolite of benzene degradation in a sulphidogenic consortium[J]. Environ Microbiol,2001, 3(9):600-603
    [109] Weiner J., Lovley, D. Rapid benzene degradation in methanogenic sediments from a petroleum-contaminated aquifer[J]. Appl Environ Microbiol, 1998, 64(5):1937-1939
    [110] Ulrich A., Beller, H., Edwards, E. Metabolites detected during biodegradation of 13C6 -benzene in nitrate-reducing and methanogenic enrichment cultures[J]. Environ Sci Technol, 2005, 39(17):6681-6691
    [111] Grbi?-Gali? D., Vogel, T. Transformation of toluene and benzene by mixed methanogenic cultures[J]. Appl Environ Microbiol, 1987, 53(2):254-260
    [112] Harwood C., Burchhardt, G., Herrmann, H., et al. Anaerobic metabolism of aromatic compounds via the benzoyl-CoA pathway[J]. FEMS Microbiol Rev, 1999, 22(5):439-458
    [113] Krieger C. Initial reactions in anaerobic oxidation of m-xylene by the denitrifying bacterium Azoarcus sp. strain T[J]. J Bacteriol, 1999, 181(20):6403-6410
    [114] Morasch B., Meckenstock, R. Anaerobic degradation of p-xylene by a sulfate-reducing enrichment culture[J]. Curr Microbiol, 2005, 51(2):127-130
    [115] Elshahed M., Gieg, L., McInerney, M., et al. Signature metabolites attesting to the in situ attenuation of alkylbenzenes in anaerobic environments[J]. Environ Sci Technol, 2001, 35(4):682-689
    [116] Reinhard M., Shang, S., Kitanidis, P., et al. In situ BTEX bio-transformation under enhanced nitrate- and sulfate-reducing conditions[J]. Environ Sci Technol, 1997, 31(1):28-36
    [117] Villatoro-Monzón W., Mesta-Howard, A., Razo-Flores, E. Anaerobic biodegradation of BTEX using Mn(IV) and Fe(III) as alternative electron acceptors[J]. Water Sci Technol, 2003, 48(6):125-131
    [118] Botton S., Parsons, J. Degradation of BTEX compounds under iron-reducing conditions in contaminated aquifer microcosms[J]. Environ Toxicol Chem, 2006, 25(10):2630-2638
    [119] Kniemeyer O., Heider, J. Ethylbenzene dehydrogenase, a novel hydrocarbon-oxidizing molybdenum/iron-sulfur/heme enzyme[J]. J Biol Chemical, 2001, 276(24):21381-21386
    [120] Rabus R. Functional genomics of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1[J]. Appl Microbiol Biotechnol, 2005, 68(5):580-587
    [121] Ambrosoli R., Petruzzelli, L., Luis Minati, J., et al. Anaerobic PAH degradation in soil by a mixed bacterial consortium under denitrifying conditions[J]. Chemosphere, 2005,60(9):1231-1236
    [122] Safinowski M., Meckenstock, R. Methylation is the initial reaction in anaerobic naphthalene degradation by a sulfate-reducing enrichment culture[J]. Environ Microbiol, 2006, 8(2):347-352
    [123] Rockne K. J., Strand, S. E. Anaerobic biodegradation of naphthalene, phenanthrene, and biphenyl by a denitrifying enrichment culture[J]. Water Research, 2001, 35(1):291-299
    [124] Meckenstock R. U., Annweiler, E., Michaelis, W., et al. Anaerobic Naphthalene Degradation by a Sulfate-Reducing Enrichment Culture[J]. Appl. Environ. Microbiol., 2000, 66(7):2743-2747
    [125] Safinowski M., Griebler, C., Meckenstock, R. Anaerobic cometabolic transformation of polycyclic and heterocyclic aromatic hydrocarbons: evidence from laboratory and field studies[J]. Environ Sci Technol, 2006, 40(13):4165-4173
    [126] Foght J. Anaerobic Biodegradation of Aromatic Hydrocarbons: Pathways and Prospects[J]. J Mol Microbiol Biotechnol, 2008, 15(2-3):93-120
