铁基纳米材料的液相合成与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要采用液相法合成了中空纺锤形纳米结构、空心三角锥结构、纳米晶的铁基纳米材料,并分别从纳米材料的制备、形成机理以及性质表征和应用研究几个方面进行论述。内容涉及溶剂热条件下无模板法合成空心纺锤形氧化铁纳米颗粒,利用各向异性模板液相合成空心三角锥结构,利用简单体系合成板状磁性氧化铁纳米晶,对产物的形成机理和磁性质进行了细致的研究。论文不仅丰富了铁基纳米材料的研究,对纳米材料的合成与生长的基础研究也具有一定的现实意义。
     1空心纺锤形氧化铁纳米颗粒的制备、表征、形成机理与磁性质研究
     以Fe(OH)_3和十二烷基苯磺酸钠(SDBS)形成的复合物为前驱体,以二甲苯为溶剂,经过200℃下的溶剂热反应,制备了尺寸均匀的空心纺锤形α-Fe_2O_3纳米颗粒。空心纺锤形颗粒的长度为220-300 nm,直径为70-100 nm,壁厚约为18 nm。晶体结构表征表明空心纺锤形颗粒是由30 nm左右的纳米晶沿着[001]方向定向聚集而成。结合红外光谱(IR)、X射线光电子能谱(XPS)、热重分析(TGA)等分析手段,表明样品中含有大约3.5%的硫酸根,以双齿配位的形式与氧化铁表面的Fe原子发生配位。通过跟踪空心纺锤的形成过程,发现空心纺锤是由先形成的实心纺锤经过选择性的内部溶解转变而成。在转变过程中,纺锤的内部优先溶解形成空腔,外部得到保持并继续生长。通过几个对比实验,我们发现体系中的少量水与十二二烷基苯磺酸根(DBS)对纺锤内部空腔的形成起关键作用,并提出了空心纺锤的形成机理。当实心纺锤形成以后,前驱体中含有的水以及Fe(OH)_3转变成α-Fe_2O_3生成的水进入体系中,二甲苯和水形成一个类似于微乳液的体系,DBS富集在油/水界面起稳定作用。从DBS分解得到的硫酸根优先与Fe_2O_3的表面Fe原子配位,随着反应的进行,纺锤外层由于有DBS阴离子和SO_4~(2-)根的保护使得溶解过程主要在纺锤的内部发生。被溶解了的Fe~(3+)阳离子扩散到纺锤的表面,重新生成小颗粒,使纺锤外层继续生长,最终形成了空心纺锤。利用H_2还原以及再氧化过程可以得到空心纺锤形Fe_3O_4和γ-Fe_2O_3。对产物进行了光学性质与磁性质的研究,发现产物具有较高的矫顽力,这可能与颗粒的准一维形貌有关。
     2空心三角锥形含Fe聚合物和磁性多孔碳的制备与研究
     利用具有各向异性的三角锥形颗粒作模板,液相合成了空心三角锥形的含Fe聚合物。空心三角锥颗粒边长大约为350-600 nm,壳层厚度约为55-90 nm,颗粒具有平均孔径为3.9 nm的介孔和70 m~2/g的比表面积。红外结果表明产物是由抗坏血酸分子的主要降解物糠醛聚合而成。聚合物的组成元素为:C-41.95%;H-3.85%;Fe-10.9%;O-42.3%;S-1.00%(重量百分比)。将聚合物在N_2气氛下烧结,可以得到磁性多孔碳,它是由41.7%的α-Fe和58.3%的无定形碳组成。透射电镜(TEM)表明粒径约为5 nm的α-Fe纳米颗粒均匀地分散在无定形碳基体中。磁性多孔碳具有级次孔结构,比表面积为399.1 m~2/g,其中包括孔径为3.8 nm的介孔和0.6 nm的微孔。磁性多孔碳的饱和磁化强度为39.3 emu/g,对水溶液中染料的吸附研究表明它对阳离子型染料的吸附速度要高于阴离子染料,对罗丹明B、甲基橙、直接耐晒蓝的饱和吸附量分别是72.56 mg/g、69.79 mg/g、81.43 mg/g。对罗丹明B吸附-脱附循环11次后,磁性多孔碳的重复吸附量仍可以达到饱和吸附量的90%,饱和磁化强度降低到34.4 emu/g。三角锥模板的边长在400-600 nm之间,结构表征表明它是由更小的纳米片定向聚集而成。模板颗粒由于结构不稳定,在透射电镜电子束连续的照射下,会逐渐收缩并最终消失。它的IR光谱显示出明显的硫酸根振动吸收峰。结合元素分析,推断出模板是一种Fe和Na的羟基硫酸盐。整个反应过程及反应机理为,首先SDBS和FeCl_3形成NaCl沉淀和DBS的乙醇溶液;然后Fe~(3+)部分水解得到十二烷基苯磺酸盐的纳米颗粒,随着DBS分解产生硫酸根,形成的Fe-Na羟基硫酸盐的纳米片,定向聚集成三角锥形貌;接着,由于三角锥模板具有不同晶面特性,使得抗坏血酸只在模板的侧面降解聚合得到空心三角锥形纳米结构。
     3板状磁性氧化铁纳米晶的合成、性质研究及其自组装
     利用简单的液相体系,合成了表面包覆亲水性聚乙烯吡咯烷酮(PVP)的γ-Fe_2O_3板状纳米晶。颗粒边长为30~40 nm,厚度为10~13 nm,其上下底面为(111)晶面。用水合肼还原得到同样尺寸与形貌的Fe_3O_4板状纳米晶。IR和XPS结果表明,PVP通过分子上的C=O而不是N原子与颗粒表面的Fe原子配位。γ-Fe_2O_3可以稳定地分散在除水以外的大多数极性溶剂中。颗粒分散在水中后,由于表面部分的PVP分子解离而发生聚集。颗粒之间具有强偶极作用,使得纳米板在基底上自发形成一维链状结构。这种作用是由于颗粒具有较大的尺寸和各向异性的形貌。对γ-Fe_2O_3的形成机理研究发现,板状形貌的形成是动力学生长控制的结果,PVP在体系中主要起两种作用:1)选择性的与γ-Fe_2O_3的(111)面配位,降低了[111]方向的生长速度;2)调节体系粘度以及γ-Fe_2O_3生长速率。只有γ-Fe_2O_3的成核与生长速率合适时,才能形成γ-Fe_2O_3板状纳米晶。磁性质研究表明γ-Fe_2O_3和Fe_3O_4在室温下具有明显的铁磁性,以及较强的颗粒间偶极作用。γ-Fe_2O_3板状纳米晶在弱磁场的诱导下,可以自组装成微米级别的一维束状结构。
This dissertation is focused on the solution-based synthesis of Fe-based nanomaterials,including hollow spindles,hollow triangular pyramid structures,and nanocrystals.Investigations are based on several aspects including synthetic procedure,formation mechanism,properties,and applications.The contents comprise solvothermal synthesis of hollow spindle-like iron oxide nanoparticles via a template-free method,synthesis of triangular pyramid shells via a solution-based anisotropic template route,facile synthesis of plate-like magnetic iron oxide nanocrystals.The formation mechanism and magnetic properties of all the products were investigated in detail.This work is not only enriching the Fe-compound investigations,but also beneficial to the fundamental research of the formation and growth of nanomaterials.
