线粒体ATP敏感性钾离子通道及活性氧介导七氟醚迟发型脑保护作用机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
临床上常见的严重颅脑外伤手术、控制性降压、颅内动脉瘤夹闭术和冠状动脉旁路移植术以及颈动脉内膜剥脱术等的病人都具有潜在脑缺血的可能。例如:为便于脑动脉瘤手术实施和减少术中出血,常将脑动脉血管短暂夹闭,然而随着受阻血管血流的恢复,往往会导致局部性脑组织缺血/再灌注(ischemic-reperfusion injury,I/R)损伤。而在实际工作中,临床医生不仅关心术中的神经系统的保护,更关心术后神经功能的恢复。探求脑缺血损失的发病机制、减轻脑缺血性损伤、降低脑缺血性疾病的致残率和死亡率,已成为近年来神经科学领域广大工作者致力的研究目标。与脑缺血预处理相似,吸入麻醉药预处理与缺血损伤之间也有短暂的重要联系,包括两个重要时期:预处理早期阶段,即中断预处理刺激后5 min~2 h出现;第二个保护时期,延迟预处理期,出现在预处理刺激停止后12~24 h,并可持续24至72 h。已有研究证实七氟醚具有早期预处理的脑保护效应,在大鼠海马脑片模型中,反复吸入七氟醚(每天一次持续30 min,连续4天)能够诱导迟发型脑保护作用。目前,仍未知单次给予七氟醚是否能够诱导迟发型脑保护效应,值得进一步研究。大量研究证实,线粒体内膜ATP敏感钾通道(mitochondrial ATP-sensitive potassium channels,mitoK_(ATP)),是吸入麻醉药预处理产生心肌保护作用的重要机制之一。而脑组织的mitoK_(ATP)通道蛋白浓度是心肌含量的6~7倍。因此我们有理由推测mitoK_(ATP)通道参与了七氟醚的迟发型脑保护作用。开放后的mitoK_(ATP)通道如何进一步介导脑保护作用?现在认为活性氧(reactive oxygen species,ROS)可能作为一种关键的细胞内信息物质,介导缺血缺氧预处理和mitoK_(ATP)开放剂预处理的心肌及脑保护作用。因此本课题探讨脑遭受缺血再灌注损伤前24 h,单次给予60 min七氟醚预处理是否产生迟发型脑保护效应,以及mitoK_(ATP)通道及ROS的作用。
     本课题首先通过观察缺血后大鼠的神经功能及测定脑梗塞容积百分比,并通过HE染色评定CA1区神经元形态学改变,明确不同浓度的七氟醚对SD大鼠产生迟发型的脑保护作用;其次第二部分通过加入特异性mitoK_(ATP)通道阻断剂及ROS清除剂,观察缺血后大鼠的神经功能及测定脑梗塞容积百分比和缺血侧项叶皮层神经元PKC-ε和-δ两种同功酶的膜转位变化,探讨七氟醚迟发型脑保护作用可能是通过mitoK_(ATP)通道和ROS所介导的,且PKCε和δ是否作为mitoK_(ATP)通道的下游靶点参与了七氟醚迟发型脑保护效应;之后,进一步研究和探讨p38MAPK信号通路可能也为mitoK_(ATP)通道的下游蛋白信号分子,参与了七氟醚诱导迟发型脑保护中的作用;随后,通过检测缺血后胞浆细胞色素C(Cytochrome C,Cyt C)的释放和Caspase-3活性变化,以及TUNEL染色等证实七氟醚迟发型预处理可以通过mitoK_(ATP)通道及ROS介导,抑制缺血再灌注损伤后神经元的凋亡,明确七氟醚迟发型脑保护机制;最后通过用紫外分光光度计测定各组缺血侧皮层神经元线粒体通透转运通道(MPTP)开放程度,Western-blot检测Bcl-2/Bax蛋白表达情况,探讨七氟醚预处理对大鼠局灶性脑缺血再灌注损伤后线粒体通透性转换孔的影响及可能机制,证实了激活和开放mitoK_(ATP)通道在七氟醚抑制MPTP开放发挥迟发型脑保护效应中起到重要作用。结果证实:(1)缺血前24h,短暂的予以2.4%及4.0%的七氟醚预处理可增强大鼠耐受局灶性脑缺血损伤,产生显著的迟发型脑保护效应,但短时间高浓度(4.0%)吸入七氟醚有引起动脉血pH值及MAP降低的趋势。(2)mitoK_(ATP)通道和活性氧介导七氟醚对局灶性脑缺血再灌注损伤的迟发型保护作用,其机制可能与调控PKC-ε转位激活有关,但PKC-ε转位激活仅发生于脑保护的早期相,提示可能有其他的信号通路机制参与七氟醚迟发型脑保护作用。(3)七氟醚可以诱导大脑皮层磷酸化p38MAPK表达的增加,且p38MAPK可能做为线粒体ATP敏感性钾离子通道抗脑缺血再灌注损伤中的下游通路,参与了七氟醚预处理的迟发型脑保护作用。(4)七氟醚通过抑制缺血后细胞色素c释放、Caspase-3的激活以及神经元的凋亡发挥迟发型脑保护作用,其作用可能与线粒体ATP敏感性钾离子通道(mitoK_(ATP))以及活性氧有关。(5)七氟醚预处理能通过激活mitoK_(ATP)通道上调bcl-2蛋白的表达,抑制MPTP开放发挥迟发型脑保护作用。
     总之,脑缺血缺氧所致的神经元损伤并非是单一的病理生理过程,而是一系列复杂的生化级联反应。七氟醚的脑保护作用也并非单一作用于上述的某一环节,而是多位点、多途径、交互作用的结果。
     第一部分七氟醚对大鼠缺血再灌注损伤的迟发型脑保护作用
     目的观察缺血前24 h单次予以2.4%或4.0%的七氟醚(sevoflurane,Sevo)60 min是否产生迟发型的脑保护作用。方法健康SD雄性大鼠60只,体重250~280 g,随机分为4组:假手术组(S组),单纯缺血再灌注组(IR组),2.4%七氟醚组(Sevol组),4.0%七氟醚组(Sevo2组)。七氟醚预处理组在制备MCAO模型前24h,吸入浓度为2.4%或4.0%七氟醚+氧气60 min;而S组和IR组在制备MCAO模型前24 h,吸入浓度为100%氧气60 min。24 h后用10%水合氯醛(300~350mg/kg)麻醉大鼠后,分离右颈总动脉、颈内动脉和颈外动脉,结扎颈外动脉和颈总动脉近端,经颈总动脉向颈内动脉插入栓线,放置到大脑前动脉起始部,阻断大脑中动脉。S组只分离血管,不阻断大脑中动脉的血流。缺血2 h,再灌注6,24,72 h后,用神经功能缺陷评分观察动物神经行为学改变、TTC染色法测大鼠脑梗死容积百分比。额外取12只雄性成年SD大鼠随机分为IR组,Sevo1组,Sevo2组。均用4.0%七氟醚(氧流量4.0 L/min)动物麻醉面罩吸入诱导麻醉,2.4%七氟醚(氧流量1.5~2.0 L/min)面罩持续吸入维持麻醉深度。分离、暴露右侧股动脉,动脉置管后缝合局部皮肤。停用七氟醚,待大鼠清醒后,放入七氟醚麻醉预处理箱内,接好持续动脉测压,体温测量装置。Sevo1组,Sevo2组通过麻醉气体挥发罐持续输入含有2.4%或4.0%七氟醚的O_2(4L/min),而IR组持续输入100%的纯氧。三组大鼠均保留自主呼吸。在七氟醚或氧气预处理前5 min以及结束时抽取动脉血检测动脉血气、血糖并记录平均动脉压(MAP),心率(HR),体温(T)等参数。结果IR组缺血2 h,再灌注6,24,72 h后,神经功能缺陷评分分别为4(2~6),4(3~6)及4(3~6),脑梗死容积百分比分别为22.6±4.0%,33.7±4.3%,31.1±3.4%。与IR组相比,缺血2 h,再灌注6,24,72h后,Sevo1组和Sevo2组均明显改善神经功能及显著减少脑梗死面积(P<0.05),神经功能缺陷评分Sevo1组分别为2(1~5),3(1~4),3(2~5),Sevo2组分别为2(1~4),3(2~4),3(1~5)。脑梗死容积百分比Sevo1组分别为:14.3±3.5%,23.4±4.7%,25.7±3.0%;Sevo2组分别为:15.6±4.5%,23.8±3.7%,27.1±4.0%。但Sevo1组与Sevo2组之间神经功能缺陷评分及脑梗死容积差异无统计学意义(P>0.05)。与IR组相比较,Sevo1组,pH值,动脉血二氧化碳分压(PaCO_2),动脉血氧分压(PaO_2),血糖(BS)以及血流动力学参数(MAP,HR),体温(T)均无显著差异;但Sevo2组pH值较IR组及Sevo1组有所降低,差异有统计学意义。结论缺血前24 h,短暂的七氟醚预处理可增强大鼠耐受局灶性脑缺血损伤,产生显著的迟发型脑保护效应。短时间高浓度吸入七氟醚有引起动脉血pH值及MAP降低的趋势。
     第二部分PKCε参与七氟醚预处理诱导的迟发型脑保护作用及mitoK_(ATP)通道和ROS的影响
     目的探讨七氟醚预处理对大鼠局灶性缺血再灌注损伤的迟发型脑保护作用和对PKC-ε,δ转位激活的影响以及与mitoK_(ATP)通道和活性氧(ROS)生成的关系。方法健康雄性SD大鼠,体质量220~300 g,采用线栓法制备大鼠局灶性脑缺血模型(middle cerebral arteryocclusion,MCAO)并随机分为7组:假手术组(S组)、缺血再灌注组(I/R组)、七氟醚预处理组(Sevo组)、mitoK_(ATP)通道阻断剂5-羟葵酸盐(5-HD)+七氟醚(5-HD+Sevo组)、ROS清除剂2-硫基丙酰氨基乙酸(2-MPG)+七氟醚(MPG+Sevo组)和单纯5-HD组及MPG组。除假手术组外,其余各组大鼠阻闭右侧大脑中动脉2 h,再灌注6,24和72 h。假手术组(S);缺血再灌注组(I/R):吸入100%纯氧60min,24 h后行大脑中动脉阻闭(MCAO),缺血2 h,再灌注6,24,和72 h;七氟醚组(Sevo):制备MCAO模型前24 h,吸入浓度为2.4%七氟醚+97.6%氧气60 min;5-HD+Sevo组:七氟醚预处理之前30 min,腹腔内注射mitoK_(ATP)通道阻断剂5-羟葵酸盐(5-HD)40mg/kg,余同七氟醚组;MPG+七氟醚组(MPG+Sevo):七氟醚预处理之前30 min,经尾静脉予以ROS清除剂MPG 20 mg/kg,余同七氟醚组;单纯5-HD组:吸入氧气前30 min,腹腔内注射mitoK_(ATP)通道阻断剂5-羟葵酸盐(5-HD)40 mg/kg,余同I/R组;单纯MPG组(MPG):吸入氧气前30 min,尾静脉给予MPG 20 mg/kg,余同I/R组。缺血2h,再灌注6,24和72 h后进行神经功能缺陷评分(NDS)并取脑组织,运用TTC染色测算脑梗死容积百分比,再灌注6,24 h后运用Western-Blot法测定PKC-ε,δ膜转位水平。结果I/R组相比,七氟醚能明显改善缺血后的神经功能,减小脑梗死面积,而发挥迟发型脑保护作用(P<0.05),七氟醚预处理前30 min腹腔内注射mitoK_(ATP)通道阻断剂5-羟葵酸盐(5-HD)(40 mg/kg)或尾静脉给予ROS清除剂2-硫基丙酰氨基乙酸(2-MPG)(20 mg/kg)能拮抗七氟醚迟发型脑保护效应(P<0.05),单独使用5-HD及MPG则无明显影响(P>0.05)。I/R组,MPG+Sevo组,MPG组之间脑梗死容积以及神经功能评分差异无统计学意义(P>0.05)。此外,与I/R组相比,七氟醚显著促进PKC-ε,而非PKC-δ的膜转位激活,且仅发生于再灌注后6 h(P<0.05),七氟醚的此效应同样可以被mitoK_(ATP)通道阻断剂5-羟葵酸盐(5-HD)或ROS清除剂2-MPG所废止。结论mitoK_(ATP)通道和活性氧介导七氟醚对局灶性脑缺血再灌注损伤的迟发型保护作用,其机制可能与调控PKC-ε转位激活有关。
     第三部分p38MAPK参与七氟醚预处理迟发型脑保护效应及线粒体ATP敏感性钾离子通道的作用
     目的研究七氟醚迟发型预处理对大鼠皮层脑组织p38蛋白磷酸化激活的影响以及线粒体ATP敏感性钾离子通道的作用。方法实验分两部分,A)40只SD实验大鼠结束七氟醚预处理前0 h及七氟醚预处理后2 h、6 h、12 h、24 h、3 d,7d通过Western-bolt法检测p-p38MAPK表达情况;B)50只SD大鼠随机分为6组:缺血再灌注组(I/R)、七氟醚组(Sevo)、5-HD+七氟醚组(5-HD+Sevo)、SB 203580+七氟醚组、单纯SB 203580(SB)和单纯5-HD组(5-HD)。缺血2 h,再灌注24后进行神经行为学评分,TTC法检测脑梗死容积百分比以及Western-bolt法检测缺血侧顶叶皮层神经元磷酸化p38MAPK(p-p38MAPK)的水平。结果A):与对照组(七氟醚预处理前,即0 h)相比较,吸入七氟醚后2 h,p38MAPK磷酸化(p-p38MARK)明显增加,随着再灌注时间延长,p-p38MARK表达也逐渐增强,于再灌注后24 h达到高峰,并可至少持续3 d,再灌注7 d后基本回落至初始水平。B)与I/R组相比较,七氟醚预处理组能显著改善大鼠缺血后神经功能和明显减小脑梗死面积,但是七氟醚预处理前使用5-HD及SB203580干预,可以取消七氟醚预处理的脑保护作用。而与I/R组相比较,单独使用5-HD及SB203580对实验结果无明显影响。结论七氟醚可以诱导大脑皮层磷酸化p38MAPK表达的增加,且p38MAPK可能做为线粒体ATP敏感性钾离子通道抗脑缺血再灌注损伤中的下游通路,参与了七氟醚预处理的迟发型脑保护作用。
     第四部分七氟醚预处理对局灶性脑缺血再灌注损伤神经元凋亡的影响及机制
     目的探讨七氟醚预处理对局灶性脑缺血再灌注损伤后神经元凋亡、Caspase-3激活以及细胞色素c释放的影响。方法利用MACO法建立大鼠局灶性脑缺血模型,以酶活性测定、Western Blot免疫组化和TUNEL法对Caspase-3活性变化和激活、细胞色素c释放以及神经元凋亡进行规律性观察。结果缺血2 h,再灌注6,24,72 h后,假手术组(Sham)胞浆未见明显的细胞色素C释放及活性Caspase-3。与Sham组相比较,缺血再灌注组(I/R)细胞色素C胞浆释放及活性Caspase-3明显增加。与I/R组相比较,七氟醚预处理显著减少细胞色素C的胞浆释放及活性Caspase-3增加。七氟醚预处理前给与线粒体ATP敏感性钾离子通道(mitoK_(ATP))抑制剂5-HD以及活性氧(ROS)清除剂2-MPG,可以废除七氟醚抑制细胞色素C释放及活性Caspase-3增加的效应(P<0.05),但与I/R组相比较,单纯给与5-HD及2-MPG,对缺血后各时点细胞色素C的胞浆释放无明显影响。缺血2 h,再灌注24 h后使用TUNEL法检测凋亡神经元显示,与I/R组相比,七氟醚能明显减少缺血后神经元的凋亡,同样线粒体ATP敏感性钾离子通道(mitoK_(ATP))抑制剂5-HD以及活性氧(ROS)清除剂2-MPG,可以废除七氟醚抑制神经元凋亡的效应。