    [127] Zhang X., Sullivan, E. R., Young, L. Y. Evidence for aromatic ring reduction in the biodegradation pathwayof carboxylated naphthalene by a sulfate reducing consortium[J]. Biodegradation, 2000, 11(2):117-124
    [128] Bedessem M. E., Swoboda-Colberg, N. G., Colberg, P. J. S. Naphthalene mineralization coupled to sulfate reduction in aquifer-derived enrichments[J]. FEMS Microbiology Letters, 1997, 152(2):213-218
    [129] Annweiler E., Michaelis, W., Meckenstock, R. U. Identical Ring Cleavage Products during Anaerobic Degradation of Naphthalene, 2-Methylnaphthalene, and Tetralin Indicate a New Metabolic Pathway[J]. Appl. Environ. Microbiol., 2002, 68(2):852-858
    [130] Langenhoff A. A. M., Zehnder, A. J. B., Schraa, G. Behaviour of toluene, benzene and naphthalene under anaerobic conditions in sediment columns[J]. Biodegradation, 1996, 7(3):267-274
    [131] Tang Y., Carpenter, S., Deming, J., et al. Controlled release of nitrate and sulfate to enhance anaerobic bioremediation of phenanthrene in marine sediments[J]. Environ Sci Technol, 2005, 39(9):3368-3373
    [132] Zhang X. M., Young, L. Y. Carboxylation as initial reaction in the anaerobicmetabolism of naphthalene and phenanthrene by sul?dogenic consortia[J]. Appl. Environ. Microbiol, 1997, 63(12):4759-4764
    [133] Chang W., Um, Y., Holoman, T. Polycyclic aromatic hydrocarbon (PAH) degradation coupled to methanogenesis[J]. Biotechnol Lett, 2006, 28(6):425-430
    [134] Van Hamme J. D., Singh, A., Ward, O. P. Recent advances in petroleum microbiology[J]. Microbiology and Molecular Biology Reviews, 2003, 67(1):503-549
    [135] Massias D., Grossi, V., Bertrand, J.-C. In situ anaerobic degradation of petroleum alkanes in marine sediments: preliminary results[J]. Comptes Rendus Geosciences, 2003, 335(5):435-439
    [136] Tang Y. J., Carpenter, S. D., Deming, J. W., et al. Depth-related influences on biodegradation rates of phenanthrene in polluted marine sediments of Puget Sound, WA[J]. Marine Pollution Bulletin, 2006, 52(11):1431-1440
    [137] Yang S., Yoshida, N., Baba, D., et al. Anaerobic biodegradation of biphenyl in various paddy soils and river sediment[J]. Chemosphere, 2008, 71(2):328-336
    [138] Li C.-H., Zhou, H.-W., Wong, Y.-S., et al. Vertical distribution and anaerobic biodegradation of polycyclic aromatic hydrocarbons in mangrove sediments in Hong Kong, South China[J]. Science of The Total Environment, 2009, 407(21):5772-5779
    [139]王红旗.土壤石油污染物微生物降解机理与修复技术研究[J].地学前缘, 2006, 13(1):134-139
    [140] Iturbe R., Flores, C., Castro, A., et al. Sub-soil contamination due to oil spills in six oil-pipeline pumping stations in northern Mexico[J]. Chemosphere, 2007, 68(5):893-906
    [141] He F., Zhang, Z., Wan, Y., et al. Polycyclic aromatic hydrocarbons in soils of Beijing and Tianjin region: Vertical distribution, correlation with TOC and transport mechanism[J]. Journal of Environmental Sciences, 2009, 21(5):675-685
    [142] Tzovolou D. N., Benoit, Y., Haeseler, F., et al. Spatial distribution of jet fuel in the vadoze zone of a heterogeneous and fractured soil[J]. Science of The Total Environment, 2009, 407(8):3044-3054
    [143] WALKLEY A., BLACK, I. A. An examination of degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method[J]. Soil Science, 1934, 37(1):29-37
    [144] Hesse P. R. A textbook of soil chemical analysis [M]. London: John Murray, 1971.