     1 Fabrication,characterization,formation mechanism,and magnetic property investigation of hollow spindle-like iron oxide nanoparticles
     Uniform hollow spindle-likeα-Fe_2O_3 nanoparticles were synthesized by solvothermal treatment of the precursor-a kind of Fe(OH)_3-SDBS composite-in dimethylbenzene at 200℃.These hollow spindles were 220-300 nm in length, 70-100 nm in diameter,and 18 nm in thickness.Crystal structure characterizations indicated they were formed by oriented attachment of nanocrystals about 30 nm along the[001]direction.The IR,XPS,and TGA results indicated that there was about 3.5 %SO_4~(2-) groups in the product,bidentate coordinating to the surface Fe~(3+) cations of the spindles.By tracking the formation procedure of the hollow spindles,it is found they were transformed from the pre-formed solid spindles by selective dissolution of the interiors.When the interiors of solid spindles were preferred dissolved to form cavities,the exteriors maintained and went on growing.A small amount of H_2O and SDBS molecules in the reaction system were found crucial in the system.The formation mechanism was proposed as follows.After the solid spindles were generated,water derived from the precursor and the by-product of the transformation from Fe(OH)_3 to Fe_2O_3 were mixed with dimethylbenzene to form a microemulsion-like system,in which DBS surfactants concentrated in the oil/water interface to stabilize the system.As the reaction proceeded,SO_4~(2-) anions were generated from the decomposition of DBS and coordinated to the surface Fe~(3+) atoms of nanopartieles.The exteriors of spindles were protected by SO_4~(2-) and DBS,so the dissolution preferred occurred in the interiors.The solvated Fe~(3+) cations diffused to the exterior and reerystallized to form new particles on the spindles' surface.Finally hollow spindles formed.Hollow spindle-like magnetite and maghemite were obtained by reducing hollow spindle-likeα-Fe_2O_3 under H_2 and then re-oxidizing them in air. Their magnetic properties investigation demonstrated high coercive which might related to their quasi 1-dimensional(1D) morphology.
     2 Synthesis of triangular pyramid shelled Fe-polymer and magnetic porous carbon and their property investigation
     Triangular pyramid shelled Fe-polymer was synthesized via a solution-based anisotropic triangular pyramid template route.Triangular pyramid shells were 350-600 nm in side-edge length and 55-90 nm in shell thickness,with 70.6 m~2/g of the BET surface area and 3.9 nm mean size of mesopores in the shells.The FT-IR spectrum indicated that ascorbic acid was oxidized to form furfural molecules,the main oxidation-decomposition product of ascorbic acid,which further polymerized to form triangular pyramid shelled structures with Fe~(3+) ions incorporated in this polymer. Element analyses demonstrated the product was consisted of C(41.95%),Fe (10.90%),O(42.30%),H(3.85%) and S(1.00%).Magnetic porous carbon was obtained by calcining the pyramid polymer shells under N_2 atmosphere.The components of the carbonized product were mainlyα-Fe and amorphous carbon,with the contents of 41.7%and 58.3%respectively.TEM and HR-TEM images further indicated that they are constructed byα-Fe nanoparticles of ca.5.0 nm embedded in amorphous carbon matrix.N_2 adsorption-desorption isotherms indicated the BET surface area increased to 399.1 m~2/g,and the present of mesopores with the mean size of ca.3.8 nm and micropores with the average size of 0.6 nm.The saturation magnetization value of magnetic porous carbon was ca.39.3 emu/g.The dye adsorption experiments showed they have higher adsorption rate of cationic dyes than that of anionic dyes.The final adsorption capabilities were 72.56 mg/g for RB,69.79 mg/g for MO and 81.43 mg/g for DB-78.After releasing these dyes in ethanol, repeating adsorption test showed>90%adsorption capabilities were maintained and a slightly decreases of the saturation magnetization value to 34.4 emu/g was observed after 11 times of adsorption-desorption cycles.The triangular pyramid templates with the edge lengths of 400-600 nm were formed by oriented attachment of nanoplates. They gradually shrunk to form amorphous structures under the irradiation of electron beam,and could be dissolved in water.The corresponding FT-IR spectrum showed characteristic vibration adsorptions of SO_4~(2-) anions.Based on the elemental analysis result,it is speculated they were Fe-Na hydroxysulfate.The whole formation procedure was:first,the anhydrous FeCl_3 reacted with SDBS to form NaCl bulk crystals and ethanol solution of DBS salts of Fe~(3+) and Na~+ at 90℃;second,the Fe~(3+) partially hydrolyzed to form DBS salts of nanoparticles,the DBS groups in these nanoparticles decomposed to form the Fe-Na hydroxysulfate nanoplates,which further oriented-aggregated to form the triangular pyramids;then,the ascorbic acid molecules enriched on the template's side surfaces and decompose-polymerized to form shell structured Fe-polymer due to the different crystallographic planes of the base and side surface of the template.
     3 Facile synthesis,property investigation and self-assembly of plate-like magnetic iron oxide nanocrystals
     Plate-likeγ-Fe_2O_3 nanocrystals coated by hydrophilic PVP were synthesized in a simple system.They were 30-40 nm in side length and 10-13 nm in thickness,with the(111) planes as the basal planes.After theseγ-Fe_2O_3 nanocrystals were reduced by the hydrazine hydrate,Fe_3O_4 nanoplates with the same size and morphology maitained were obtained.Althoughγ-Fe_2O_3 and Fe_3O_4 have similar crystal structures, they could be distinguished by XPS and TGA methods.Based on the IR and XPS results,the PVP molecules coordinated withγ-Fe_2O_3 via its C=O groups rather than the N atoms,γ-Fe_2O_3 nanoplates could be well dispersed in various dipolar solvents except water.When they dispersed in water,part of the PVP molecules absorbed on the surface were released,resulting the aggregation of nanoplates.Strong dipolar interactions between nanoplates,which derived from their large size and anisotropic shape,lead them to self-assemble into 1D chain-like structure on substrate.The formation mechanism investigation revealed that the plate-like nanocrystals were formed by a kinetic shape control process,and PVP has two important effects:1) selectively coordinated with the(111) facets ofγ-Fe_2O_3 nanocrystals to reduce the growth rate along the[111]direction,and 2) increase the viscosity of the system to tune the growth rate ofγ-Fe_2O_3.γ-Fe_2O_3 nanoplates were obtained when the nucleation and growth rates were on a proper proportion.Magnetic investigation indicated these nanoplates were ferromagnetic at room temperature,with strong interparticle interaction.Weak applied magnetic field could induce theseγ-Fe_2O_3 nanoplates self-assemble into micrometer-scale 1D bundles.
引文
[1]Feynman,R.P.There's Plenty of Room at the Bottom,Eng.Sci.1960,23,22-36.
    [2]Klabunde,K.J.Nanoscale Materials in Chemistry,Wiley-Interscience:New York,2001.
    [3]张立德,牟季美,纳米材料和纳米结构,科学出版社:北京,2001。
    [4]Klabunde,K.J.;Stark,J.;Koper,O.;Mohs,C.;Park,D.G.;Decker,S.;Jiang,Y.;Lagadic,I.;Zhang,D.Nanocrystals as Stoichiometric Reagents with Unique Surface Chemistry,J.Phys.Chem.1996,100,12142-12153.
    [5]Henglein,A.Small-Particle Research:Physicochemical Properties of Extremely Small Colloidal Metal and Semiconductor Particles,Chem.Rev.1989,89,1861-1873.
    [6]Brus,L.Electronic Wave Functions in Semiconductor Clusters:Experiment and Theory,J.Phys.Chem.1986,90,2555-2560.
    [7]Ball,P.;Garwin,L.Science at the Atomic Scale,Nature 1992,355,761-766.
    [8]Denton,R.;Muhlschlegel,B.;Scalapino,D.J.Electronic Heat Capacity and Susceptibility of Small Metal Particles,Phys.Rev.Lett.1971,26,707-711.
    [9]Awschalom,D.D.;McCord,M.A.;Grinstein,G.Observation of Macroscopic Spin Phenomena in Nanometer-scale Magnets,Phys.Rev.Lett.1990,65,783-786.
    [10]Littau,K.A.;Szajowski,P.J.;Muller,A.J.;Kortan,A.R.;Brus,L.E.A Luminescent Silicon Nanocrystal Colloid via a High-Temperature Aerosol Reaction,J.Phys.Chem.1993,97,1224-1230.
    [11]Roussignol,P.;Ricard,D.;Flytzanis,C.Phonon Broadening and Spectral Hole Burning in Very Small Semiconductor Particles,Phys.Rev.Lett.1989,62,312-315.
    [12]Jeong,U.;Teng,X.;Wang,Y.;Yang,H.;Xia,Y.Superparamagnetic Colloids:Controlled Synthesis and Niche Applications,Adv.Mater.2007,19,33-60.