     结论七氟醚通过抑制缺血后细胞色素c释放、Caspase-3的激活以及神经元的凋亡发挥迟发型脑保护作用,其作用可能与线粒体ATP敏感性钾离子通道(mitoK_(ATP))以及活性氧有关。
     第五部分七氟醚预处理对大鼠局灶性脑缺血再灌注损伤后线粒体通透性转换孔的影响
     目的探讨七氟醚预处理对大鼠局灶性脑缺血再灌注损伤后线粒体通透性转换孔的影响及可能机制。方法雄性SD大鼠随机分为5组:假手术组(Sham组);缺血损伤组(I/R组):吸入纯氧60 min,24h后行大脑中动脉阻塞2 h,再灌注24 h造成局灶性脑缺血再灌注;七氟醚预处理组(Sevo组):缺血前24 h吸入2.4%七氟醚60 min;5-HD+Sevo组:腹腔内注射5-HD 40 mg/kg,30 min后同Sevo组。5-HD组:腹腔内注射5-HD 40 mg/kg,30 min后同I/R组,用紫外分光光度计测定各组缺血侧皮层神经元线粒体通透转运通道(MPTP)开放程度,Western-blot检测Bcl-2/Bax蛋白表达情况。结果I/R组线粒体(_(max) A_(520)—_(min) A_(520))呈现快速下降,且比假手术组更为显著(P<0.05);与I/R组相比较,七氟醚预处理组(Sevo)能缓解Ca~(2+)诱导的(_(max)A_(520)—_(min)A_(520))的下降(P<0.05);但七氟醚预处理前腹腔内注射线粒体ATP敏感性钾离子通道特异性抑制剂5-HD 40mg/kg,可取消七氟醚的此作用,而单独使用5-HD则无影响。同样,与I/R组比较,七氟醚可明显增加bcl-2蛋白表达(P<0.05);七氟醚预处理前使用5-HD,可以取消七氟醚增加bcl-2蛋白表达的效应(P<0.05);除假手术组外,各组间Bax的表达差异无统计学意义。结论七氟醚预处理能通过激活mitoK_(ATP)通道上调bcl-2蛋白的表达,抑制MPTP开放发挥迟发型脑保护作用
PartⅠ:The delayed neuroprotection induced by sevoflurane following focal cerebral ischemia-reperfusion
     Objective To investigate the delayed protective effects of 2.4%and 4.0%sevoflurane inducing 24 h before focal cerebral ischemia-reperfusion injury in rats.Methods Adult male Sprague-Dawley rats(250~280 g) were randomly assigned into four groups:Sham,Ischemia-reperfusion(I/R),2.5%Sevoflurane(Sevol), 4.0%Sevoflurane(Sevo2) groups,and subjected to right middle cerebral artery occlusion(MCAO) for two hours expect sham group.Sevoflurane preconditioning was induced 24 h before brain ischemia by exposing the animals to 2.4%or 4.0%sevoflurane + oxygen for 60 min.In the Sham, I/R:animal were exposed to 100%oxygen 60 min at 24h before MCAO. Neurological deficit scores and brain infarct volumes were evaluated 6, 24 and 72 h,respectively after reperfusion.In a separate experiment,we measured the physiological variables in twelve additional rats weighing 220 to 280g during oxygen or sevoflurane treatment.The animals were randomly assigned into one of three groups(n=4 each): Ischemia-reperfusion(I/R),2.4%sevoflurane(Sevol),4.0%sevoflurane (Sevo2).Anesthesia was induced with 4%sevoflurane and was maintained with 2.4%sevoflurane delivered by a mask.The right femoral artery was cannulated for continuous monitoring of blood pressure and for arterial blood sampling.A rectal probe was inserted to monitor core temperature.Then the animals were put into the container for oxygen or sevoflurane treatment(100%oxygen,2.4%or 4.0%sevoflurane in oxygen for one hour).Arterial blood gases and plasma glucose were measured five minutes before sevoflurane treatment and at the end of the treatments.Result Animals in the Sevol and Sevo2 groups developed smaller brain infarct volumes than I/R group after 2 h of MCAO followed by 6,24 and 72 h reperfusion,respectively.Neurological deficit scores were also significantly improved in rats pretreated with sevoflurane.No differences were found in rectal temperature,mean arterial blood pressure, arterial pH,PaCO_2,PaO_2,and blood glucose levels during treatment with oxygen or 2.4%sevoflurane.However,mean arterial blood pressure and arterial pH decreased and PaCO_2 increased in Sevo 2 group,compared with I/R and Sevol groups.Concision Sevoflurane could induce the delayed neuroprotection against cerebral ischemia-reperfusion injury. However,blood gas alterations and arterial hypotension might have been present during 4.0%sevoflurane exposure.
     PartⅡ:Sevoflurane delayed preconditioning stimulated PKCεcellular translocation through mitochondrial ATP-sensitive potassium channel and reactive oxygen species
     Objective This study tested inhaled sevofiurane is capable of producing a delayed neuroprotection and investigated the effect of sevoflurane on the cellular translocation of PKCεandδand identified mitoK_(ATP) channel and ROS as mediators in this neuroprotection. Methods One hundred and fourty healthy adult male Sprague-Dawley rats weighing 220~300 g were randomly assigned into seven groups: Sham,Ischemia-reperfusion(I/R),Sevoflurane(Sevo),5-Hydroxydecanoate (5-HD,a selective antagonist for mitoK_(ATP) channel) + sevoflurane (5-HD+Sevo),2-mercaptopropionylglycine(2-MPG,a selective ROS scavenger) + sevoflurane(MPG+Sevo),5-HD and MPG groups,and subjected to right middle cerebral artery occlusion(MCAO) for two hours expect sham group.Sevoflurane preconditioning was induced 24 h before brain ischemia in sevoflurane,5-HD+Sevo and MPG+Sevo groups by exposing the animals to 2.4%sevoflurane + 97.6%oxygen for 60 min.In the Sham,I/R,5-HD and MPG groups:animals were exposed to 100% oxygen 60 min at 24 h before MCAO.A selective ROS scavenger, 2-mercaptopropionylglycine(20mg/kg,i.v.) or a selective antagonist for mitoK_(ATP) channel,5-HD(40 mg/kg,i.p.) was administrated 30 min before sevoflurane/oxygen exposure in the MPG+Sevo,MPG groups and 5-HD+Sevo,5-HD groups to evaluated the role of ROS and mitoK_(ATP) channel on sevoflurane late preconditioning.Neurological deficit scores (NDS) and infarct volumes were evaluated 6,24 and 72 hours of reperfusion after 2-hour MCAO,respectively.Cellular translocation of PKC-εand -δalso was determined by western-blot analysis at 6 and 24 hours after reperfusion.Results:Animals in the sevoflurane group developed lower neurological deficit scores and smaller brain infarct volumes than I/R group(P<0.05).This protection was reversed by administration of 5-HD and 2-MPG,but no distinguished difference among I/R,5-HD and MPG groups(P>0.05).Compared with the I/R group,PKC-ε,not PKC-δ,was activated and translocated to the membrane fraction only at 6 h but not 24 h after reperfusion,induced by sevoflurane late preconditioning(P<0.05),and this effect was also abolished by 5-HD and 2-MPG.Conclusion:Delayed neuroprotection of sevoflurane is mediated by mitoK_(ATP) channel and ROS.Furthermore, PKC-εactivation probably occurs downstream of mitoK_(ATP) channel and ROS in the sevoflurane late preconditioning signaling cascade.