    [145]鲁如坤.土壤农业化学分析方法[M].南京:中国农业科技出版社, 1999.
    [146]李慧,陈冠雄,杨涛,等.沈抚灌区含油污水灌溉对稻田土壤微生物种群及土壤酶活性的影响[J].应用生态学报, 2005, 16(7):1355-1359
    [147] Boopathy R. Use of anaerobic soil slurry reactors for the removal of petroleum hydrocarbons in soil[J]. International Biodeterioration & Biodegradation, 2003, 52(3):161-166
    [148]中国石油天然气总公司in中华人民共和国石油天然气行业标准. Vol. S/Y 5119中国标准出版社,北京, 1995.
    [149]熊正琴,邢光熹,沈光裕,等.太湖地区湖、河和井水中氮污染状况的研究[J].农村生态环境, 2002, 18(2):29-33
    [150] Huesemann M. H., Truex, M. J. The role of oxygen diffusion in passive bioremediation of petroleum contaminated soils[J]. Journal of Hazardous Materials, 1996, 51(1-3):93-113
    [151] Dell'Anno A., Beolchini, F., Gabellini, M., et al. Bioremediation of petroleum hydrocarbons in anoxic marine sediments: Consequences on the speciation of heavy metals[J]. Marine Pollution Bulletin, 2009, 58(12):1808-1814
    [152]豆俊峰,刘翔.苯系化合物在硝酸盐还原条件下的生物降解性能[J].环境科学, 2006, 27(9):1846-1852
    [153] Essien J. P., Udosen, E. D. Distribution of actinomycetes in oil contaminated ultisols of the Niger Delta (Nigeria) [J]. Journal of Environmental Sciences, 2000, 12(3):296-302
    [154] Lin T.-C., Pan, P.-T., Cheng, S.-S. Ex situ bioremediation of oil-contaminated soil[J]. Journal of Hazardous Materials, 2010, 176(1):27-34
    [155]彭先芝,张干,陈繁忠,等.好氧生物降解中烷烃单体稳定同位素分馏及其环境意义[J].科学通报, 2004, 49(24):2605-2611
    [156]袁红莉,杨金水,王占生,等.降解石油微生物菌种的筛选及降解特性[J].中国环境科学, 2003, 23(2):157-161
    [157]齐永强,王红旗,刘敬奇.土壤中石油污染物微生物降解及其降解去向[J].中国工程科学, 2003, 5(8):70-75
    [158] Bastin E. S. The presence of sulphate reducing bacteria in oil ?eld waters[J]. Science, 1926, 63(1):21-24
    [159] Quan X., Tang, Q., He, M., et al. Biodegradation of polycyclic aromatic hydrocarbons in sediments from the Daliao River watershed, China[J]. Journal of Environmental Sciences, 2009, 21(7):865-871
    [160]蒋亚萍,黄宗万,陈余道,等.石油类污染含水砂柱中btex的自然衰减与厌氧生物降解特征[J].桂林工学院学报, 2005, 25(2):229-233
    [161] Tsai J. C., Kumar, M., Lin, J. G. Anaerobic biotransformation of fluorene and phenanthrene by sulfate-reducing bacteria and identification of biotransformation pathway[J]. Journal of Hazardous Materials, 2009, 164(2-3):847-855
    [162] Schreiber M. E., Bahr, J. M. Nitrate-enhanced bioremediation of BTEX-contaminated groundwater: parameter estimation from natural-gradient tracer experiments[J]. Journal of Contaminant Hydrology, 2002, 55(1-2):29-56
    [163] Sayara T., Pognani, M., Sarr, M., et al. Anaerobic degradation of PAHs in soil: Impacts of concentration and amendment stability on the PAHs degradation and biogas production[J]. International Biodeterioration & Biodegradation, 2010, 64(4):286-292
    [164] Page A., Miller, R., Keeney, D. Methods of Soil Analysis. Part 2: chemical and microbiological properties [M]. Madison: American Society of Agronomy, 1982.