    [13]Lu,A.;Salabas,E.L.;Schuth,F.Magnetic Nanoparticles:Synthesis,Protection,Functionalization,and Application,Angew.Chem.Int.Ed.2007,46,1222-1244.
    [14]Kodama,R.H.Magnetic nanoparticles,J.Magn.Magn.Mater.1999,200,359-372.
    [15]Homola,A.;Lorenz,M.;Mastrangelo,C.;Tilbury,T.Novel Magnetic Dispersions Using Silica Stabilized Particles,IEEE Trans.Magn.2003,22,716-719.
    [16]Nogues,J.;Sort,J.;Langlais,V.;Skumryev,V.;Surinach,S.;Munoz,J.S.;Baro,M.D.Exchange Bias in Nanostructures,Phys.Rep.2005,422,65-117.
    [17]Buffat,Ph.;Borel,J-P.Size Effect on the Melting Temperature of Gold Particles,Phys.Rev.A 1976,13,2287-2298.
    [18]Wang,Z.L.Characterization of Nanophase Materials,Wiley-VCH:Weinheim,2000.
    [19]Ahmadi,T.S.;Wang,Z.L.;Green,T.C.;Henglein,A.;EI-Sayed,M.A.Shape-Controlled Synthesis of Colloidal Platinum Nanoparticles,Science 1996,272,1924-1925.
    [20]Cushing,B.L.;Kolesnichenko,V.L.;O'Connor,C.J.Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles,Chem.Rev.2004,104,3893-3946.
    [21]Davis,S.C.;Klabunde,K.J.Unsupported Small Metal Particles:Preparation,Reactivity,and Characterization,Chem.Rev.1982,82,153-208.
    [22]Haruta,M.;Yamada,N.;Kobayashi,T.;Iijima,S.Gold Catalysts Prepared by Coprecipitation for Low-Temperature Oxidation of Hydrogen and of Carbon Monoxide,J.Catal.1989,115,301-309.
    [23]Bethke,G.K.;Kung,H.H.Selective CO Oxidation in a Hydrogen-Rich Stream over Au/γ-Al_2O_3 Catalysts,Appl.Catal.A General 2000,194,43-53.
    [24]Cui,Z.;Baizer,L.;Mumper,R.J.Intradermal Immunization with Novel Plasmid DNA-Coated Nanoparticles via a Needle-Free Injection Device,J.Biotechnol.2003,102,105-115.
    [25]Tans,S.J.;Dekker,C.Molecular Transistors Potential Modulations along Carbon Nanotubes,Nature 2000,404,834-835.
    [26]Postma,H.W.C.;Teepen,T.;Yao,Z.;Grifoni,M.;Dekker,C.Carbon Nanotube Single-Electron Transistors at Room Temperature,Science 2001,293,76-79.
    [27]Bachtold,A.;Hadley,P.;Nakanishi,T.;Dekker,C.Logic Circuits with Carbon Nanotube Transistors,Science 2001,294,1317-1320.
    [28]Whittingham,M.S.Lithium Batteries and Cathode Materials,Chem.Rev.2004,104,4271-4302.
    [29]Kiwi,J.;Gratzel,M.Colloidal Redox Catalysts for Evolution of Oxygen and for Light-Induced Evolution of Hydrogen from Water,Angew.Chem.Int.Ed.1979,18,624-626.
    [30]Riegel,G.;Bolton,J.R.Photocatalytic Efficiency Variability in TiO2 Particles,J.Phys.Chem.1995,99,4215-4224.
    [31]Kay,A.;Humphry-Baker,R.;Graetzel,M.Artificial Photosynthesis.2.Investigations on the Mechanism of Photosensitization of Nanocrystalline TiO_2 Solar Cells by Chlorophyll Derivatives,J.Phys.Chem.1994,98,952-959.
    [32]Boronina,T.;Klabunde,K.J.;Sergeev,G.Destruction of Organohalides in Water Using Metal Particles:Carbon Tetrachloride/Water Reactions with Magnesium,Tin,and Zinc,Environ.Sci.Technol.1995,29,1511-1517.
    [33]Khaleel,A.;Kapoor,P.N.;Klabunde,K.J.Nanocrystalline Metal Oxides as New Adsorbents for Air Purification,Nanostructured Materials,1999,11,459-468.
    [34]Lucas,E.M.;Klabunde,K.J.Nanocrystals as Destructive Absorbants for Mimcs of Chemical Warfare Agents,Nanostructured Materials,1999,12,179-182.
    [35]Koper,O.B.;Lagadic,I.;Volodin,A.;Klabunde,K.J.Alkaline-Earth Oxide Nanoparticles Obtained by Aerogel Methods.Characterization and Rational for Unexpectedly High Surface Chemical Reactivities,Chem.Mater.1997,9,2468-2480.
    [36]Lou,X.W.;Archer,L.A.;Yang,Z.Hollow Micro-/Nanostructures:Synthesis and Applications,Adv.Mater.2008,20,3987-4019.
    [37]Caruso,F.;Caruso,R.;Mohwald,H.Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating,Science 1998,282,1111-1114.
    [38]Imhof,A.Preparation and Characterization of Titania-Coated Polystyrene Spheres and Hollow Titania Shells,Langmuir 2001,17,3579-3585.
    [39]Qian,H.S.;Lin,G.F.;Zhang,Y.X.;Gunawan,P.;Xu,R.A New Approach to Synthesize Uniform Metal Oxide Hollow Nanospheres via Controlled Precipitation,Nanotechnology 2007,18,355602-355607.
    [40]Collins,A.M.;Spickermann,C.;Mann,S.Synthesis of Titania Hollow Microspheres Using Non-Aqueous Emulsions,J.Mater.Chem.2003,13,1112-1114.
    [41]Li,W.;Sha,X.;Dong,W.;Wang,Z.Synthesis of Titania Hollow Microspheres Using Non-Aqueous Emulsions,Chem.Commun.2002,2434-2435.
    [42]Hu,J.S.;Guo,Y.G.;Liang,H.P.;Wan,L.J.;Bai,C.L.;Wang,Y.G.Interface Assembly Synthesis of Inorganic Composite Hollow Spheres,J.Phys.Chem.B 2004,108,9734-9738.
    [43]Xu,H.;Wang,W.Template Synthesis of Multishelled Cu_2O Hollow Spheres with a Single-Crystalline Shell Wall,Angew.Chem.Int.Ed.2007,46,1489-1492.
    [44]Liu,Q.;Liu,H.;Han,M.;Zhu,J.;Liang,Y.;Xu,Z.;Song,Y.Nanometer-Sized Nickel Hollow Spheres,Adv.Mater.2005,17,1995-1999.
    [45]Ding,Y.;Hu,Y.;Jiang,X.;Zhang,L.;Yang,C.Polymer-Monomer Pairs as a Reaction System for the Synthesis of Magnetic Fe_3O_4-Polymer Hybrid Hollow Nanospheres,Angew.Chem.Int.Ed.2004,43,6369-6372.
    [46]Li,B.;Xie,Y.;Jing,M.;Rong,G.;Tang,Y.;Zhang,G.In_2O_3 Hollow Microspheres:Synthesis from Designed In(OH)_3 Precursors and Applications in Gas Sensors and Photocatalysis,Langmuir 2006,22,9380-9385.
    [47]Cao,A.;Hu,J.;Liang,H.;Wan,L.Self-Assembled Vanadium Pentoxide(V_2O_5) Hollow Microspheres from Nanorods and Their Application in Lithium-Ion Batteries,Angew.Chem.Int.Ed.20115,44,4391-4395.
    [48]Ma,Y.;Qi,L.;Ma,J.;Cheng,H.Facile Synthesis of Hollow ZnS Nanospheres in Block Copolymer Solutions,Langmuir 2003,19,4040-4042.
    [49]Guo,L.;Liang,F.;Wen,X.;Yang,S.;He,L.;Zheng,W.;Chen,C.;Zhong,Q.Uniform Magnetic Chains of Hollow Cobalt Mesospheres from One-Pot Synthesis and Their Assembly in Solution,Adv.Funct.Mater.2007,17,425-430.