     PartⅢ:Sevoflurane preconditioning induces a time-dependent change in the phosphorylated p38 and the role of mitochondrial K_(ATP) -sensitive channel
     Objective To investigate the effect of sevoflurane late preconditioning to the phosphorylated p38 in the cerebral cortex of the rats and to observe the role of mitochondrial K_(ATP)-Sensitive channel. Methods This experiment was invidided into two parts:A and B.A):The samples were taken at the points of 0,2,6,12,24,72 h and 3 d after sevoflurane exposure and the expression of the phosphorylated p38 were measured with Western-bolt.B):50 healthy adult male Sprague-Dawley rats weighing 220~300 g were randomly assigned into six groups: Ischemia-reperfusion(I/R),Sevoflurane(Sevo),5-Hydroxydecanoate (5-HD,a selective antagonist for mitoK_(ATP) channel) + sevoflurane (5-HD+Sevo),SB203580(a p38MAPK inhibitor) + sevoflurane (SB+Sevo),5-HD and SB groups,and subjected to right middle cerebral artery occlusion(MCAO) for two hours.Sevoflurane preconditioning was induced 24 h before brain ischemia in sevoflurane,5-HD+Sevo and SB+Sevo groups by exposing the animals to 2.4%sevoflurane + 97.6% oxygen for 60 min.In the I/R,5-HD and SB groups:animals were exposed to 100%oxygen 60 min at 24 h before MCAO.A selective p38MAPK inhibitor,SB203580(0.2mg/kg,i.p.) or a selective antagonist for mitoK_(ATP) channel,5-HD(40 mg/kg,i.p.) was administrated 30 min before sevoflurane/oxygen exposure in the SB+Sevo,SB groups and 5-HD+Sevo,5-HD groups to evaluated the role of p38MAPK and mitoK_(ATP) channel on sevoflurane late preconditioning.Neurological deficit scores(NDS) and infarct volumes were evaluated 24 hours of reperfusion after 2-hour MCAO.Phosphorylated p38 also was determined by western-blot analysis at 24 hours after reperfusion.Result We found that cerebral necortex of SD rats,after being exposure to 2.4% sevoflurane for 60 min,had a higher level of the phosphorylated p38MAPK than that of control rats.This increase in the active p38MAPK was statistically significant at 2 h after sevoflurane exposure,and peaked at 24 h after the exposure,and lasted for 3 d at least.In the part B, although SB203580 and 5-HD(alone or 30 min before the sevoflurane exposure) did not affect the neurological deficit scores or brain infarct sizes compared with those of MCAO,it abolished the sevoflurane preconditioning-induced neuroprotection.Moreover,the amount of the phosphorylated p38 was decreased in the 5-HD +Sevo and SB+Sevo group,suggesting that p38MARK may be a downstream target of mitoK_(ATP) channel and pay a critical for sevoflurane late preconditioning-induced neuroprotection.Conclusion Sevoflurane preconditioning may improve delayed neuroprotection after focal brain ischemia and that effects may be mediated by mitoK_(ATP) channel and its downstream target- p3 8MARK.
     PartⅣ:Effect of sevoflurane preconditioning on neuronal apoptosis after cerebral ischemic reperfusion in rats
     Object T o study the effect of sevoflurane on neuronal apoptosis, Cyt C and caspase-3 protein expression after focal cerebral ischemia in rats,and to disclose the mechanism of neuroprotection by sevoflurane late preconditioning.Methods One hundred and fourty healthy adult male Sprague-Dawley rats weighing 220~300 g were randomly assigned into seven groups:Sham,Ischemia-reperfusion(I/R),Sevoflurane(Sevo), 5-Hydroxydecanoate(5-HD,a selective antagonist for mitoK_(ATP) channel) + sevoflurane(5-HD+Sevo),2-mercaptopropionylglycine(2-MPG,a selective ROS scavenger) + sevoflurane(MPG+Sevo),5-HD and MPG groups,and subjected to right middle cerebral artery occlusion(MCAO) for two hours expect sham group.Sevoflurane preconditioning was induced 24 h before brain ischemia.After survival period of 6h,24 h and 3d,the rats were anesthetized and the brains were removed.Cyt C release and caspase-3 activation were determined by an enzyme activity assay, immunohistological staining and Western blot.Apoptosis was also determined by terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end-labeling(TUNEL) staining after 24 h reperfusion among groups.Result Se voflurane preconditioning reduced the release of cytochrome c and the activation of caspase-3 in the penumbra,compared with I/R group,after survival period of 6 h,24 h and 3d.This protection was reversed by administration of 5-HD and 2-MPG,but no distinguished difference among I/R,5-HD and MPG groups.TUNEL-positive cells were observed 24 h after reperfusion in cortex and striatum respectively.Sevoflurane reduced the number of TUNEL-positive cells,and this effect was also abolished by 5-HD and 2-MPG.Conclusion Sevoflurane play a neuroprotective role by inhibiting the neuronal apoptosis and the release of cytochrome c and the activation caspase-3,which were induced by cerebral ischemia reperfusion injury.The delayed neuroprotection of sevoflurane may be mediated by mitoK_(ATP) channel and ROS.
     PartⅤ:The delayed neuroprotection of sevoflurane preconditioning by activating the mitochondtial ATP-sensitive K~+ channel is mediated by inhibiting the mitochondrial permeability transition pore
     Object In order to further explore the sevoflurane-induced delayed neuroprotective mechanisms by which activation of mitochondtial ATP-sensitive K~+ channel,we investigate the role of mitochondrial permeability transition pore(MPTP) in in vivo models.Methods Male Sprague-Dawley rats weighing 220~300 g were randomly assigned into five groups:Ischemia-reperfusion(I/R),Sevoflurane(Sevo), 5-Hydroxydecanoate(5-HD,a selective antagonist for mitoK_(ATP) channel) + sevoflurane(5-HD+Sevo),5-HD and subjected to right middle cerebral artery occlusion(MCAO) for two hours followed by reperfusion 24 h. Sevoflurane preconditioning was induced 24 h before brain ischemia in sevoflurane,5-HD+Sevo and by exposing the animals to 2.4% sevoflurane + 97.6%oxygen for 60 min.A selective antagonist for mitoK_(ATP) channel,5-HD(40 mg/kg,i.p.) was administrated 30 min before sevoflurane/oxygen exposure in the 5-HD+Sevo and 5-HD groups to evaluate the role of mitoK_(ATP) channel on sevoflurane late preconditioning.Spectrophotometry was used to determine the effect of the mitochondrial ATP-sensitive potassium channel agonists on the swelling of ischemic brain mitochondria and the expression of Bcl-2/Bax were determined by Western blot,respectively.Result Compared with I/R group,sevoflurane could inhibit the decrease of calcium induced mitochondrial absorbance at 520 nm(A520),which were blocked by 5-HD.Sevoflurane could still upregulate the expression of Bcl-2,but had no effect of Bax,which were also blocked by 5-HD.Conclusion Sevoflurane could probably inhibit the mitochondrial permeability transition via activation of mitochondrial ATP sensitive potassium channel and upregulation Bcl-2 expression.
引文
[1] Engelhard K, Werner C, Reeker W, et al. Desflurane and isoflurane improve neurological outcome after incomplete cerebral ischaemia in rats. [J]. Br J Anesth 1999, 83:415-421.
    [2] Wang J, Lei B, Popp S, et al. Sevoflurane immediate preconditioning alters hypoxic membrane potential changes in rat hippocampal slices and improves recovery of CA1 pyramidal cells after hypoxia and global cerebral ischemia. [J]. Neuroscience 2007; 145:1097-1107.
    [3] L Xiong, Y Zheng, M Wu , et al. Preconditioning with isoflurane produces dose-dependent neuroprotection via activation of mitochondrial adenosine triphosphate dependent potassium channels after focal cerebral ischemia in rats. [J]. Anesth Analg 2003; 96:233-237.
    [4] Kapinya KJ , L(?)wl D , F(?)tterer C , et al . Tolerance against ischemic neuronal injury can be induced by volatile anesthetics and is inducible NO synthase dependent. [J]. Stroke 2002; 33:1889-1898.
    [5] Lutz M, Liu H, Inhaled sevoflurane produces better delayed myocardial protection at 48 versus 24 hours after exposure. [J]. Anesth Analg 2006; 102: 984-90.
    [6] Mayanagi K , Gaspar T, Katakan PV, et al. Systemic administration of diazoxide induces delayed preconditioning against transient focal cerebral ischemia in rats. [J]. Brain Research 2007; 1168: 106-111.
    [7] Mayanagi K , G(?)sp(?)r T, Katakan PV, et al. The mitochondrial K(ATP) channel opener BMS-191095 reduces neuronal damage after transient focal cerebral ischemia in rats. [J]. J Cereb Blood Flow Metab 2007; 27: 348-355.
    [8] Payne RS, Akca O, Roewer N, et al. Sevoflurane-induced preconditioning protects against cerebral ischemic neuronal damage in rats. Brain Res 2005; 1034:147-152.
    [9] Toner CC, Connelly K, Whelpton R, et al. Effects of sevoflurane on dopamine, glutamate and aspartate release in an in vitro model of cerebral ischemia. [J]. Br JAnaesth 2001; 86:550-554.
    [10] Warner DS, McFarlane C, Todd MM, et al. Sevoflurane and halothane reduce focal ischemic brain damage in the rat: possible influence on thermoregulation. [J]. Anesthesiology, 1993, 79: 985-992.
    [11] Kehl F, Payne RS, Poewer N, Schurr A, Sevoflurane-induced preconditioning of rat brain in vitro and the role of KATP channels. [J]. Brain Res 2004; 102(1):76-81.
    [12] Liu Y, Xiong L , Chen S, et al. Isoflurane tolerance against focal cerebral ischemia is attenuated by adenosine A1 receptor antagonists. [J]. Can J Anaesth. 2006,53,194-201.