    [165]汪林,甘泓,于福亮,等.西北地区盐渍土及其开发利用中存在问题的对策[J].水利学报, 2001, (6):90-95
    [166]刘虎俊,王继和,胡明贵,等.干旱区盐碱地草坪建植的坪床土改良[J].草原与草坪, 2003, (2):30-33
    [167]梁佩芝,顾继东.红树林厌氧环境对多环芳烃类有毒物的降解预测[J].生态科学, 2003, 22(2):97-103
    [168]杨雪莲,李凤梅,刘婉婷,等.高效石油降解菌的筛选及其降解特性[J].农业环境科学学报, 2008, 27(1):230-233
    [169]马永强,尹永智,杨春华,等.地衣芽孢杆菌2709产碱性蛋白酶的发酵动力学研究[J].食品工业科技, 2010, 31(6):159-162
    [170]邓坤,冀志霞,陈守文.溶氧对地衣芽孢杆菌dw2合成杆菌肽的影响[J].中国抗生素杂志, 2009, 34(11):664-668
    [171]何小丹,李霜,孙蓓蓓,等.地衣芽孢杆菌yp1a耐有机溶剂蛋白酶基因的克隆与功能表达[J].生物加工过程, 2009, 7(6):67-73
    [172] Lin S.-C., Lin, K.-G., Lo, C.-C., et al. Enhanced biosurfactant production by a Bacillus licheniformis mutant[J]. Enzyme and Microbial Technology, 1998, 23(3-4):267-273
    [173] Batrakov S. G., Rodionova, T. A., Esipov, S. E., et al. A novel lipopeptide, an inhibitor of bacterial adhesion, from the thermophilic and halotolerant subsurface Bacillus licheniformis strain 603[J]. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 2003, 1634(3):107-115
    [174] Ryttersgaard C., Le Nours, J., Lo Leggio, L., et al. The Structure of Endo-[beta]-1,4-galactanase from Bacillus licheniformis in Complex with Two Oligosaccharide Products[J]. Journal of Molecular Biology, 2004, 341(1):107-117
    [175] Folmsbee M., Duncan, K., Han, S. O., et al. Re-identification of the halotolerant, biosurfactant-producing Bacillus licheniformis strain JF-2 as Bacillus mojavensis strain JF-2[J]. Systematic and Applied Microbiology, 2006, 29(8):645-649
    [176] Das P., Mukherjee, S., Sen, R. Improved bioavailability and biodegradation of a model polyaromatic hydrocarbon by a biosurfactant producing bacterium of marine origin[J]. Chemosphere, 2008, 72(9):1229-1234
    [177] Pornsunthorntawee O., Arttaweeporn, N., Paisanjit, S., et al. Isolation and comparison of biosurfactants produced by Bacillus subtilis PT2 and Pseudomonas aeruginosa SP4 for microbial surfactant-enhanced oil recovery[J]. Biochemical Engineering Journal, 2008, 42(2):172-179
    [178] Okamoto K., Satou, N. Isolation, identification and characterization of effective bacteria on bioremediation from the waste parts of Stevia rebaudiana Berutoni[J]. Enzyme and Microbial Technology, 2006, 39(3):407-413
    [179]王伟东,王小芬,王彦杰,等.接种木质纤维素分解复合菌系对堆肥发酵进程的影响[J].农业工程学报, 2008, 14(7):193-199
    [180]王伟东,王小芬,李玉花,等.复合系wsc-6的菌种组成特性及其木质纤维素分解能力[J].农业工程学报, 2007, 23(10):210-215
    [181]周群芳,王士芬.环境工程微生物学[M].高等教育出版社, 1988.
    [182] Chang B. V., Shiung, L. C., Yuan, S. Y. Anaerobic biodegradation of polycyclic aromatic hydrocarbon in soil[J]. Chemosphere, 2002, 48(7):717-724
    [183] Kniemeyer O., Musat, F., Sievert, S. M., et al. Anaerobic oxidation of short-chainhydrocarbons by marine sulphate-reducing bacteria[J]. Nature, 2007, 449(7164):898-901
    [184] Wiedemeier T., Miller, R., Wilson, J., et al in Significance of anaerobic processes for the intrinsic bioremediation of fuel hydrocarbons. Vol. https://info.ngwa.org/GWOL/pdf/950161728.PDF, 1994.