    [50]Chen,X.;Wang,Z.;Wang,X.;Zhang,R.;Liu,X.;Lin,W.;Qian,Y.Synthesis of Novel Copper Sulfide Hollow Spheres Generated from Copper(Ⅱ)-Thiourea Complex,J.Cryst.Growth 2004,263,570-574.
    [51]Wang,H.;Liang,J.;Fan,H.;Xi,B.;Zhang,M.;Xiong,S.;Zhu,Y.;Qian,Y.Synthesis and Gas Sensitivities of SnO_2 Nanorods and Hollow Microspheres,J.Solid State Chem.2008,181,122-129.
    [52]Yin,Y.;Rioux,R.M.;Erdonmez,C.K.;Hughes,S.;Sonmorjai,G.A.;Alivisatos,A.P.Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect,Science 2004,304,711-714.
    [53]Peng,S.;Sun,S.H.Synthesis and Characterization of Monodisperse Hollow Fe_3O_4 Nanoparticles,Angew.Chem.Int.Ed.2007,46,4155-4158.
    [54]Wang,Y.L.;Cai,L.;Xia,Y.N.Monodisperse Spherical Colloids of Pb and Their Use as Chemical Templates to Produce Hollow Particles,Adv.Mater.2005,17,473-477.
    [55]Chiang,R.K.;Chiang,R.T.Formation of Hollow Ni_2P Nanoparticles Based on the Nanoscale Kirkendall Effect,Inorg.Chem.2007,46,369-371.
    [56]Tan,H.;Li,S.P.;Fan,W.Y.Core-Shell and Hollow Nanocrystal Formation via Small Molecule Surface Photodissociation;Ag@Ag_2Se as an Example,J.Phys.Chem.B 2006,110,15812-15816.
    [57]Sun,Y.G.;Mayers,B.T.;Xia,Y.N.Template-Engaged Replacement Reaction:A One-Step Approach to the Large-Scale Synthesis of Metal Nanostructures with Hollow Interiors,Nano Lett.2002,2,481-485.
    [58]Chen,M.;Gao,L.Synthesis and Characterization of Ag Nanoshells by a Facile Sacrificial Template Route through in situ Replacement Reaction,Inorg.Chem.2006,45,5145-5149.
    [59]Liang,H.P.;Wang,L.J.;Bai,C.L.;Jiang,L.Gold Hollow Nanospheres:Tunable Surface Plasmon Resonance Controlled by Interior-Cavity Sizes,J.Phys.Chem.B 2005,109,7795-7800.
    [60]Liang,H.P.;Zhang,H.M.;Hu,J.S.;Guo,Y.G.;Wan,L.J.;Bai,C.L.Pt Hollow Nanospheres:Facile Synthesis and Enhanced Electrocatalysts,Angew.Chem.Int.Ed.2004,43,1540-1543.
    [61]Miao,J.J.;Jiang,L.P.;Liu,C.;Zhu,J.M.;Zhu,J.J.General Sacrificial Template Method for the Synthesis of Cadmium Chalcogenide Hollow Structures,Inorg.Chem.2007,46,5673-5677.
    [62]Liu,B.;Zeng,H.C.Fabrication of ZnO "Dandelions" via a Modified Kirkendall Process,J.Am.Chem.Soc.2004,126,16744-16746.
    [63]Jeong,U.Y.;Xia,Y.N.Photonic Crystals with Thermally Switchable Stop Bands Fabricated from Se@Ag_2Se Spherical Colloids,Angew.Chem.Int.Ed.2005,44,3099-3103.
    [64]Lou,X.;Wang,Y.;Yuan,C.;Lee,J.;Archer,L.A.Template-Free Synthesis of SnO_2 Hollow Nanostructures with High Lithium Storage Capacity,Adv.Mater.2006,18,2325-2329.
    [65]Liu,B.;Zeng,H.Symmetric and Asymmetric Ostwald Ripening in the Fabrication of Homogeneous Core-Shell Semiconductors,Small 2005,1,566-571.
    [66]Cao,X.;Gu,L.;Zhuge,L.;Gao,W.;Wang,W.;Wu,S.Template-Free Preparation of Hollow Sb_2S_3 Microspheres as Supports for Ag Nanoparticles and Photocatalytic Properties of the Constructed Metal-Semiconductor Nanostructures,Adv.Funct.Mater.2006,16,896-902.
    [67]Li,J.;Zeng,H.Hollowing Sn-Doped TiO_2 Nanospheres via Ostwald Ripening,J.Am.Chem.Soc.2007,129,15839-15847.
    [68]Zhu,L.;Xiao,H.;Zhang,W.;Yang,G.;Fu,S.One-Pot Template-Free Synthesis of Monodisperse and Single-Crystal Magnetite Hollow Spheres by a Simple Solvothermal Route,Cryst.Growth Des.2008,8,957-963.
    [69]Sun,Y.;Xia,Y.Shape-Controlled Synthesis of Gold and Silver Nanoparticles,Science 2002,298,2176-2179.
    [70]Yang,J.;Qi,L.;Lu,C.;Ma,J.;Cheng,H.Morphosynthesis of Rhombododecahedral Silver Cages by Self-Assembly Coupled with Precursor Crystal Templating,Angew.Chem.Int.Ed.2005,44,598-603.
    [71]Lu,C.;Qi,L.;Yang,J.;Wang,X.;Zhang,D.;Xie,J.;Ma,J.One-Pot Synthesis of Octahedral Cu_2O Nanocages via a Catalytic Solution Route,Adv.Mater.2005,17,2562-2567.
    [72]Cao,H.;Qian,X.;Wang,C.;Ma,X.;Yin,J.;Zhu,Z.High Symmetric 18-Facet Polyhedron Nanocrystals of Cu_7S_4 with a Hollow Nanocage,J.Am.Chem.Soc.2005,127,16024-16025.
    [73]Jiao,S.;Xu,L.;Jiang,K.;Xu,D.Well-Defined Non-spherical Copper Sulfide Mesocages with Single-Crystalline Shells by Shape-Controlled Cu_2O Crystal Templating,Adv.Mater.2006,18,1174-1177.
    [74]Ng,C.H.B.;Fan,W.Y.Facile Synthesis of Single-Crystalline γ-CuI Nanotetrahedrons and Their Induced Transformation to Tetrahedral CuO Nanocages,J.Phys.Chem.C 2007,111,9166-9171.
    [75]Yang,H.G.;Zeng,H.C.Self-Construction of Hollow SnO_2 Octahedra Based on Two-Dimensional Aggregation of Nanocrystallites,Angew.Chem.Int.Ed.2004,43,5930-5933.
    [76]Ye,L.;Guo,W.;Yang,Y.;Du,Y.;Xie,Y.Directing the Architecture of Various MoS_2 Hierarchical Hollow Cages through the Controllable Synthesis of Surfactant/Molybdate Composite Precursors,Chem.Mater.2007,19,6331-6337.
    [77]He,T.;Chen,D.;Jiao,X.;Wang,Y.Co_3O_4 Nanoboxes:Surfactant-Templated Fabrication and Microstructure Characterization,Adv.Mater.2006,18,1078-1082.
    [78]Lee,J.;Hasan,W.;Lee,M.;Odom,T.W.Optical Properties and Magnetic Manipulation of Bimaterial Nanopyramids,Adv.Mater 2007,19,4387-4391.
    [79]Hasan,W.;Lee,J.;Henzie,J.;Odom,T.W.Selective Functionalization and Spectral Identification of Gold Nanopyramids,J.Phys.Chem.C 2007,111,17176-17179.
    [80]Love-Gates,B.D.;Wolfe,D.B.;Paul,K.E.;Whitesides,G.M.Fabrication and Wetting Properties of Metallic Half-Shells with Submicron,Nano Lett.2002,2,891-894.