    [13] L, Xiong., Y, Zheng., M, Wu., et al. Preconditioning with isoflurane produces dose-dependent neuroprotection via activation of mitochondrial adenosine triphosphate dependent potassium channels after focal cerebral ischemia in rats. [J]. Anesth Analg. 2003,96,233-237.
    [14] Zheng S, Zuo Z, 2004. Isoflurane preconditioning induces neuroprotection against ischemia via activation of p38 mitogen-activated protein kinas. Mol Pharmacol. 65, 1172-1180.
    [15] Matei G, Pavlik R, McCadden T, et al. Sevoflurane improves electrophysiological recovery of rat hippocampal slice CA1 pyramidal neurons after hypoxia. [J]. JNeurosurg Anesthesiol 2002; 14: 293-298.
    [16] Wise-Faberowski L, Raizada MK, Summers C. Desllurane andsevotlurane attenuate oxygen and glucose deprivation-induced neuronal cell death. [J]. J Neurosurg Anesthesiol 2003; 15:193-199.
    [17] Moe MC, Berg-Johnsen J, Larsen GA, et al. Sevoflurane reduces synaptic glutamate release in human sunaptosomes. [J]. J. Neurosurg Anesthesiol, 2002, 14:180-186.
    [18] Vinje ML, Moe MC, Valo ET, et al. The effect of sevoflurane on glutamate release and uptake in rat cerebrocortical presynaptic terminals. [J].Acta Anaesthesiol Scand, 2002,46: 103-108.
    [19] Miyazaki H, Nakamura Y, Arai T, et al. Increase of glutmate uptake in astrocytes: a possible mechanism of action of volatile anesthetics. [J]. Anesthesiology, 1997, 86:1359-1366.
    [20] Lutz M, Liu H, Inhaled sevoflurane produces better delayed myocardial protection at 48 versus 24 hours after exposure. [J]. Anesth Analg 2006; 102: 984-990.
    [21] Chiari PC , Pagel PS , Tanaka K , et al. Intraveous emulsified halogenated anesthetics produce acute and delayed preconditiojning against myocardium infraction in rabbits. [J]. Anesthesiology 2004; 101:1160-1166.
    [22] Kudo M, Aono M, Lee Y, et al. Effects of volatile anesthetics on N-methyl_D-aspartate excitotoxicity in primary rat neuronal-glial cultures. [J]. Anesthesiology 2001; 95:756-765.
    [23] Canas PT, Velly LJ, Labrande CN, et al. Sevoflurane protects rat mixed cerebrocortical neuronal-glial cell cultures against transient oxygen-glucose deprivation: involvement of glutamate uptake and reactive oxygen species. [J]. Anesthesiology 2006; 105:990-998.
    [24] Wang ZP, Zhang ZH, Zeng YM, et al. Protective effect of sevoflurane preconditioning on oxygen and glucose deprivation injury in rat hippocampal slices: the role of mitochondrial Katp channels. [J]. Acta Physiologica Sinica 2006; 58:201-206.
    [25] Wise-Faberowski L, Raizada MK, Sumners C. Desflurane and sevoflurane attenuate oxygen and glucose deprivation - induced neuronal cell death. [J] J Neurosurg Anesthesiol 2003; 15:193-199.
    [26] Cope DK, Impastato WK, Cohen MV, Downey JM. Volatile anesthetics protect the ischemic rabbit myocardium from infarction. [J]. Anesthesiology 1997; 86: 699-709.
    [27] Zhao P, Zuo Z. Isoflurane preconditioning induces neuroprotection that is inducible nitric oxide synthase-dependent in neonatal rats. [J]. Anesthesiology 2004; 101: 695-703.
    [28] Mayanagi K , Gaspar T, Katakan PV, et al. Systemic administration of diazoxide induces delayed preconditioning against transient focal cerebral ischemia in rats. [J]. Brain Research 2007; 1168: 106-111.
    [1] Ishida T, Yarimizu K, Gute DC, et al. Mechanisms of ischemic preconditioning. [J]. Shock, 1997, 8: 86-94.
    [2] Li, L., Peng, L, Zuo., Z. Isoflurane preconditioning increase B-cell lymphoma-2 expression and reduces cytochrome c release from the mitochondria in the ischemic penumbra of rat brain. [J]. Eur J Pharmacol. 2008,586:106-113.
    [3] Kapinya, K.J., Lowl, D. , Fiitterer, C., et al . Tolerance against ischemic neuronal injury can be induced by volatile anesthetics and is inducible NO synthase dependent. [J]. Stroke. 2002,33,1889-1898.
    [4] Kaneko T, Yokoyama K, Makita K, Late preconditioning with isoflurane in cultured rat cortical neurons. [J]. Br J Anesth. 2005,95,662-668.
    [5] Skaper SD, Facci L, Strijbos PJ, et al. Neuronal protein kinase signaling cascdes and excitotoxic cell death. [J]. Ann N Y Acad Sci, 2001, 939: 11-22.
    [6] DasA, OckailiR, Salloum F, et al. Protein kinaseC plays an essential role in sildenafil-induced cardioprotection in rabbits. [J].Am J Physiol Heart Circ Physiol, 2004,286: H1455-H1460.
    [7] Niu CC, Li JF, Cui XY, et al. Changes in cPKC isoform-specific membrane translocation and protein expression in the brain of hypoxic preconditioned mice. [J]. Neurosci Lett 2005, 384:1-6.
    [8] Fujiki M, Hikawa T, Abe T, et al. Role of protein kinase C in neuroprotective effect of geranylgeranylacetone, a noninvasive inducing agent of heat shock protein, on delayed neuronal death caused by transient ischemia in rats. [J]. J Neurotrauma 2006; 23:1164-78.
    [9] Kis B, Nagy K, Snipes JA, et al. The mitochondrial K-ATP channel opener BMS-191095 induces neuronal preconditioning. [J]. Neuroreport 2004; 15:345-9.
    [10]XuanYT,GuoY, Zhu Y, et al. Role of the protein kinase C-epsilon-Raf-1-MEK-1/2-p44/42 MAPK signaling cascade in the activation of signal transduction and activators of transcription 1 and 3 and induction of cyclooxygenase-2 after ischemic preconditioning. [J]. Circulation , 2005, 112: 1971-1978.
    [11] Rajapakse N, Shimizu K, Kis B, et al. Activation of mitochondrial ATP-sensitive potassium channels prevents neuronal cell death after ischemia in neonatal rats. [J]. Neurosci Lett, 2002, 327:208-212.
    [12]Pomerantz BJ, Robinson TN, Morrell TD, et al. Selective mitochondrial adenosine triphosphate-sensitive potassium channel activation is sufficient to precondition human myocardium. [J]. J Thorac Cardiovasc Surg, 2000, 120:387-392.
    [13]Hu H, Sato T, Seharaseyon Jet al.Pharmacological and histochemical distinctions between molecularly defined sarcolemmal Katp channels and native cardiac mitochondrial KATP channels.[J]. Molecular Pharmacology, 1999; 55: 1000-1005.
    [14]Bajgar R, Seetharamans, Alicia J, et al. Identification and properties of a novel intracellular (mitochondrial) ATP sensitive potassium channel in brain. [J]. J Biolo Chem, 2001,276: 33369-33374.
    [15]Garlid KD, Santos PD, Xie DJ, et al. Mitochondrial potassium transport: the role of the mitochondrial ATP sensitive K+ channels in cardiac function and cardioprotection. [J]. Biochem Biophys Acta, 2003,1606:1-21.
    [16]L, Xiong., Y, Zheng., M, Wu., et al. Preconditioning with isoflurane produces dose-dependent neuroprotection via activation of mitochondrial adenosine triphosphate dependent potassium channels after focal cerebral ischemia in rats. [J]. Anesth Analg. 2003, 96, 233-237.
    [17] Liu Y, Xiong L , Chen S, et al. Isoflurane tolerance against focal cerebral ischemia is attenuated by adenosine A1 receptor antagonists. [J]. Can J Anaesth. 2006, 53, 194-201.
    [18]Zheng, S., Zuo, Z., Isoflurane preconditioning induces neuroprotection against ischemia via activation of p38 mitogen-activated protein kinas. [J]. Mol Pharmacol. 2004, 65, 1172-1180.
    [19]Moe MC, Berg-Johnsen J, Larsen GA, et al. The effect of isoflurane and sevoflurane on cerebrocortical presynaptic Ca2+ and protein kinase C activity. JNeurosurg. [J]. Anesthesiol. 2003; 15: 209-214.
    [20]Hasegawa J, Takekoshi S, Nagata H, et al. 2006. Sevoflurane stimulates MAP kinase signal transduction through the activation of PKCa and βⅡ in fetal rat cerebral cortex cultured neuron. [J]. Acta Histochem. Cytochem. 39, 163-172.
    [21]Chu XY, Xue QS, Yu BW, et al. Protective effect of sevoflurane aganist focial cerebral ischemic reperfusion injury in rats. [J]. Chin J Anesthesiol, 2006, 26:65-68.
    [22]Novalija E, Kevin LG, Camara AK, et al. Reactive oxygen species precede theεisoform of protein kinase C in the anesthetic preconditioning signaling cascade. [J]. Anesthesiology, 2003; 99: 421-428.
    [23] Ping P, Zhang J, QiuY, etal. Ischemic preconditioning induces selective translocation ofprotein kinase C isoforms£andr|in the heart of conscious rabbitswithout subcellular redistribution of total proteinkinase C activity. [J].CircRes, 1997,81:404-414.
    [24] Wang J, Bright R, Mochlly-Rosen D, et al. Cell-specific role foreand β Ⅰ -protein kinase C isozymes in protecting cortical neurons and astrocytes from ischemia-like injury. [J]. Neuropharmacol, 2004,47: 136-145.
    [25] Schechtman D, Craske ML, Kheifets V, et al. A critical intramolecular interaction for protein kinaseC-e translocation. [J].J Biol Chem, 2004, 279: 15831-15840.
    [26] Ping P, Zhang J, Cao X, et al. PKC-dependent activation of p44 /p42 MAPKs during myocardial ischemia-reperfusion in conscious rabbits. [J]. Am J Physiol Heart Circ Physiol,1999,276:H1468-H1481.
    [27]Xuan YT, Tang XL, Banerjee S, et al. Nuclear factor-kappar B play an essential role in the late phase of ischemic precondioning in conscious rabbits.[J].CircRes,1999, 84: 1095-1114.
    [28]McNamara RK, Wees EA, Lenox RH, et al. Differential subcellural redistribution of protein kinase C isozymes in the rat hippocampus induced by kainic acid. [J]. J Neurochem, 1999, 72:1735-1743.
    [29] Selvatici R, Marino S, Piubello C, et al. Protein kinase C activity, translocation, and selective isoform subcellural redistribution in the rat cerebral cortex after in vitro ischemia. [J]. J Neurosci Res, 2003, 71: 64-71.
    [30]Raval AP, Dave KR, Mochly-Rosen D, et al. Epsilon PKC is required for the induction of tolerance by ischemic and NMDA-mediated preconditioning in the organotypic hippocampal slice. [J]. J Neurosci, 2003,384-391.