    [185] Hambrick G. A., III, DeLaune, R. D., Patrick, W. H., Jr. Effect of Estuarine Sediment pH and Oxidation-Reduction Potential on Microbial Hydrocarbon Degradation[J]. Appl. Environ. Microbiol., 1980, 40(2):365-369
    [186] Zhang T., Gannon, S. M., Nevin, K. P., et al. Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptore[J]. Environmental Microbiology, 2010, 12(4):1011-1020
    [187] GRAU F. H. Inhibition of the Anaerobic Growth of Brochothrix thermosphacta by Lactic Acid[J]. Applied and Environmental Microbiology, 1980, 40(3):433-436
    [188] Onstott T., Hinton, S., Silver, B., et al. Coupling hydrocarbon degradation to anaerobic respiration and mineral diagenesis: theoretical constraints[J]. Geobiology., 2010, 8(1):69-88
    [189] Yanzheng G., Qing, S., Wanting, L., et al. Uptake of polycyclic aromatic hydrocarbons by Trifolium pretense L. from water in the presence of a nonionic surfactant[J]. Chemosphere, 2008, 72(4):636-643
    [190] Lai C.-C., Huang, Y.-C., Wei, Y.-H., et al. Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil[J]. Journal of Hazardous Materials, 2009, 167(1-3):609-614
    [191] JACQUES N. A., HARDY, L., KNOX, K. W., et al. Effect of Tween 80 on the Morphology and Physiology of Lactobacillus salivarius Strain IV CL-37 Grown in a Chemostat under Glucose Limitation[J]. Journal of General Microbiology, 1980, 119(1):195-201
    [192] Boopathy R. Anaerobic degradation of No. 2 diesel fuel in the wetland sediments of Barataria-Terrebonne estuary under various electron acceptor conditions[J]. Bioresource Technology, 2003, 86(2):171-175
    [193] Orcutt B. N., Joye, S. B., Kleindienst, S., et al. Impact of natural oil and higher hydrocarbons on microbial diversity, distribution, and activity in Gulf of Mexico cold-seep sediments[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2010, In Press,Corrected Proof
    [194]谭燕,程杰成,屈睿,等.油井采出液中硝酸盐还原菌的分离培养及对硫酸盐还原的抑制[J].应用与环境生物学报, 2007, 13(3):390-394
    [195]刘文钦.仪器分析[M].东营:石油大学出版社, 2004.
    [196]赵小莉,赵炜.色谱/质谱联用仪在原油分析中的应用[J].新疆石油科技, 2004, 14(1):1-4
    [197] Hu Z.-f., Dou, J.-f., Liu, X., et al. Anaerobic biodegradation of benzene series compounds by mixed cultures based on optional electronic acceptors[J]. Journal of Environmental Sciences, 2007, 19(9):1049-1054
    [198] GORNY N., SCHINK, B. Anaerobic Degradation of Catechol by Desulfobacterium sp. Strain Cat2 Proceeds via Carboxylation to Protocatechuate[J]. Applied and Environmental Microbiology, 1994, 60(9):3396-3400
    [199] Zhang Y., Miller, R. Effect of Rhamnolipid (Biosurfactant) Structure on Solubilization and Biodegradation of n-Alkanes[J]. Appl. Environ. Microbiol., 1995, 61(6):2247-2251
    [200] Cravo-Laureau C., Grossi, V., Raphel, D., et al. Anaerobic n-Alkane Metabolism by a Sulfate-Reducing Bacterium, Desulfatibacillum aliphaticivorans Strain CV2803T[J]. Appl. Environ. Microbiol., 2005, 71(7):3458-3467
    [201] Grossi V., Cravo-Laureau, C., Meou, A., et al. Anaerobic 1-Alkene Metabolism by the Alkane- and Alkene-Degrading Sulfate Reducer Desulfatibacillum aliphaticivorans Strain CV2803T[J]. Appl. Environ. Microbiol., 2007, 73(24):7882-7890
