大型复杂不锈钢叶轮熔模—砂型复合铸造工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铸造叶轮是造船、电力、制药、泵阀、交通运输等行业大型设备上的关键部件,对整个设备的综合性能起着举足轻重的作用。目前生产中对于复杂整体叶轮铸造工艺还存在着一定的难度,因此对于叶轮铸造工艺的研究历来就是铸造行业的热门话题。本文通过对大型复杂叶轮铸造工艺的分析、研究,旨在探索一种经济、实用的熔模-砂型复合铸造工艺,使企业在现有的设备条件下,采用该工艺能够铸造出符合技术要求的叶轮铸件。
     本项研究根据叶轮铸件的结构特点,以轮缘的内径为界限将叶轮分为形状复杂的叶片和形状简单的轮毂轮辐两大部分。对于复杂的叶片部分,通过压型压制出单个叶片的熔模;借助设计的工装将单个叶片组焊成整体叶片部分的熔模;经过涂料制备出叶片部分的硅酸乙酯-水玻璃复合型壳;在熔模型壳外缘制备水玻璃砂套后,经过脱蜡,焙烧,得到整个叶片部分的熔模型壳。对于形状简单的轮毂、轮辐部分,根据轮毂、轮辐上下端面及叶片型壳部分的外形尺寸制备出木质模样、芯盒;通过浇冒口系统设计,利用水玻璃砂造(芯)型得到形状简单的轮毂、轮辐部分以及复合铸型的浇冒口系统的砂型铸型。在此基础上,以水玻璃砂套外缘为基准,将熔模型壳和砂型铸型两部分组合成熔模-砂型复合铸型。通过配料、感应电炉熔炼、浇注、氧乙炔火焰震动气割、化学清砂得到了ZG1Cr18Ni9Ti不锈钢叶轮铸件。
     通过外观检验、尺寸测量,表明铸造叶轮尺寸精度达到了CT4~CT5、粗糙度达到了Ra3.2~1.6;通过关键部位着色渗透探伤、超声波探伤,表明该叶轮无超出技术要求的裂纹、缩孔、缩松、夹杂等铸造缺陷;通过成份检验、力学性能测试证明该叶轮的化学成分、力学性能满足技术要求。
     结果表明:采用该熔模-砂型复合铸造工艺生产的大型复杂叶轮质量不仅达到了技术要求,满足了生产的需要,而且工艺稳定,生产成本较低。
Casting impeller is a key component which is used for many large equipments, such as ship building, electricity, pharmaceuticals, pump and valves and transportation, etc. And it will play a decisive role in the whole equipment’s integrated performance. A certain difficulty for the complicated impeller’s casting craft still exists in the current production. So on this aspect research has always been a hot topic in the casting Industry. Based on the analysis and research for the large complicated impeller’s casting craft, the present study aims at exploring a kind of melting modules-sand mould composite casting process which is economical and practical, in order to meet specification under the current equipment condition.
     Based on the structure feature of impeller casting, the impeller is divided into two parts: the complex shape leaves and simple shape spoke and wheel hub. On the one hand, for the shape complex leaves, melting modules of single leaves was pressed by pressure type, and the single leaves group then was melted the melting module of the whole leaves by the aid of design. Silicone alternate - silicate glass compounded type shell was made by the paints. After the shell with silicate on the edge of the lamina was made, the whole blade’s melting was moduled by the dewaxing and roasting. On the other hand, for the simple shape’s spoke and hub, the wooden appearance and core box was made according to hub and spoke’s lower and upper end surface including outline size of leaves shell. The simple shape spoke and wheel hub was obtained by silicate glass sand core and riser system design, and the sand mould of composite casting’s riser system was used a same process. Based on the above research, the melting modules-sand mould composite casting was combined by melting modules shell and sand mould casting type. A set of modular sodium silicate sand is made as a benchmark. The ZG1Cr18Ni9Ti stainless steel impeller casting was gotten by batching, induction furnace melting, pouring, oxyacetylene flame shock OFC, and chemical cleaning.