    [31]Lange-Asschenfeldt C, Raval AP, Dave KR, et al. Epsilon PKC mediated ischemic tolerance required activation of extracellural regulated kinase pathway in the organotypic hippocampal slice.[J]. J Cereb Blood Flow Metab, 2004, 24:636-645.
    [32] Wang XM, Li JF, Zu PY, et al. Hypoxic preconditioning increase nPKCemembrane translocation in the brain of mice. [J]. Clin J Appl Physiol, 2004,20:105-110.
    [33]Shimohata T, Zhao H, Steinberg GK, 2007. εPKC may contribute to the protective effect of hypothermia in a rat focal cerebral ischemia model. [J]. Stroke, 38, 375-380.
    [34]Novalija E, Kevin LG, Camara AK, et al. Reactive oxygen species precede thesisoform of protein kinase C in the anesthetic preconditioning signaling cascade. [J]. Anesthesiology 2003; 99:421-8.
    [35]Inoue I, Nagase H, Kishi Ket al. ATP-sensitive K+ channels in the mitochondrial inner membrane. [J]. Nature, 1991, 352:244-247
    [36]Lacza Z, Snipes JA, Kis B, et al. Investigation of the subunit composition and the pharmacology of the mitochondrial ATP-dependent K+ channel in the brain. [J]. Brain Res, 2003,994: 27-36.
    [37] Zhou M, Tanaka O, Sekiguchi M, et al. Localization of the ATP-sensitive potassium channel subunit (Kir 6-1/uK(ATP)-l) in rat brain. [J]. Brain Res, 1999, 74(1-2): 15-25.
    [38]Baines CP, Zhang J, Wang GW, et al. Mitochondrial PKC epsilon and MAPK form signaling modules in the murine heart: enhanced mitochondrial PKC epsilon-MAPK interactions and differentail MAPK activation in PKC epsilon-induced cardioprotection. [J]. Circ Res, 2002, 90: 390-397.
    [39]Ohnuma Y, Miura T, Miki T, et al. Opening of mitochondrial K(ATP) channel occurs downstream of PKC-epsilon activation in the mechanism of preconditioning. [J]. Am JPhysiol Heart Circ Physiol, 2002,283:H440-H447.
    [40] Weber NC, Toma O, Damla H, et al. Upstream signaling of protein kinase C-ε in xenon -induced pharmacological preconditioning. Implication of mitochondrial adenosinetriphosphatedependentpotassiumchannelsand phosphatidylinositol-dependent linase-1. Eur J Pharmacol 2006; 539:1-9.
    [41]Ludwig, L.M., Weihrauch, D., Kersten, J.R., et al. Protein kinase C translocation and Scr protein tyrosine kinase activation mediated isoflurane -induced preconditioning in vivo: potential downstream targets of mitochondrial adenosine triphosphate-sensitive potassium channels and reactive oxygen species. 2004, Anesthesiology. 100, 532-539.
    [42] Liang HW, Xia Q, Reactive oxygen species mediate neuroprotecxion induced by mitochondrial ATP-sensitive potassium channel opener in rat hippocampal slices during hypoxia. [J]. Chin J Pathophysi, 2005, 21: 2018-2021.
    [43] Dana A, Skarli M, Papakrivopoulou J,et al. Adenosine Al receptor induced delayed preconditioning in rabbits: inductionof P38 mitogen-ativated protein kinase activation and Hsp27 phosphorylation via a tyrosine kinase-and protein kinase C-dependent mechanism [J]. Circ Res, 2000, 86 : 989-997.
    [44]Hanouz JL, Zhu L , Lemoine S , et al . Reactive oxygen species mediate sevoflurane- and desflurane-induced preconditioning in isolated human right atria in vitro [J]. Anesth Analg , 2007,105 : 1534-1539.
    [45]Raval, A.P., Dave, K.R., DeFazio, R.A., et al. ePKC phosphorylates the mitochondrial K+ATP channel during induction of ischemic preconditioning in rat hippocampus. [J]. Brain Res. 2007, 1184, 345-353.
    [46]Kobayashi H, Shiraishi S, Yanagita T, et al. Regulation of voltagedependent sodium channel expression in adrenal chromaffin cells: involvememt of multiple calcium signaling pathways. Ann. NY Acad Sci, 2002, 971:127-134.
    [47] Xiao GQ, Qu Y, Sun ZQ, et al. Evidence for function role of epsilon PKC isozyme in the regulation of cardiac Na~+ channels. [J]. Am J Physiol Cell Physiol, 2001,281: 1477-1486.
    [48] Li RC, Ping P, Zhang J, et al. PKC epsilon modulates NF-κB and AP-1via mitogen-activated protein kinases in adult rabbit cardiomyocytes. [J]. Am J Physiol Cell Physiol, 2000,279:1679-1689.
    [49] Ping P, Song C, Zhang J, et al. Formation of protein kinase C epsilon -Lck signaling modules confers cardioprotection. [J]. J Clin Invest, 2002, 109:499-507.
    [1] Sugino T, Nozaki K, Takagi Y, et al. Activation of mitogen-activated protein kinases after transient forebrain ischemia in gerbil hippocampus. [J]. J Neurosci, 2000, 20: 4506-4514.
    [2] Irving EA, Barone FC, Reith AD, et al. Differential activation of MAPK/ERK and p38MAPK in neurones and glia following focal cerebral ischaemia in the rat. [J]. Brain Res Mol Brain Res, 2000, 77:65-75.
    [3] Lennmyr F, Karlsson S, Gerwins P, et al. Activation of mitogen-activated protein kinases in experimental cerebral ischemia.[J]. Acta Neurol Scand, 2002, 106:333-340.
    [4] Sato M, Cordis GA, Maulik N, et al. SAPKs regulation of ischemic preconditioning. [J]. Am J Physiol Heart Circ Physiol, 2000,279:H901-907.
    [5] Nishimura M, Sugino T, Nozaki K, et al. Activation of p38 kinase in the gerbil hippocampus showing ischemic tolerance. [J]. J Cereb Blood Flow Metab, 2003,23:1052-1059.
    [6] ParkKM,ChenA,BonventreW.Prevention.ofkidneyischemia/reperfusion-induc ed functional injury and JNK, p38, and MAPK kinase activation by remote ischemic pretreatment. [J]. J Biol Chem, 2001, 276:11870-11876.
    [7] Weber NC, Toma O, Wolter JI, et al. The noble gas xenon induces pharmacological preconditioning in the rat heart in vivo via induction of PKC-epsilon and p38 MAPK. [J]. Br J Pharmacol. 2005,144: 123-132.
    [8] Zheng, S., Zuo, Z., Isoflurane preconditioning induces neuroprotection against ischemia via activation of p38 mitogen-activated protein kinas. [J]. Mol Pharmacol. 2004. 65,1172-1180.
    [9] Piao CS, Che Y, Han PL, et al. Delayed and differential induction of p38 MAPK isoforms in microglia and astrocytes in the brain after transient global ischemia. [J]. Brain Res Mol Brain Res, 2002,107:137-144.
    [10] Piao CS, Kim JB, Han PL, et al. Administration of the p38MAPK inhibitor SB203580 affords brain protection with a widetherapeutic window against focal ischemic insult. [J]. J Neurosci Res, 2003, 73:537-544.
    [11] Lennmyr F, Ericsson A, Gerwins P, et al. Increased brain injury and vascular leakage after pretreatment with p38-inhibitor SB203580 in transient ischemiam. [J]. Acta Neurol Scand, 2003,108(5):339-345.
    [12] Ferrer I, Friguls B, Dalfo E, et al. Early modifications in the expression of mitogen-activated protein kinase (MAPK/ERK) stress-activated kinases SAPK/JNK and p38, and their phosph rylated substrates following focal cerebral ischemia. [J]. Act Neuropathol, 2003,105:425-437.
    [13] Nakano A, Baines CP, Kim SO, et al. Ischemic preconditioning activates MAPKAPK-2 in the isolated rabbit heart: evidence for involvement of p38 MAPK [J].Circ Res, 2000, 86:144-151.
    [14] Dana A, Skarli M, Papakrivopoulou J,et al. Adenosine Al receptor induced delayed preconditioning in rabbits: induction of p38 mitogen-activated proteinkinase activation and Hsp 27 phosphorylation via a tyrosine kinase-and protein kinase C-dependent mechanism [J].Circ Res, 2000, 86: 989-997.
    [15] Hoshida S, Yamashita N, Otsu K, et al. The importance of manganese superoxide dismutase in delayed preconditioning. [J].Cardiovasc Res, 2002, 55: 495-505.
    [16] Xuan YT, Guo Y, Zhu Y, et al. Role of the protein kinase C-epsilon-Raf-1-MEK-1/2-p44/42 MAPK signaling cascade in the activation of signal transduction and activators of transcription 1 and 3 and induction of cyclooxygenase-2 after ischemic preconditioning. [J]. Circulation, 2005, 112: 1971-1978.
    [17] Ahmad N, Wang Y, Haider KH, et al. Cardiac protection by mitoKATP channels is dependent on Akt transduction from cystosol to mitochondria during late preconditioning. [J]. Am J Physiol Heart Circ Physiol. 2006, 290: H2402-H2408.
    [18] Takano H, Tang XL, Boli R, Differential role of KATP channels in late preconditioning against myocardial stunning and infarction in rabbits. [J]. Am J Physiol, 2000,279: 2350-2359.
    [19] Takano H, Bolli R, Black RG,et al. A1 or A3adenosine receptors induce late preconditioning against infarction in conscious rabbits by different mechanisms [J].Circ Res, 2001, 88:520-528.
    [20] Pain T, Yang XM, Critz SD, et al. Opening of mitochondrial KATP channels triggers the preconditioned state by generating free radicals. [J]. Circ Res, 2000, 87:461-466.
    [21] Wang S, Cone J, Liu Y. Dualrole of mitochondrial KATP channels in diazoxide-mediated protection in isolated rabbit hearts. [J].Am J Physiol, 2000, 282(1):246-255.
    [22] Zheng S, Zuo Z. Isoflurane preconditioning reduces purkinje cell death in an in vitro model of rat cerebellar ischemia. [J]. Neuroscience, 2003, 118: 99-106.
    [23] Zhao P, Zuo Z. Isoflurane preconditioning induces neuroprotection that is inducible nitric oxide synthase-dependent in neonatal rats. [J]. Anesthesiology, 2004,101:695-703.
    [24] TasPW, Eisemann C, RoewerN. The volatile anesthetic isoflurane suppresses spontaneous calcium oscillations in vitro in rathippocampalneurons by activation of adenosine Al receptors. [J]. Neurosci Let,t 2003, 338:229-232.
    [25] Zheng S, Zuo Z. Isoflurane preconditioning decreases glutamate receptor overactivation-induced Purkinje neuronal injury in rat cerebellar slices. [J]. Brain Res, 2005,1054: 143-151.
    [26] MoeMC, Berg JJ, LarsenGA, et al. The effectof isoflurane and sevoflurane on cerebrocortical presynaptic Ca~(2+) and protein kinase C activity. JNeurosurgAnesthediol, 2003,15: 209-214.