    [202] Grossi V., Cravo-Laureau, C., Guyoneaud, R., et al. Metabolism of n-alkanes and n-alkenes by anaerobic bacteria: A summary[J]. Organic Geochemistry, 2008, 39(8):1197-1203
    [203] Gibson J., Harwood, C. S. Metabolic diversity in aromatic compound utilization by anaerobic microbes[J]. Annu Rev Microbiol, 2002, 56(1):345-369
    [204] Silva M. D., Alvarez, P. Enhanced Anaerobic Biodegradation of Benzene-Toluene-Ethylbenzene-Xylene-Ethanol Mixtures in Bioaugmented Aquifer Columns[J]. Appl. Environ. Microbiol., 2004, 70(8):4720-4726
    [205] Jahn M. K., Haderlein, S. B., Meckenstock, R. U. Anaerobic Degradation of Benzene, Toluene, Ethylbenzene, and o-Xylene in Sediment-Free Iron-Reducing EnrichmentCultures[J]. Appl. Environ. Microbiol., 2005, 71(6):3355-3358
    [206] Pathak H., Kantharia, D., Malpani, A., et al. Naphthalene degradation by Pseudomonas sp. HOB1: In vitro studies and assessment of naphthalene degradation efficiency in simulated microcosms[J]. Journal of Hazardous Materials, 2009, 166(2-3):1466-1473
    [207] Huang H.-L., Lee, W.-M. G. Enhanced naphthalene solubility in the presence of sodium dodecyl sulfate: effect of critical micelle concentration[J]. Chemosphere, 2001, 44(5):963-972
    [208] Beller H. R., Grbic-Galic, D., Reinhard, M. Metabolic by-products of anaerobic toluene degradation by sulfate-reducing enrichment cultures[J]. Appl. Environ. Microbiol, 1992, 58(9):3192-3195
    [209] Andrews J. F. The Monod equation: a revisit and a generalization to substrate inhibition situation[J]. Biotec. Bioeng., 1968, 10:707-711
    [210] Li C.-H., Wong, Y.-S., Tam, N. F.-Y. Anaerobic biodegradation of polycyclic aromatic hydrocarbons with amendment of iron(III) in mangrove sediment slurry[J]. Bioresource Technology, 2010, 101(21):8083-8092
    [211] Martínez S., Cuervo-López, F., Gomez, J. Toluene mineralization by denitri?cation in an up ?ow anaerobic sludge blanket (UASB) reactor[J]. Bioresour Technol, 2007, 98(9):1717-1723
    [212]马沛,钟建江.微生物降解多环芳烃的研究进展[J].生物加工过程, 2003, 1(1):42-46
    [213] Altenschmidt U., Fuchs, G. Anaerobic degradation of toluene in denitrifying Pseudomonas sp.: indication of toluene methylhydroxylation and benzoyl-CoA as central aromatic intermediate[J]. Arch. Microbiol., 1991, 156(2):152-158
    [214] Evans P. J., Ling, W., Goldschmidt, B., et al. Metabolites formed during anaerobic transformations of toluene and o-xylene and their proposed relationship to the initial steps of toluene mineralisation[J]. Appl. Environ. Microbiol, 1992, 58(2):496-501
    [215] Schocher RJ S. B., Vazquez F, Zeyer J. Anaerobic degradation of toluene by pure cultures of denitrifying bacteria[J]. Arch Microbiol, 1991, 157(1):7-12
    [216] Chee-Sanford J. C., Frost, J. W., Fries, M. R., et al. Evidence for acetyl-coenzyme A and cinnamoyl-coenzyme A in the anaerobic mineralisation pathway in Azoarcus tolulyticusTol-4[J]. Appl. Environ. Microbiol, 1996, 62(3):964-973
    [217]暴玮,刘雄民,马丽,等.紫外分光光度法测定肉桂醛、苯甲醛和苯甲酸[J].理化检验-化学分册, 2009, 45(6):687-690
    [218] Young L. Y., Phelps, C. D. Metabolic biomarkers for monitoring in situ anaerobic hydrocarbon degradation[J]. Environmental health perspectives, 2005, 113(1):62-67

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700