     Through the appearance examination and size measure, the results showed that the sizeaccuracy of casting impeller achieved CT4~CT5, and the roughness achieved Ra3.2~1.6. The study by the key spots coloration seepage and the supersonic crack detection also showed the impeller had no defections such as crack, shrink hole, shrink and mixture. Moreover, the components check and the performance testing indicated this kind of impeller could satisfy the specification in chemical composition and mechanical performance.
     As a conclusion, this kind of impeller’s quality not only meets technical and production need, but also had a stable process and lower production cost.
引文
【1】中国机械工程学会铸造专业学会.铸造工艺[M].北京:机械工业出版社,1993:1-6.
    【2】姜不居.熔模精密铸造[M].北京:机械工业出版社,2004:1-4.
    【3】赵浩峰.现代压力铸造技术[M].北京:中国标准出版社,2003:1-6.
    【4】Nevil Swanson .World Markets for Investment Casting Industry Outlined at Investment Annual Meeting in Orlando[J].INCAST,1999,(1):18-20.
    【5】UBetz etal.Advances in Directional Solidification and Single Crystal Precision Casting Equipmentand Process[J].9th World Conference on Investment Casting San Francisco, 1996,(11):1-11.
    【6】姜不居,吕志刚.国际熔模精密铸造工业[J].铸造技术,2001,22(6):49-52.
    【7】姜不居,吕志刚.我国出口精铸业现状及前景[J].特种铸造及有色合金,2004,(5):60-65.
    【8】М А Рысев,Литейн про-во.铸造方法的选择与评价[J].铸造, 1999,(6):31-33.
    【9】Sart R E.Investment Casting :A World View[J].INCAST,2001, (2):22-25.
    【10】袁红利, 张平发.ZL201 合金叶轮的铸造[J].铸造技术,2003,24(3):182-183.
    【11】高亚龙,高旭光.燃机叶片精密铸造技术研究[J].汽轮机技术,2002,44(4):255-256.
    【12】赵竞翔,闫兴义.不锈钢叶轮的精密铸造[J].特种铸造及有色合金,2004,(3):58-59.
    【13】曹腊梅,李爱兰,盖其东.高温合金整体叶轮铸造技术的研究进展[J].航空材料学报,2005,25(3):35-38.
    【14】王晶.电力机车铝合金叶轮铸造工艺[J].热加工工艺,2000,(3):5-55.
    【15】 J C Gebelin,M R Jolly,S Jones.Process Modeling Research for Investment Casting[J].INCAST, 2000,(11):22-27.
    【16】陈玉平.熔模铸造硅溶胶模壳制造工艺[J].铸造技术,2006,27(2):170-172.
    【17】William Roberts O.Studies Show Ludox SK-R Effective as Ethyl silicate Replacement[J].INCAST,1996,(4):12-14.
    【18】Donald Engelhardt R.A primer on Ceramic Shell Slurry Makeup & Control[J]. INCAST,1995,(3):150-169.
    【19】李子全,吴炳饶.首届中国国际压铸会议[J].特种铸造及有色合金,1997,(4):60-65 .
    【20】李朝霞,刘文辉.铸镁合金叶轮温度场分布的研究[J].铸造,2003,53(6):465-467.
    【21】葛来春,朱佳伟,姚维斌.船用柴油发动机增压器离心叶轮精铸工艺研究[J].特种铸造及有色合金,1996,(3):49-50.
    【22】周波,赵明汉,李原.无余量薄壁叶片的精密铸造[J].生产技术,1999,16(4):17-19.
    【23】汤鑫,于保正.高温合金整体叶轮控晶铸造工艺研究[J].机械工程材料,2004,28(1):19.
    【24】谢成木.熔模精铸钛合金叶轮及其工艺[J].铸造,1985,35(4):49-52.
    【25】张安民.熔模铸造复合芯的研究与应用[J].铸造,1992,42(4):1-6.
    【26】钟惠仙.大型辊流式水轮机转轮制造技术的发展[J].大型铸锻件,1996,(2):37-39.
    【27】梁飞.大型混流式机组不锈钢叶片整体铸造工艺[J].铸造,2001,51(5):810.