    [27] Kehl F, Payne RS, Roewer N, et al. Sevoflurane induced preconditioningof ratbrain in vitro and the role of KATP channels. [J]. BrainRes, 2004, 1021: 76-81.
    [28] Kis B, Rajapakse NC, Snipes JA, et al. Diazoxide induced delayed preconditioning in cultured rat cortical neurons. [J]. J. Neurochem, 2003, 87: 969-980.
    [29] Maulik N, Yoshida T', Zu YL. et al. Ischemic preconditioning triggers tyrosine kinase signaling: a potential role for MAPKAP kinase2. [J]. Am J Physiol.1998.275:1857-1864.
    [30] Deak M, Clifton AD, Lucocq LM, et al. Mitogen-acivaled protein kinases-1 ( MSK1), is directly actived by MAPK and SAPK2/p38,and may mediate activation of CREB. [J]. EMRO J. 1998. 17:4426-4441.
    [31] Gould GW, Cuenda A, ThomsonFJ, et al. The activation of distinct mitogen-acivated protein kinases cascades is required for the stimulation of 2-deoxyglucose uptake by interleukiu-1 and insulin-like growth factor-1 in KB cells. [J]. Biochem. J 1995, 311:735-738.
    [32] Wu X, Liu X, Zhu X, et al. Hypoxic preconditioning induces delayed cardioprotection through p38 MAPK-mediated calreticulin upregulation. [J]. Shock, 2007, 27:572-577. [33] Jiang W, Van Cleemput J, Sheerin AH, et al. Involvement of extracellular regulated kinase and p38 kinase in hippocampal seizure tolerance. [J]. J Neurosci Res, 2005, 81:581-588.
    [34] Kevin MW, Richard D, Becky A,et al. Activation of p38MAPK in microglia after ischemia. [J]. J Neurochem, 1998, 70:1764-1767.
    [35] Dohi K, Mizushima H, Nakajo S,et al. Pituitary adenylate cyclase-activating polypeptide (PACAP) prevents hippocampal neurons from apoptosis by inhibiting JNK/SAPK and p38 signal transduction pathways[J]. Regul Pept, 2002, 109:83-88.
    [1]Ginsberg MD.Injury mechanisms in the ischemic penumbra-approaches to neuroprotection in acute ischemic stroke.[J].Cerebrovas Dis,1997,7(suppl 2):7-22.
    [2]Lutz,M.,Liu,H.,2006.Inhaled sevoflurane produces better delayed myocardial protection at 48 versus 24 hours after exposure.[J].Anesth Analg.102,984-990.
    [3]Li,L.,Peng,L,Zuo.,Z.Isoflurane preconditioning increase B-cell lymphoma-2 expression and reduces cytochrome c release from the mitochondria in the ischemic penumbra of rat brain.[J].Eur J Pharmacol.2008.586:106-113.
    [4]Zheng,S.,Zuo,Z.,Isoflurane preconditioning induces neuroprotection against ischemia via activation of p38 mitogen-activated protein kinas.[J].Mol Pharmacol.2004.65,1172-1180.
    [5]Thees S,Hubbard GB,Winckler J,et al,Specific alteration of the Bax/Bcl-2ratio and cytochrome c without execution of apoptosis in the hippocampus of aged baboons.[J].Restor Neurol Neurosci.2005:23(1):1-9.
    [6]Friedlander R M.Apoptosis and caspases in neurodegenerative diseases.[J].N Engl J Med,2003,348(14):1365-1375.
    [7]Dingman A,Lee SY,Derugin N,et al.Aminoguanidine inhibits caspase-3 and calpain activation without affecting microglial activation following neonatal transient cerebral ischemia.[J].J Neurochem,2006,96(5):1 467-1 479.
    [8] Ferrer I, Planas AM. Signaling of cell death and cell survival following focal cerebral ischemia: life and death struggle in the penumbra. [J]. J Neuropathol Exp Neurol, 2005, 629 (4):329-339.
    [9] Yuan J. Divergence from a dedicated cellular suicide mechanism: exploring the evolution of cell death. [J]. Mol Cell, 2006,23(1):1-12.
    [10] Cao G, Xing J, Xiao X, et al. Critical role of calpain I in mitochondrial release of apoptosis-inducing factor in ischemic neuronal injury. [J]. J Neurosci, 2007, 27(35):9278-9293.
    [11] Sasaki C, Kitagawa H, Zhang WRet al. Temporal profile of cytochrome C and caspase-3 immunoreactivities and TUNEL staining after permanent middle cerebral artery occlusion in rats. [J]. NeurolRes, 2000; 22: 223-228.
    [12] Li, L., Peng, L, Zuo., Z. Isoflurane preconditioning increase B-cell lymphoma-2 expression and reduces cytochrome c release from the mitochondria in the ischemic penumbra of rat brain. Eur J Pharmacol. 2008. 586:106-113.
    [13] Zheng, S., Zuo, Z., Isoflurane preconditioning induces neuroprotection against ischemia via activation of p38 mitogen-activated protein kinas. 2004. Mol Pharmacol. 65,1172-1180.
    [14] Hansson MJ, Persson T, Friberg H. Powerful cyclosporin inhibition of calcium-induced permeability transition in brain mitochondria. [J]. Brain Research, 2003,960: 99
    [15] Wigdal SS, Kirkland RA, Franklin J, et al.Cytochrome C release precedes mitochondrial membrane potential loss in cerebellar granule neuron apoptosis: lack of mitochondrial swelling. [J]. Journal of Neurochemistry, 2002, 82:1029.
    [16] Lebutte G, Vallet B, Adamczy KS, et al. Role of mitochondrial protein for neuronal cell death after focal cerebral ischemia. [J]. Acta Neurochir Suppl, 2004,89:15
    [17] Katychev A, Wang X, Duffy A, et al. Glucocorticoid-induced apoptosis in CNS micro vascular pericytes. [J]. Dev Neurosci, 2003,25: 436-446
    [18] Brustovetsky N, Brustovetsky T, Jemmerson R, et al. Calcium-induced cytochrome c release from CNS mitochondria is associated with the permeability transition and rupture of the outer membrane. [J]. J Neurochem. 2002,80:207-218.
    [19] Muranyi M, Li PA, Bongkrekic acid ameliorates ischemic neuronal death in the cortex by preventing cytochrome c release and inhibiting astrocyte activation. [J]. Neurosci Lett. 2005, 384:277-281.
    [20] Kluck RM, Bossy-Wetzel E, Green DR, et al. Injected cytochrome c induces apoptosis. [J]. Nature, 1998, 391: 449.
    [21] Zhang H, Li Q, Li Z, et al. The protection of Bcl-2 overexpression on rat cortical neuronal injury caused by analogous ischemia/reperfusion in vitro. [J]. Neurosci Res. 2008, 62:140-146.
    [22] Zhao K, Luo G, Giannellis S, et al. Mitochondria-targeted peptide prevents mitochondrial depolarization and apoptosis induced by tert-butyl hydroperoxide in neuronal cell lines. [J]. Biochem Pharmacol. 2005,70:1796-1806.
    [23] Kim HS, Lee JH, Lee JP, et al. Amyloid beta peptide induces cytochrome C release from isolated mitochondria. [J]. Neuroreport. 2002,13:1989-1993.
    [24] Fujimura M, Morita-Fujimura Y, Murakami K, et al. Cytosolic redistribution of cytochrome c after transient focal cerebral ischemia in rats. [J]. J Cereb BloodFlow Metab, 1998,18: 1239
    [25] Miguel A, Per-Pinzon, Xu guangping, et al. Cytochrome C released from mitochondria into the cytosol after cerebral anoxia or ischemia [J]. J Cere Blood Flow Meta, 1999,19:1.
    [26] Le DA, Wu Y, Huang Z, et al. Caspase activation and neuroprotection in caspase-3 -deficient mice after in vivo cerebral ischemia and in vitro oxygen glucose deprivation. [J]. Proc Natl Acad Sci USA, 2002, 99(23): 15 188-15 193.
    [27] Ferrer I,Friguls B, Dalfo, et al. Caspase-dependent and caspase-independent signaling of apoptosis in the penumbra following middle cerebral artery occlusion in the adult rat. [J]. Neuropathol Appl Neurobiol, 2003,29:472-481.
    [28] Chen J, Nagayama T, Jin K, et al. Induction of caspase-3 like protease may mediate neuronal death in the hippocampus after transient cerebral ischemia。 [J]. J Neurosci, 1998,18: 4914-4 928.
    [29] Suzuki A, Iwasaki M, Wagai N. Involvement of cytoplasmic serine proteinase and CPP32 subfamily in the molecular machinery of caspase 3 activation during Fas-mediated apoptosis. [J]. Exp Cell Res, 1997,233: 48-55.
    [30] Zou H, Henzel WJ, Liu X, et al. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. [J]. Cell, 1997,90:405-413.
    [31] Wolf CM, Eastman A. The temporal relationship between protein phosphatase, mitochondrial cytochrome c release,and caspase activation in apoptosis.[J].Exp Cell Res,1999,247:505-513.
    [32]Ni B,Wu X,Su Y,et al.Transient global forebrain ischemia induces a prolonged expression of the caspase-3 mRNA in rat hippocampal CA1 pyramidal neurons.[J].J Cereb Blood Flow Metab,1998,18:248-256.
    [33]Gillardon F,Bottiger B,Schmitz B,et al.Activation of CPP-32 protease in hippocampal neurons following ischemia and epilepsy.[J].Brain Res Mol Brain Res,1997,50:16-22.
    [34]Velier JJ,Ellison JA,Kikly KK,et al.Caspase-8 and caspase-3 are expressed by different populations of cortical neurons undergoing delayed cell death after focal stroke in the rat.[J].J.Neurosci,1999,19:5932-5941.
    [35]Hayashi T,Sakurai M,Abe K,et al.Apoptosis of motor neurons with induction of caspases in the spinal cord after ischemia.[J].Stroke,1998,29:1007-1012.
    [36]Ahmad N,Wang Y,Haider KH,et al.Cardiac protection by mitoKATP channels is dependent on Akt transduction from cystosol to mitochondria during late preconditioning.[J].Am J Physiol Heart Circ Physiol.2006,290:H2402-H2408.
    [37] Takano H,Tang XL,Boli R,Differential role of KATP channels in late preconditioning against myocardial stunning and infarction in rabbits.[J].Am J Physiol,2000,279:2350-2359.
    [38]Chen X,Kintner DB,Luo J,et al.Endoplasmic reticulum Ca2+ dysregulation and endoplasmic reticulum stress following in vitro neuronal ischemia:role of Na+-K+-Cl-cotransporter.[J].J Neurochem.2008,106:1563-1576.
    [39]Corrales A,Xu F,Garavito-Aquilar ZV,et al.Isoflurane reduces the carbachol-evoked Ca2+ influx in neuronal cells.[J].Anesthesiology.2004,101:895-901.
    [40]Schild L,Keilhoff G,Auqustin W,et al.Distinct Ca2+ thresholds determine cytochrome c release or permeability transition pore opening in brain mitochondria.[J].FASEB J,2001,15:565-567.