    [81]Liu,J.;Maaroof,A.I.;Wieczorek,L.;Cortie,M.B.Fabrication of Hollow Metal "Nanocaps" and Their Red-Shifted Optical Absorption Spectra,Adv.Mater.2005,17,1276-1281.
    [82]Charnay,C.;Lee,A.;Man,S.;Moran,C.E.;Radloff,C.;Bradley,R.K.;Halas,N.J.Reduced Symmetry Metallodielectric Nanoparticles:Chemical Synthesis and Plasmonic Properties,J.Phys.Chem.B 2003,107,7327-7333.
    [83]Yang,S.;Yang,D.;Kim,J.;Hong,J.;Kim,H.;Kim,I.;Lee,H.Hollow TiO_2Hemispheres Obtained by Colloidal Templating for Application in Dye-Sensitized Solar Cells,Adv.Mater.2008,20,1059-1064.
    [84]Xu,Q.;Tonks,I.;Fuerstman,M.J.;Love,J.C.;Whitesides,G.M.Fabrication of Free-Standing Metallic Pyramidal Shells,Nano Lett.2004,4,2509-2511.
    [85]Henzie,J.;Kwak,E.;Odom,T.W.Mesoscale Metallic Pyramids with Nanoscale Tips,Nano Lett.2005,5,1199-1202.
    [86]Martin,C.R.Membrane-Based Synthesis of Nanomaterials,Chem.Mater.1996,8,1739-1746.
    [87]Braun,E;Eichen,Y.;Sivan,U.;Ben-Yoseph,G.DNA-Templated Assembly and Electrode Attachment of a Conducting Silver Wire,Nature 1998,391,775-778.
    [88]Jun,Y.;Choi,J.;Cheon,J.Shape Control of Semiconductor and Metal Oxide Nanocrystals through Nonhydrolytic Colloidal Routes,Angew.Chem.Int.Ed.2006,45,3414-3439.
    [89]Zhang,H.;Huang,F.;Gilbert,B.;Banfield,J.F.Molecular Dynamics Simulations,Thermodynamic Analysis,and Experimental Study of Phase Stability of Zinc Sulfide Nanoparticles,J.Phys.Chem.B 2003,107,13051-13060.
    [90]Manna,L.;Scher,E.C.;Alivisatos,A.P.Synthesis of Soluble and Processable Rod-,Arrow-,Teardrop-,and Tetrapod-Shaped CdSe Nanocrystals,J.Am.Chem.Soc.2000,122,12700-12706.
    [91]Ghezelbash,A.;Korgel,B.A.Nickel Sulfide and Copper Sulfide Nanocrystal Synthesis and Polymorphism,Langmuir,2005,21,9451-9456.
    [92]Manna,L.;Scher,E.C.;Alivisatos,A.P.Synthesis of Soluble and Processable Rod-,Arrow-,Teardrop-,and Tetrapod-Shaped CdSe Nanocrystals.J.Am.Chem.Soc.2000,122,12700-12706.
    [93]Jun,Y.;Casula,M.F.;Sim,J.;Kim,S.Y.;Cheon,J.;Alivisatos,A.P.Surfactant-Assisted Elimination of a High Energy Facet as a Means of Controlling the Shapes of TiO_2 Nanocrystals.J.Am.Chem.Soc.2003,125,15981-15985.
    [94]Yin,Y.;Alivisatos,A.P.Colloidal Nanocrystal Synthesis and the Organic-Inorganic Interface,Nature 2005,437,664-670.
    [95]Huber,D.L.Synthesis,Properties,and Applications of Iron Nanoparticles,Small,2005,1,482-501.
    [96]Park,J.;Cheon,J.Synthesis of "Solid Solution" and "Core-Shell" Type Cobalt-Platinum Magnetic Nanoparticles via Transmetalation Reactions,J.Am.Chem.Soc.2001,123,5743-5746.
    [97]Lee,J.;Lee,D.;Oh,E.;Kim,J.;Kim,Y.;Jin,S.;Kim,H.;Hwang,Y.;Kwak,J.H.;Park,J.;Shin,C.;Kim,J.;Hyeon,T.Preparation of a Magnetically Switchable Bio-electrocatalytic System Employing Cross-linked Enzyme Aggregates in Magnetic Mesocellular Carbon Foam,Angew.Chem.Int.Ed.2005,44,7427-7432.
    [98]Lu,A.;Schmidt,W.;Matoussevitch,N.;B(o|¨)nnermann,H.;Spliethoff,B.;Tesche,B.;Bill,E.;Kiefer,W.;Sch(u|¨)th,F.Nanoengineering of a Magnetically Separable Hydrogenation Catalyst,Angew.Chem.Int.Ed.2004,43,4303-4306.
    [99]Griffiths,C.H.;O'Horo,M.P.;Smith,T.W.The Structure,Magnetic Characterization,and Oxidation of Colloidal Iron Dispersions,J.Appl.Phys.1979,50,7108-7115.
    [100]Smith,T.W.;Wychick,D.Colloidal Iron Dispersions Prepared via the Polymer-Catalyzed Decomposition of Iron Pentacarbonyl,J.Phys.Chem.1980,84,1621-1629.
    [101]Sun,S.;Murray,C.;Weller,D.;Folks,L.;Moser,A.Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices,Science 2000,287,1989-1992.
    [102]Dumestre,F.;Chaudret,B.;Amiens,C.;Renaud,P.;Fejes,P.Superlattices of Iron Nanocubes Synthesized from Fe[N(SiMe_3)_2]_2,Science 2004,303,821-823.
    [103]Strikanth,H.;Hajndl,R.;Chirinos,C.;Sanders,J.Magnetic Studies of Polymer-Coated Fe Nanoparticles Synthesized by Microwave Plasma Polymerization,Appl.Phys.Lett.2001,79,3503-3505.
    [104]Brenner,J.R.;Harkness,J.B.L.;Knickelbein,M.B.;Krumdick,G.K.;Marshall,C.L.Microwave Plasma Synthesis of Carbon-Supported Ultrafine Metal Particles,Nanostruct.Mater.1997,8,1-17.
    [105]Suslick,K.;Fang,M.;Hyeon,T.Sonochemical Synthesis of Iron Colloids,J.Am.Chem.Soc.1996,118,11960-11961.
    [106]Elihn,K.;Otten,F.;Boman,M.;Kruis,F.E.;Fissan,H.;Carlsson,J.Nanoparticle Formation by Laser-Assisted Photolysis of Ferrocene,Nanostruct.Mater.1999,12,79-82.
    [107]Guo,L.;Huang,Q.;Li,X.;Yang,S.Iron Nanoparticles:Synthesis and Applications in Surface Enhanced Raman Scattering and Electrocatalysis,Phys.Chem.Chem.Phys.2001,3,1661-1665.
    [108]Carpenter,E.E.;Sims,J.A.;Wienmann,J.A.;Zhou,W.L.;O'Connor,C.J.Magnetic Properties of Iron and Iron Platinum Alloys Synthesized via Microemulsion Techniques,J.Appl.Phys.2000,87,5615-5617.
    [109]Comell,R.M.;Schwertmann,U.The Iron Oxide,Wiley-VCH:Weinheim,2003.
    [110]Ozaki,M.Kratohvil,S.;Matijevic,E.Formation of Monodispersed Spindletype Hematite Particles,J.Colloid Interface Sci.1984,102,146-151.
    [111]Sugimoto,T.;Wang,Y.;Itoh,H.;Muramatsu,A.Systematic Control of Size,Shape and Internal Structure of Monodisperse α-Fe_2O_3 Particles,Colloids Surf.A:Physicochem.Eng.Aspects 1998,134,265-279.
    [112]Sugimoto,T.;Itoh,H.;Mochida,T.Shape Control of Monodisperse Hematite Particles by Organic Additives in the Gel-Sol System,J.Colloid Interface Sci.1998,205,42-52.
    [113]Wang,W.;Howe,J.Y.;Gu,B.Structure and Morphology Evolution of Hematite(α-Fe_2O_3) Nanoparticles in Forced Hydrolysis of Ferric Chloride,J.Phys.Chem.C 2008,112,9203-9208.