    【28】郭春和,陈绪煜.大型铝叶轮的铸造工艺[J].特种铸造及有色合金,2001,(6):45-46.
    【29】李万鹏.高碳低合金耐磨钢叶轮的铸造[J].铸造,2005,54(4):404.
    【30】袁红利,刘善义.油泵叶轮的树脂砂铸造技术[J].铸造技术,2004,25(7):508-509.
    【31】徐 勇.窄流道叶轮铸造工艺改进[J].甘肃科技纵横,2003,32(1):33-34.
    【32】胡友涛,张诚君,马佃森.DC50-80 叶轮铸造工艺的改进[J].铸造,1997,48(10):48-49.
    【33】郑欣.高速鼓风级钛合金叶轮的铸造[J].特种铸造及有色合金,1994,(2):23-24.
    【34】周成和.小排量管道泵叶轮的铸造[J].热加工工艺,1995,(10):54-55.
    【35】汤 鑫,曹腊梅,李爱兰等.高温合金整体叶轮铸造工艺的研究[J].航空材料学报,2005,25(3):57-62.
    【36】赵教育,闵雪涛,雷志稳.酯硬化酚醛树脂在水泵叶轮铸造上的应用[J].热加工工艺,1999,(1):63-64.
    【37】刘善义,李景伟,赵春生.叶轮转盘类铸件的特种工艺铸造[J].铸造技术,1997,17(5):28-30.
    【38】谢丽青,柏开发,谭茂林.石膏芯-金属型铸造高强度铝合金闭式叶轮[J].航空精密铸造技术,1994,30(4):16-17.
    【39】王 晶.SS7 电力机车铝合金叶轮铸造工艺[J].机车车辆工艺,2002, (2):13-15.
    【40】马力升,胡敬文.8sh-9 铜叶轮铸造工艺的改进[J].机械工人,2001,(6):16-17.
    【41】郭春和.采用复合型组芯生产大型叶轮[J].铸造,2003,52(6):478-500.
    【42】甘玉生.影响水玻璃涂料性能的因素[J].铸造,2002,51(10):646-648.
    【43】樊自田.水玻璃砂工艺原理及应用技术[M].北京:机械工业出版社,2004:94-95.
    【44】刘喜俊.铸造工艺学[M].北京:机械工业出版社,1999:37-45 .
    【45】徐庆柏,刘兰俊.铸造涂料的选择与使用[J].造型材料,2004,(2):4-7.
    【46】樊自田.水玻璃砂工艺原理及应用技术[M].北京:机械工业出版社,2004:197-200.
    【47】D B George.Mould and Core Coatings[J].Foundry Trade Journal,1984, (1):25-31.
    【48】陈琦,彭兆弟.铸造合金配料速查手册[M].北京:机械工业出版社,2004:800-816.
    【49】陆梦禹.提高中频炉碱性炉衬的一种方法[J].铸造,1996,45(10):39-40.
    【50】金仲信.提高感应电炉炉衬的措施[J].铸造,1999,48(12):26-28.
    【51】王振东,何纪龙.感应炉熔炼[M].北京:冶金工业出版社,1986:466-504.
    【52】Warren Runestrand.Innovative Cleaning of Intricate Ivestment Castings[J].46th Annual meeting of ICI,1998,(22):1-22.
    【53】贺春华.铸件浇冒口清除方法[J].铸造,1998,47(4):49-52.
    【54】张应立,罗建祥,张梅.金属切割实用技术[M].北京:化学工业出版社,2005:109-110.
    【55】陈琦.铸造工厂的质量管理与质量保证[J].铸造,1993,42(7):35-37.
    【56】国防科技工业无损检测人员资格鉴定与认证培训教材编审委员会编.目视检测[M].北京:化学工业出版社,2005:60-63.
    【57】上海市机械制造工艺研究所主编.金相分析技术[M].上海:上海科学技术文献出版社,1987:443-471.
    【58】国家机械委员会统编.金相检验技术[M].北京:机械工业出版社,1988:356-390.
    【59】戴雅康.金属材料常用力学性能试验方法[M].北京:科学普及出版社,1990:50-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700