    [41]Liu D,Lu C,Wan R,et al.Activation of mitochondrial ATP-dependent potassium channels protects neurons against ischemia-induecd death by a mechanisms involving suppression of Bax translocation and cytochrome C release.[J].J Cereb Blood Flow Metab.2002,22:431-433.
    [42]Howard S,Bottino C,Brooke S,et al.Neuroprotective effects of Bcl-2overexpression in hippocampal cultures:interactions with pathways of oxidative damage.[J].J.Neurochem.2002,83:914-923.
    [43]ZhaoH,YenariMA,ChengD,et a.1 Bcl-2 transfection via herpes smiplex virus blocks apoptosis-inducing factor translocation after focal ischemia in the rat.[J].J Cereb Blood Flow Metab.2004,24:681-692.
    [44]Cheng AC,Jian CB,Huang YT,et a.1 Induction of apoptosis by Un-caria tomentosa through reactive oxygen species production cytochrome c release,and caspases activation in human leukemia cells.[J].Food Chem Toxicol 2007,45:2206-2218.
    [45]Carrol R,Gant V.A,Yellon D.M,et al.Mitochondrial K(ATP) channel opening protects a human atrial-derived cell line by a mechanism involving free radical generation.[J].Cardiovasc.Res,2001,51:691-700.
    [46]Tanaka K,Weihrauch D,Ludwig L.M,et al.adenosine riphosphate-regulated potassium channel opening acts as a trigger for isoflurane-induced preconditioning by generating reactive oxygen species.[J].Anesthesiology.2003,98:935-943.
    [47]Rajapakse N,Kis B,Horiquchi T,et al.Diazoxide pretreatment induces delayed preconditioning in astrocytes against oxygen glucose deprivation and hydrogen peroxide-induced toxicity.[J].J Neurosci Res,2003;73:206-214.
    [48]Simerabet M,Robin E,Aristi I,et al.Preconditioning by an in situ administration of hydrogen peroxide:involvement of reactive oxygen species and mitochondrial ATP-dependent potassium channel in a cerebral ischemia-reprfusion model.[J].Brain Res,2008,1240:177-184.
    [49]Wang C,NeffD A,Krolikowski J G,et al.The influence of B-cell lymphoma 2 protein,an antiapoptotic regulator of mitochondrial permeability transition,on isoflurane induced and ischemic postconditioning in rabbits.[J].AnesthAnalg,2006,102:1355-1360.
    [50]Feng J,Lucchinetti E,Ahuja P,et al.Isoflurane postconditioning prevents opening of the mitochondrial permeability transition porethrough inhibition ofglycogen synthase kinase 3beta[J].Anesthesiology,2005,103:987-95.
    [51]De Ruijter W,Muster RJ,Boer C,et al.The cardioprotective effect of sevoflurane depends on protein kinase C activation,opening of ma'tochondrial K(+)(ATP) channels,and the production of reactive oxygen species[J].Anesth Analg,2003,97(5):1370-1376.
    [52]Dana A,Skarli M,Papakrivopoulou J,et al.Adenosine AI receptor induced delayed preconditioning in rabbits:inductionof P38 mitogen-ativated protein ldnase activation and Hsp27 phosphorylation via a tyrosine kinase-and protein kinase C-dependent mechanism [J].Circ Res,2000,86(9):989-997.
    [53]Hanouz JL,Zhu L,Lemoine S,et al.Reactive oxygen species mediate sevoflurane-and desflurane-induced preconditioning in isolated human right atria in vitro[J].Anesth Analg,2007,105(6):1534-1539.
    [1]Youdim MB,Bar Am O,Yogev-Falach M,et al.Rasagiline:neurodegeneration,neuroprotection,and mitochondrial permeability transition.[J].J Neurosci Res,2005,79:172-179.
    [2]Szewczyk A,Wojtczak L.Mitochondria as a pharmacological target.[J].Pharmacol.Rev,2002,54:101-127.
    [3]Batandier C,Leverve X,Fontaine E.Opening of the mitochondrial permeability transition pore induces reactive oxygen species production at the level of the respiratory chain complex I.[J].J Biol.Chem,2004,279(17):17197-17204.
    [4]Argaud L,Gateau-Roesch O,Chalabreysse L,et al.Preconditioning delays Ca2+-induced mitochondrial permeability transition.[J].Cardiovasc Res,2004,61:115-122.
    [5]Kobayashi T,Kuroda S,Tada M,et al.Calciuminduced mitochondrial swelling and cytochrome C release in the brain:its biochemical characteristics and implication in ischemic neuronal injury.[J].Brain Res,2003,960:62-70.
    [6]Mattson M P,Kroemer G.Mitochondria in cell death:novel targets for neuroprotection and cardioprotection.[J].Trends Mol Med,2003,9:196-205.
    [7]Borutaite V,Jekabsone A,Morkuniene R,et al.Inhibition of mitochondrial permeability transition preventsmitochondrial dysfunction,cytochrome c release and apoptosis induced by heart ischemia.[J].J Mol and Cell Cardio,2003,35:357-366.
    [8]Javadov SA,Clarke S,DasM,et al.Ischaemic preconditioning inhibits opening of themitochondrial permeability transition pore in situ via an indirect mechanism. [J]. J Physiol (Lond), 2003, 549: 513-5243.
    [9] Sheng F, Wu LP, Liu WG, et al. Effect of activation of mitochondrial ATP sensitive potassium channel and calcium activated potassium channel on the permeability transition of mitochondria from both normal and ischemic rat brain. [J]. Chin J Appl physiol, 2007; 2:13-18.
    [10] Zhang Z, Sobel RA, Cheng D,et al. Mild hypothermia increase bcl-2 protein expression following global cerebral ischemia. [J]. Brain Ras.Mol. Brain Res, 2001,95:75-85.
    [11] Orrenius S. Mitochondrial regulation of apoptotic cell death. [J]. Toxicol Lett, 2004,149:19-23.
    [12] Sheng J, Sun Z, Liu HJ, et al. Protective effect of isoflurane preconditioning on the brain against ischemis-reperfusion jnjury in gerbils. [J]. Chin J Anesthesiol, 2006, 26; 242-246.
    [13] Zhang B, Wei X, Li WZ, et al. Effects of desflurane pretreatment on mitochondrial permeability transition pore and membrane potential following forebrain ischemia-reperfusion in rats. [J]. Chin J Anesthesiol, 2008, 28: 171-174.
    [14] Wei H, Feng J, Zhang SP, et al. Postconditioning of sevoflurane and propofol is associated with mitochondrial permeability transition pore. [J]. J Zhejiang Univ SciB 2008 9:100-108.
    [15] Wu LP, Sheng F, Lin L, et al. The neuroprotection conferred by activating the mitochondrial ATP sensitive K+ channel is mediated by inhibiting the mitochondrial permeability transition pore. [J]. Neuroscience Letters, 2006:184-189.
    [16] Kroemer G, The mitochondrial permeability transition pore complex as a pharmacological target. [J]. An introduction. Curr Med Chem, 2003, 10: 1469-1472.
    [17] van Gurp M, Festjens N, van Loo G, et al. Mitochondrial intermembrane proteins in cell death. [J]. Biochem BiophysRes Commun, 2003, 304: 487-497.
    [18] Ferri KF, Kroemer G, Mitochondria-the suicide organelles. [J]. Bioessays, 2001, 23:111-115.
    [19] Green DR, KroemerG. The pathophysiology ofmitochondrial cell death. [J].Science, 2004, 305: 626-629.
    [20] Penninger JM, KroemerG. Mitochondria, AIF and caspases rivaling for cell death execution. [J]. Nat Cell Biol, 2003, 5: 97-99.
    [21] Youdim MB, Bar Am 0, Yogev-Falach M,et al. Rasagiline: neurodegeneration, neuroprotection, and mitochondrial permeability transition. [J]. J Neurosci Res, 2005,79:172-179.
    [22] Shimizu S, Narita M, Tsujimoyo Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC [J]. Nature, 1999, 399:483-487.
    [23] Shimizu S, Konishi A, Kodamat T, et al. BH4 domain of antiapoptotic Bcl-2 family members closes vol-tage-dependent anion channel and inhibits apoptotic mitochondrial changes and cell death [J]. Proc Natl Acad Sci, 2000, 97:3 100-105.
    [24] Ravagnan L, Marzo I, Costantini P, et al. Lonidamine triggers apoptosis via a direct,Bcl-2 inhibited effect on the mitochondrial permeability transition pore [J]. Oncogene, 1999,18: 2 537-2 546.
    [25] Fang H. Bcl-2 gene family in apoptosis and skin carcinoma [J]. Journal of Zhejiang University:Medical Sciences,2000,29:141-144.
    [26] Wise-Faberowsi L, Raizada MK, Sumners C, et al. Desflurane and sevoflurane attenuate oxygen and glucose deprivation-induced neuronal cell death. [J]. J Neurosurg Anesthesiol, 2003,15: 193-199.
    [1] Nishizawa Y, Glutamate realease and neuronal damage in ischemia. [J]. Life Sciences, 2001,69:369-381.
    [2] Gagiardi RJ, Neuroprotection, excitotoxicity and NMDA antagonists. [J]. Arq Neuropsiquiatr, 2000, 58: 583-610.
    [3] Wilson JX, Gelb AW, Free radicals, antioxidants and neurologic injury: possible relationship to cerebral protection by anesthetics. [J]. J Neumsurg Anesthesiol, 2002,14: 66-79.
    [4] Warner DS, Isoflurane neuroprotection : a passing fantasy, again? [J]. Anesthesiology, 2000,92: 1226-1228.
    [5] Kimbro JR, Kelly PJ, Drummond JC, et al. Isoflurane and pentobarbital reduce AMPA toxicity in vivo in the rat cerebral cortex. [J]. Anesthesiolcgy, 2000, 92:806.
    [6] Eilets H, Kindler CH, Bickler PE, et al. Different effects of volatile anestheticsandpolyhalogenatedalkanesarkanes depolarization-evoked glutamate release in rat cortical brain slices. [J]. Aneth Analg, 1999, 88:1168-1174.
    [7] Engelhard K, Werner C, Hoffman WE, et al. The effect of sevoflurane and propofol on cerebral neurotransmitter concentrations during cerebral ischemia in rats. [J]. Anesth Analg, 2003; 97:1155-61.
    [8] Illievich UM, Zornow MH, Choi KT, Strnat MA, Scheller MS. Effects of hypothermia or anesthetics on hippocampal glutamate and glycine concentrations after repeated transient global cerebral ischemia. [J]. Anesthesiology, 1994; 80:177-186.
    [9] Nakashima K, Todd MM. Effects of hypothermia, pentobarbital, and isoflurane on postdepolarization amino acid release during complete global cerebral ischemia. [J]. Anesthesiology, 1996, 85:161-168.
    [10] Patel PM, Drummond JC, Cole DJ, Goskowicz RL. Isoflurane reduces ischemia-induced glutamate release in rats subjected to forebrain ischemia. [J]. Anesthesiology, 1995, 82: 996-1003.
    [11] Huang. Y, Zuo ZY, Isoflurane induces a protein kinase C alpha-dependent increase in cell-surface protein level and activity of glutamate transporter type 3. [J]. Mol Pharmacol, 2005, 67: 1522-1533.