    [114]Kandori,K.;Yamamoto,N.;Yasukawa,A.;Ishikawa,T.Preparation and Characterization of Disk-Shaped Hematite Particles by a Forced Hydrolysis Reaction in the Presence of Polyvinyl Alcohol,Phys.Chem.Chem.Phys.2002,4,6116-6122.
    [115]Niederberger,M.;Krumeich,F.;Hegetschweiler,K.;Nesper,R.An Iron Polyolate Complex as a Precursor for the Controlled Synthesis of Monodispersed Iron Oxide Colloids,Chem.Mater.2002,14,78-82.
    [116]Jia,C.;Sun,L.;Yan,Z.;You,L.;Luo,F.;Han,X.;Pang,Y.;Zhang,Z.;Yan,C.Single-Crystalline Iron Oxide Nanotubes,Angew.Chem.Int.Ed.2005,44,2-6.
    [117]Jia,B.;Gao,L.Growth of Well-Defined Cubic Hematite Single Crystals:Oriented Aggregation and Ostwald Ripening,Cryst.Growth Des.2008,8,1372-1376.
    [118]Wang,S.;Min,Y.;Yu,S.Synthesis and Magnetic Properties of Uniform Hematite Nanocubes,J.Phys.Chem.C 2007,111,3551-3554.
    [119]Wu,C.;Yin,P.;Zhu,X.;OuYang,C.;Xie,Y.Synthesis of Hematite(γ-Fe_2O_3)Nanorods:Diameter-Size and Shape Effects on Their Applications in Magnetism,Lithium Ion Battery,and Gas Sensors,J.Phys.Chem.B 2006,110,17806-17812.
    [120]Zeng,S.;Tang,K.;Li,T.;Liang,Z.;Wang,D.;Wang,Y.;Zhou,W.Hematite Hollow Spindles and Microspheres:Selective Synthesis,Growth Mechanisms,and Application in Lithium Ion Battery and Water Treatment,J.Phys.Chem.C 2007,111,10217-10225.
    [121]Wu,Z.;Yu,K.;Zhang,S.;Xie,Y.Hematite Hollow Spheres with a Mesoporous Shell:Controlled Synthesis and Applications in Gas Sensor and Lithium Ion Batteries,J.Phys.Chem.C 2008,112,11307-11313.
    [122]Zeng,S.;Tang,K.;Li,T.;Liang,Z.;Wang,D.;Wang,Y.;Qi,Y.;Zhou,W.Facile Route for the Fabrication of Porous Hematite Nanoflowers:Its Synthesis,Growth Mechanism,Application in the Lithium Ion Battery,and Magnetic and Photocatalytic Properties,J.Phys.Chem.C 2008,112,4836-4843.
    [123]Li,X.;Yu,X.;He,J.;Xu,Z.Controllable Fabrication,Growth Mechanisms,and Photocatalytic Properties of Hematite Hollow Spindles,J.Phys.Chem.C 2009, 113,2837-2845.
    [124]Jeong,U.;Teng,X.;Wang,Y.;Yang,H.;Xia,Y.Superparamagnetic Colloids:Controlled Synthesis and Niche Applications,Adv.Mater 2007,19,33-60.
    [125]Zeng,H.;Sun,S.Syntheses,Properties,and Potential Applications of Multicomponent Magnetic Nanoparticles,Adv.Funct.Mater.2008,18,391-400.
    [126]Bee,A.;Massart,R.;Neveu,S.;Synthesis of very Fine Maghemite Particles,J.Magn.Magn.Mater.1995,149,6-9.
    [127]Hyeon,T.;Lee,S.S.;Park,J.;Chung,Y.;Na,H.B.Synthesis of Highly Crystalline and Monodisperse Maghemite Nanocrystallites without a Size-Selection Process,J.Am.Chem.Soc.2001,123,12798-12801.
    [128]Sun,S.;Zeng,H.Size-Controlled Synthesis of Magnetite Nanoparticles,J.Am.Chem.Soc.2002,124,8204-8205.
    [129]Jana,N.R.;Chen,Y.;Peng,X.Size-and Shape-Controlled Magnetic(Cr,Mn,Fe,Co,Ni) Oxide Nanocrystals via a Simple and General Approach,Chem.Mater.2004,16,3931-3935.
    [130]Park,J.;An,K.;Hwang,Y.;Park,J.;Noh,H.;Kim,J.;Park,J.;Hwang,N.;Hyeon,T.Ultra-Large-Scale Syntheses of Monodisperse Nanocrystals,Nat.Mater.2004,3,891-895.
    [131]Li,Z.;Sun,Q.;Gao,M.Preparation of Water-Soluble Magnetite Nanocrystals from Hydrated Ferric Salts in 2-Pyrrolidone:Mechanism Leading to Fe_3O_4,Angew.Chem.Int.Ed.2005,44,123-126.
    [132]Wang,X.;Zhuang,J.;Peng,Q.;Li,Y.A General Strategy for Nanocrystal Synthesis,Nature 2005,437,121-124.
    [133]Deng,H.;Li,X.;Peng,Q.;Wang,X.;Chen,J.;Li,Y.Monodisperse Magnetic Single-Crystal Ferrite Microspheres,Angew.Chem.Int.Ed.2005,44,2782-2785.
    [1]Caruso,F.;Caruso,R.;Mohwald,H.Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating,Science 1998,282,1111-1114.
    [2]Liu,J.;Maaroof,A.I.;Wieczorek,L;Cortie,M.B.Fabrication of Hollow Metal "Nanocaps" and Their Red-Shifted Optical Absorption Spectra,Adv.Mater.2005,17,1276-1281.
    [3]Cao,A.;Hu,J.;Liang,H.;Wan,L.Self-Assembled Vanadium Pentoxide(V_2O_5)Hollow Microspheres from Nanorods and Their Application in Lithium-Ion Batteries,Angew.Chem.Int.Ed.2005,44,4391-4395.
    [4]Li,X.;Lou,T.;Sun,X.;Li,Y.Highly Sensitive WO3 Hollow-Sphere Gas Sensors,Inorg.Chem.2004,43,5442-5449.
    [5]Yin,Y.;Rioux,R.M.;Erdonmez,C.K.;Hughes,S.;Sonmorjai,G.A.;Alivisatos,A.P.Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect,Science 2004,304,711-714.
    [6]Dhas,N.A.;Suslick,K.S.Sonochemical Preparation of Hollow Nanospheres and Hollow Nanocrystals,J.Am.Chem.Soc.2005,127,2368-2369.
    [7]Kim,S.;Kim,M.;Lee,W.Y.;Hyeon,T.Fabrication of Hollow Palladium Spheres and Their Successful Application to the Recyclable Heterogeneous Catalyst for Suzuki Coupling Reactions,J.Am.Chem.Soc.2002,124,7642-7643.
    [8]Wolosiuk,A.;Armagan,O.;Braun,P.V.Double Direct Templating of Periodically Nanostructured ZnS Hollow Microspheres,J.Am.Chem.Soc.2005,127,16356-16357.
    [9]Zhong,Z.;Yin,Y.;Gates,B.;Xia,Y.Preparation of Mesoscale Hollow Spheres of TiO2 and SnO_2 by Templating Against Crystalline Arrays of Polystyrene Beads,Adv.Mater.2000,12,206-209.
    [10]Liang,Z.;Susha,A.;Caruso,F.Gold Nanoparticle-Based Core-Shell and Hollow Spheres and Ordered Assemblies Thereof, Chem. Mater. 2003, 15, 3176-3183.
    
    [11] Sun, X.; Li, Y. Ga_2O_3 and GaN Semiconductor Hollow Spheres, Angew. Chem. Int. Ed. 2004,43,3827-3831.
    
    [12] He, T.; Chen, D.; Jiao, X.; Xu, Y.; Gu, Y. Surfactant-Assisted Solvothermal Synthesis of Co_3O_4 Hollow Spheres with Oriented-Aggregation Nanostructures and Tunable Particle Size, Langmuir 2004,20, 8404-8408.
    
    [13] Zhang, D.; Qi, L.; Ma, J.; Cheng, H. Synthesis of Submicrometer-Sized Hollow Silver Spheres in Mixed Polymer-Surfactant Solutions, Adv. Mater. 2002, 14, 1499-1502.
    
    [14] Sun, Q.; Kooyman, P. J.; Grossmann, J. G.; Bomans, P. H. H. H.; Frederik, P. M.; Magusin, P. C. M. M.; Beelen, T. P. M.; van Santen, R. A.; Sommerdijk, N. A. J. M. The Formation of Well-Defined Hollow Silica Spheres with Multilamellar Shell Structure, Adv. Mater. 2003,15, 1097-1100.
    
    [15] Putlitz, B.; Landfester, K.; Fischer, H.; Antonietti, M. The Generation of "Armored Latexes" and Hollow Inorganic Shells Made of Clay Sheets by Templating Cationic Miniemulsions and Latexes, Adv. Mater. 2001,13, 500-503.
    [16] Nakashima, T.; Kimizuku, N. Interfacial Synthesis of Hollow TiO_2 Microspheres in Ionic Liquids, J. Am. Chem. Soc. 2003,125,6386-6387.
    
    [17] Peng, Q.; Dong, Y.; Li, Y. ZnSe Semiconductor Hollow Microspheres, Angew. Chem. Int. Ed. 2003,42, 3027-3030.
    
    [18] Liang, H.; Zhang, H.; Hu, J.; Guo, Y.; Wan, L.; Bai, C. Pt Hollow Nanospheres: Facile Synthesis and Enhanced Electrocatalysts, Angew. Chem. Int. Ed. 2004, 43, 1540-1543.
    
    [19] Liu, B.; Zeng, H. Fabrication of ZnO "Dandelions" via a Modified Kirkendall Process, J. Am. Chem. Soc. 2004,126, 16744-16745.
    
    [20] Wang, Y.; Cai, L.; Xia, Y. Monodisperse Spherical Colloids of Pb and Their Use as Chemical Templates to Produce Hollow Particles, Adv. Mater. 2005,17,473-477.
    [21] Vasquez, Y.; Sra, A. K.; Schaak, R. E. One-Pot Synthesis of Hollow Superparamagnetic CoPt Nanospheres, J. Am. Chem. Soc. 2005,127, 12504-12505.
    [22]Yan,C.;Xue,D.Room Temperature Fabrication of Hollow ZnS and ZnO Architectures by a Sacrificial Template Route,J.Phys.Chem.B 2006,110,7102-7106.
    [23]Chang,Y.;Teo,J.J.;Zeng,H.C.Formation of Colloidal CuO Nanocrystallites and Their Spherical Aggregation and Reductive Transformation to Hollow Cu_2O Nanospheres,Langmuir 2005,21,1074-1079.
    [24]Sun,Y.;Xia,Y.Shape-Controlled Synthesis of Gold and Silver Nanoparticles,Science 2002,298,2176-2179.
    [25]Yang,J.;Qi,L.;Lu,C.;Ma,J.;Cheng,H.Morphosynthesis of Rhombododecahedral Silver Cages by Self-Assembly Coupled with Precursor Crystal Templating,Angew.Chem.Int.Ed.2005,44,598-603.
    [26]Lu,C.;Qi,L.;Yang,J.;Wang,X.;Zhang,D.;Xie,J.;Ma,J.One-Pot Synthesis of Octahedral Cu_2O Nanocages via a Catalytic Solution Route,Adv.Mater.2005,17,2562-2567.
    [27]Cao,H.;Qian,X.;Wang,C.;Ma,X.;Yin,J.;Zhu,Z.High Symmetric 18-Facet Polyhedron Nanocrystals of Cu_7S_4 with a Hollow Nanocage,J.Am.Chem.Soc.2005,127,16024-16025.
    [28]Jiao,S.;Xu,L.;Jiang,K.;Xu,D.Well-Defined Non-spherical Copper Sulfide Mesocages with Single-Crystalline Shells by Shape-Controlled Cu_2O Crystal Templating,Adv.Mater.2006,18,1174-1177.
    [29]He,T.;Chen,D.;Jiao,X.;Wang,Y.Co_3O_4 Nanoboxes Surfactant-Templated Fabrication and Microstructure Characterization,Adv.Mater.2006,18,1078-1082.
    [30]Wei,F.;Li,G.;Zhang,Z.Hydrothermal synthesis of spindle-like ZnS hollow nanostructures,Mater.Res.Bull.2005,40,1402-1407.
    [31]Xuan,S.;Fang,Q.;Hao,L.;Jiang,W.;Gong,X.;Hu,Y.;Chen,Z.Fabrication of Spindle Fe_2O_3@Polypyrrole Core/Shell Particles by Surface-Modified Hematite Templating and Conversion to Spindle Polypyrrole Capsules and Carbon Capsules,J.Colloid lnterface Sci.2007,314,502-509.
    [32]Lou,X.W.;Yuan,C.;Archer,L.A.Double-Walled SnO_2 Nano-Cocoons with Movable Magnetic Cores,Adv.Mater 2007,19,3328-3332.
    [33]Frank,S.N.;Bard,A J.Heterogeneous Photocatalytic Oxidation of Cyanide and Sulfite in Aqueous Solutions at Semiconductor Powders,J.Phys.Chem.1977,81,1484-1488.
    [34]Chauhan,P.;Annapoorni,S.;Trikha,S.K.Humidity-Sensing Properties of Nanocrystalline Haematite Thin Films Prepared by Sol-Gel Processing,Thin Solid Film 1999,346,266-268.
    [35]Huo,L.;Li,W.;Lu,L.;Cui,H.;Xi,S.;Wang,J.;Zhao,B.;Shen,Y.;Lu,Z.Preparation,Structure,and Properties of Three-Dimensional Ordered α-Fe_2O_3Nanoparticulate Film,Chem.Mater.2000,12,790-794.
    [36]Ozaki,M.Kratohvil,S.;Matijevic,E.Formation of Monodispersed Spindle-type Hematite Particles,J.Colloid Interface Sci.1984,102,146-151.
    [37]Sugimoto,T.;Wang,Y.;Itoh,H.;Muramatsu,A.Systematic Control of Size,Shape and Internal Structure of Monodisperse α-Fe_2O_3 Particles,Colloids Surf.A:Physicochem.Eng.Aspects 1998,134,265-279.
    [38]Sugimoto,T.;Itoh,H.;Mochida,T.Shape Control of Monodisperse Hematite Particles by Organic Additives in the Gel-Sol System,J.Colloid Interface Sci.1998,205,42-52.
    [39]Sugimoto,T.Formation of Monodispersed Nano- and Micro-Particles Controlled in Size,Shape,and Internal Structure,Chem.Eng.Technol.2003,26,313-321.
    [40]Jia,C.J.;Sun,L.D.;Yan,Z.G.;You,L.P.;Luo,F.;Han,X.D.;Pang,Y.C.;Zhang,Z.;Yan,C.H.Single-Crystalline Iron Oxide Nanotubes,Angew.Chem.Int.Ed.2005,44,4328-4333.
    [41]Jia,C.J.;Sun,L.D.;Yah,Z.G.;Pang,Y.C.;You,L.P.;Yan,C.H.Iron Oxide Tube-in-Tube Nanostructures,J.Phys.Chem.C 2007,111,13022-13027.
    [42]Bang,J.H.;Suslick,K.S.Sonochemical Synthesis of Nanosized Hollow Hematite,J.Am.Chem.Soc.2007,129,2242-2243.
    [43]Li,L.;Chu,Y.;Liu,Y.;Dong,L.Template-Free Synthesis and Photocatalytic Properties of Novel Fe_2O_3 Hollow Spheres,J.Phys.Chem.C 2007,111,2123-2127.
    [44]Zeng,S.;Tang,K.;Li,T.;Liang,Z.;Wang,D.;Wang,Y.;Zhou,W.Hematite Hollow Spindles and Microspheres:Selective Synthesis,Growth Mechanisms,and Application in Lithium Ion Battery and Water Treatment,J.Phys.Chem.C 2007,111,10217-10225.