    [12] Ritz MF, Schmidt P, Mendelowitsch A, Effects of isoflurane on glutamate and taurine releases, brain swelling and injury during transient ischemia and reperfusion. [J]. Int J Neurosci, 2006,116: 191-202.
    [13] Bickler PE, Buck LT, Feiner JR, Volatile and intravenous anesthetics decrease glutamate release from cortical brain slices during anoxia. [J]. Anesthesiology, 1995,83:1233-1240.
    [14] Eilers H, Bickler PE, Hypothermia and isoflurane similarly inhibit glutamate release evoked by chemical anoxia in rat cortical brain slices. [J].Anesthesiology. 1996,85:600-607.
    [15] Hoetzel A , Geiger S, Luup T, et al. Differential effects of volatile anesthetics on hepatic heme oxygenase-1 expression in the rat. [J]. Anesthesiology, 2002, 7:1318-1321
    [16] Popovic R, Linger R, Bickler PE, Anesthetics and mild hypothermia similarly prevent hippocampal neuron death in an in vitro model of cerebral ischemia. [J]. Anesthesiology. 2000,92:1343-1349.
    [17] Huang.Y,Zuo.Z.,Isoflurane.induces.aprotein.kinase.Calpha-dependent increase in cell-surface protein level and activity of glutamate transporter type 3. [J]. Mol Pharmacol. 2005, 67: 1522-1533.
    [18] Bhardwaj A, Alkayed NJ, Kirsch JR, Hum PD. Mechanisms of ischemic brain damage. [J]. Curr Cardiol Rep, 2003, 5:160-7
    [19] Paschen W. Mechanisms of neuronal cell death: diverse roles of calcium in the various subcellular compartments. [J]. Cell Calcium. 2003, 34:305-10.
    [20] Bickler PE, Buck LT, Hansen BM. Effects of isoflurane and hypothermia on glutamate receptor-mediated calcium influx in brain slices. [J]. Anesthesiology, 1994; 81:1461-9.
    [21] Abraini J H, David H N, Lemaire M, Potentially neuroprotective and therapeutic properties of nitrous oxide and xenon. [J]. Ann NY Acad Sci, 2005; 1053:289-300.
    [22] David HN, Leveille F, Chazalviel L, MacKenzie ET, Buisson A, Lemaire M, Abraini JH. Reduction of ischemic brain damage by nitrous oxide and xenon. [J]. J Cereb Blood Flow Metab, 2003; 23:1168-73.
    [23] Racay P, Kaplan P, Lehotsky J. Ischemia-induced inhibition of active calcium transport into gerbil brain microsomes: effect of anesthetics and models of ischemia. [J]. Neurochem Res, 2000;25:285-92.
    [24] Gray JJ, Bickler PE, Fahlman CS, Zhan X, Schuyler JA. Isoflurane neuroprotection in hypoxic hipppocampal slice cultures involves increases in intracellular Ca~(2+) and mitogen-activated protein kinases. [J].Anesthesiology, 2005; 102:606-15.
    [25] Bickler PE, Zhan X, Fahlman CS. Isoflurane preconditions hippocampal neurons against oxygen- glucose deprivation. [J]. Anesthesiology. 2005; 103:532-9.
    [26] Blanck TJ, Haile M, Xu F, Zhang J, Heerdt P, Veselis RA, Beckman J, Kang R, Adamo A, Hemmings H. Isoflurane pretreatment ameliorates postischemic neurologic dysfunction and preserves hippocampal Ca~(2+)/calmodulin-dependent protein kinase in a canine cardiac arrest model. [J]. Anesthesiology. 2000; 93:1285-93.
    [27] Engelhard K, Werner C, Eberspacher E, et al. Sevoflurane and propofol influence the expression of apoptosis-regulating proteins after cerebral ischaemia and reperfusion in rats. [J]. Eur J Anaesthesiol, 2004; 21: 530-7.
    [28] Kawaguchi M, Drummond JC, Cole DJ, et al. Effect of isoflurane on neuronal apoptosis in rats subjected to focal cerebral ischemia. [J]. Anesth Analg, 2004, 98: 798-805.
    [29] Inoue S, Drummond JC, Davis DP, et al. Combination of isoflurane and caspase inhibition reduces cerebral injury in rats subjected to focal cerebral ischemia. [J]. Anesthesiology. 2004, 101:75-81.
    [30] Wise-Faberowski L, Pearlstein R D, WarnerDS, NMDA-induced apoptosis in mixed neuronal/glial cortical cell cultures - The effects of isoflurane and dizocilpine. [J]. J Neurosurg Anesthesiol, 2006:240-246.
    [31] Homi HM, Mixco JM, Sheng H, et al. Severe hypotension is not essential for isoflurane neuroprotection against forebrain ischemia in mice. [J]. Anesthesiology, 2003, 99:1145-51
    [32] Chi OZ, Wei HM, O'Hara DA, et al. Effects of pentobarbital and isoflurane on regional cerebral oxygen extraction and consumption with middle cerebral artery occlusion in rats. [J].Anesthesiology, 1993, 79:299-305.
    [33] Murr R, Schuer L, Berger S, Enzenbach R, Peter K, Baethmann A. Effects of isoflurane, fentanyl, or thiopental anesthesia on regional cerebral blood flow and brain surface PO_2 in the presence of a focal lesion in rabbits. [J]. Anesth Analg, 1993;77: 898-907.
    [34] Toned CC, Connelly K, Whelpton R, et al. Effects of sevoflurane on dopamine,glutamate and aspartate release in an in vitro model of cerebral ischaemia. [J]. Br J Anaesth,2001,86:550-554.
    [35] Nellgard B, Mackensen GB, Pineda J, et al. Anesthetic effects on cerebral metabolic rate predict histologic outcome from near-complete forebrain ischemia in the rat. [J]. Anesthesiology, 2000;93:431-6.
    [36] Newberg LA, Michenfelder JD. Cerebral protection by isoflurane during hypoxemia or ischemia. [J]. Anesthesiology, 1983;59:29-35.
    [37] Nakajima Y, Moriwaki G, Ikeda K, Fujise Y. The effect of sevoflurane on recovery of brain energy metabolism after cerebral ischemia in the rat: a comparison with isoflurane and halothane. [J]. Anesth Analg, 1997;85:593-9.
    [38] Wakasugi M, Hirota K, Roth SH, et al.The effects of general anesthetics on excitatory and inhibitory synaptic transmission in CA1of the rat hippocatnpus in vitro. [J]. Anesth Analg, 1999, 88:676-680.
    [39] EngelhardK, Werner C, Reeker W, et al. Desflurane and isoflurane improve neurological outcane afterincomplete cerebral ischaemia in rats. [J]. Br J Anaesth, 1999,83:415-421.
    [40] Kudo M,Aono M, Lee Y, et al . Absence of direct antioxidant effects from wlatile anesthexics in pria}uy mixed neuronal-glial cultures. [J]. Anesthesiology, 2001,94:303-312.
    [41] Payne RS, Akca O, Roewer N, et al. Sevoflurane-induced preconditioning protects against cerebral ischemic neuronal damage in rats. [J]. Brain Res 2005; 1034(1-2): 147-52.
    [42] Kehl F, Payne RS, Poewer N , Schurr A, Sevoflurane-induced preconditioning of rat brain in vitro and the role of KATP channels. [J]. Brain Res 2004; 102(1):76-81.
    [43] Wang ZP, Zhang ZH, Zeng YM, et al. Protective effect of sevoflurane preconditioning on oxygen deprivation glucose injury in rat hippocampal slices: the role of mitochondrial KATP channel. [J]. Acta Physiolo Sinica, 2006, 58: 201-206.
    [44] Sheng J, Sun Z, Liu HJ, et al. Protective effect of isoflurane preconditioning on the brain against ischemis-reperfusion jnjury in gerbils. [J]. Chin J Anesthesiol, 2006,26; 242-246.
    [45] L Xiong, Y Zheng, M Wu , et al. Preconditioning with isoflurane produces dose-dependent neuroprotection via activation of mitochondrial adenosine triphosphate dependent potassium channels after focal cerebral ischemia in rats. [J]. Anesth Analg 2003; 96:233-37.
    [46] Miura Y, Mackensen B, Nellgard B, et al. Effects of isoflurane, ketamine, and fentanyl/N_2O on concentrations of brain and plasma catecholamines during nearcomplete cerebral ischemia in the rat. [J]. Anesth Analg, 1999, 88:787-92.
    [47] Toner CC, Connelly K, Whelpton R, et al. The effect of sevoflurane on dopamine, glutamate and aspartate release in an in vivo model of cerebral ischemia. [J]. Br J Anesth, 2001, 86:550-554.
    [48] Kapinya K J, Lowl D, Futterer C, et al. Tolerance against ischemic neuronal injury can be induced by volatile anesthetics and is inducible NO synthase dependent. [J]. Stroke, 2002; 33:1889-98.
    [49] Liu,Y., Xiong, L. , Chen, S. , et al. Isoflurane tolerance against focal cerebral ischemia is attenuated by adenosine A1 receptor antagonists. [J]. Can J Anaesth, 2006,53,194-201.
    [50] Roscoe AK, Christensen JD, Lynch C, Isoflurane, but not halothane, induces protection of human myocardium via adenosine A_1 receptors and adenosine triphosphate-sensitive potassium channels. [J]. Anesthesiology, 2000; 92:1692-701.
    [51] Wang T, Luo F, Shan R, et al. Changes of endothelin and calcitonin gene-related peptide during desflurane anesthesia in patients undergoing intracranial aneurysm clipping. [J]. JNeurosurg Anesthesiol, 2004, 16:230-239.
    [52] Hoane MR, Akstulewicz SL, Toppen J, et al. Treatment with vitamin B3 improves functional recovery and reduces GFAP expression following traumatic brain injury in rats. [J]. J Neurotrauma, 2003,20:1189-1199.
    [53] Kuroda M, Yoshikawn D, Nishikawa K, et al. Volatile anesthetics inhibit calcitonin gene-related peptide receptor-mediated responses in pithed rats and human neuroblastoma cells. [J]. J Pharmacol Exp Ther, 2004, 311: 1016-1022.
    [54] Zheng,S.,Zuo,Z.,Isoflurane.preconditioning.induces.neuroprotection against ischemia via activation of p38 mitogen-activated protein kinas. [J]. Mol Pharmacol. 2004, 65,1172-1180.
    [55] Cho S, Park E M, Kin Y, et al. Early c-fos induction after cerebral ischemia: a possible neuroprotective role. [J]. J Cereb Blood Flow Metab, 2001,21:550-55
    [56] Bickler PE, Zhan X, Fahlman CS. Isoflurane preconditions hippocampal neurons against oxygen- glucose deprivation. [J].Anesthesiology, 2005, 103:532-9.
    [57] Zhang JJ, Zhang H, Shao X, et al. Effects of isoflurane and sevoflurane on c-fos and bcl-2 genes expression in ischemic neuron and neuroprotective role. [J]. Journal of Capital University of Medical Science, 2002,23:1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700