    [45]Chen,J.;Xu,L.;Li,W.;Gou,X.α-Fe_2O_3 Nanotubes in Gas Sensor and Lithium-Ion Battery Applications,Adv.Mater.2005,17,582-586.
    [46]Sun.Z.;Yuan,H.;Liu,Z.;Han,B.;Zhang,X.A Highly Efficient Chemical Sensor Material for H_2S:α-Fe_2O_3 Nanotubes Fabricated Using Carbon Nanotube Templates,Adv.Mater.2005,17,2993-2997.
    [47]Hu,X.;Yu,J.C.;Gong,J.;Li,Q.;Li,G.α-Fe_2O_3 Nanorings Prepared by a Microwave-Assisted Hydrothermal Process and Their Sensing Properties,Adv.Mater.2007,19,2324-2329.
    [48]Gou,X.;Wang,G.;Kong,X.;Wexler,D.;Horvat,J.;Yang,J.;Park,J.Flutelike Porous Hematite Nanorods and Branched Nanostructures:Synthesis,Charaeterisation and Application for Gas-Sensing,Chem.Eur.J.2008,14,5996-6002.
    [49]Du,D.;Cao,M.Ligand-Assisted Hydrothermal Synthesis of Hollow Fe_2O_3Urchin-like Microstructures and Their Magnetic Properties,J.Phys.Chem.C 2008,112,10754-10758.
    [50]Wu,Z.;Yu,K.;Zhang,S.;Xie,Y.Hematite Hollow Spheres with a Mesoporous Shell:Controlled Synthesis and Applications in Gas Sensor and Lithium Ion Batteries,J.Phys.Chem.C2008,112,11307-11313.
    [51]Yu,X.;Cao,C.;An,X.Facile Conversion of Fe Nanotube Arrays to Novel γ-Fe_2O_3 Nanoparticle Nanotube Arrays and Their Magnetic Properties,Chem.Mater.2008,20,1936-1940.
    [52]Li,X.;Yu,X.;He,J.;Xu,Z.Controllable Fabrication,Growth Mechanisms,and Photocatalytic Properties of Hematite Hollow Spindles,J.Phys.Chem.C 2009,113,2837-2845.
    [53]Chen,D.;Chen,D.;Jiao,X.;Zhao,Y.Hollow Structured Hematite Particles Derived from Layered Iron(Hydro)Oxyhydroxide-Surfactant Composites,J.Mater.Chem.2003,13,2266-2270.
    [54]Gong,C.;Chen,D.;Jiao,X.;Wang,Q.Continuous Hollow α-Fe_2O_3 and α-Fe Fibers Prepared by the Sol-Gel Method,J.Mater.Chem.2002,12,1844-1847.
    [55]Zhan,S.;Chen,D.;Jiao,X.;Liu,S.Facile Fabrication of Long α-Fe_2O_3,α-Fe and γ-Fe_2O_3 Hollow Fibers Using Sol-Gel Combined Co-Electrospinning Technology,J.Colloid lnterface Sci.2007,308,265-270.
    [56]Li,X.;Zhang,D.;Chen,J.Synthesis of Amphiphilic Superparamagnetic FerriteBlock Copolymer Hollow Submicrospheres,J.Am.Chem.Soc.2006,128,8382-8383.
    [57]Yu,D.;Sun,X.;Zou,J.;Wang,Z.;Wang,F.;Tang,K.Oriented Assembly of Fe_3O_4 Nanoparticles into Monodisperse Hollow Single-Crystal Microspheres,J.Phys.Chem.B 2006,110,21667-21671.
    [58]Peng,S.;Sun,S.Synthesis and Characterization of Monodisperse Hollow Fe_3O_4Nanoparticles,Angew.Chem.Int.Ed.2007,46,4155-4158.
    [59]Jia,B.;Gao,L.Morphological Transformation of Fe_3O_4 Spherical Aggregates from Solid to Hollow and Their Self-Assembly under an External Magnetic Field,J.Phys.Chem.C 2008,112,666-671.
    [60]Zhu,L.;Xiao,H.;Zhang,W.;Yang,G.;Fu,S.One-Pot Template-Free Synthesis of Monodisperse and Single-Crystal Magnetite Hollow Spheres by a Simple Solvothermal Route,Cryst.Growth Des.2008,8,957-963.
    [61]Cao,S.;Zhu,Y.;Ma,M.;Li,L.;Zhang,L.Hierarchically Nanostructured Magnetic Hollow Spheres of Fe_3O_4 and γ-Fe_2O_3:Preparation and Potential Application in Drug Delivery,J.Phys.Chem.C 2008,112,1851-1856.
    [62]刘世宏,王当憨,潘承璜。X射线广电子能谱分析,科学出版社:北京,1988 年,296-360页。
    [63]Shindo,D.;Park,G.;Waseda,Y.;Sugimoto,T.Internal Structure Analysis of Monodispersed Peanut-Type Hematite Particles Produced by the Gel-Sol Method,J.Colloid lnterface Sci.1994,168,478-484.
    [64]Ocana,M.;Morales,M.P.;Serna,C.J.The Growth Mechanism of α-Fe_2O_3Ellipsoidal Particles in Solution,J.Colloid Interface Sci.1995,171,85-91.
    [65]Comell,R.M.;Schwertmann,U.The Iron Oxide,Wiley-VCH:Weinheim,2003.
    [66]Hug,S.J.In Situ Fourier Transform Infrared Measurements of Sulfate Adsorption on Hematite in Aqueous Solutions,J.Colloid Interface Sci.1997,188, 415-422.
    [67]Serna,C.J.;Ocana,M.;Iglesias,J.E.Optical Property of α-Fe_2O_3 Microcrystals in the Infrared,J..Phys.C Solid State Phys.1987,20,473-484.
    [68]Wang,Y.;Muramatsu,A.;Sugimoto,T.FTIR Analysis of Well-defined α-Fe_2_3Particles,Colloid Surf.A Physicochem.Eng.Aspets 1998,134,281-297.
    [69]Sugimoto,T.;Muramatsu,A.;Sakata,K.;Shindo,D.Characterization of Hematite Particles of Different Shapes,J.Colloid Interface Sci.1993,158,420-428.
    [70]Sugimoto,T.;Wang,Y.Mechanism of the Shape and Structure Control of Monodispersed α-Fe_2O_3 Particles by Sulfate Ions,J.Colloidlnterface Sci.1998,207,137-149.
    [71]Sugimoto,T.;Khan,M.M.;Muramatsu,A.Preparation of Monodisperse Peanut-Type α-Fe_2O_3 Particles from Condensed Ferric Hydroxide Gel,Colloid Surf.A Physicochem.Eng.Aspets 1993,70,167-169.
    [72]Liu,L.;Kou,H.;Mo,W.;Liu,H.;Wang,Y.Surfactant-Assisted Synthesis of α-Fe_2O_3 Nanotubes and Nanorods with Shape-Dependent Magnetic Properties,J.Phys.Chem.B 2006,110,15218-15223.
    [73]Wu,J.;Lee,Y.;Chiang,H.;Wong,D.K.Growth and Magnetic Properties of Oriented α-Fe_2O_3 Nanorods,J.Phys.Chem.B 2006,110,18108-18111.
    [74]Liu,X.;Fu,S.;Xiao,H.;Huang,C.Preparation and Characterization of Shuttle-like α-Fe_2O_3 Nanoparticles by Supermolecular Template,J.Solid State Chem.2005,178,2798-2803.
    [75]Xuan,S.;Chen,M.;Hao,L.;Jiang,W.;Gong,X.;Hu,Y.;Chen,Z.Preparation and Characterization of Microsized FeCO_3,Fe_3O_4 and Fe_2O_3 with Ellipsoidal Morphology,J.Mag.Mag.Mater.2008,320,164-170.
    [76]Chueh,Y.;Lai,M.;Liang,J.;Chou,L.;Wang,Z.L.Systematic Study of the Growth of Aligned Arrays of α-Fe_2O_3 and Fe_3O_4 Nanowires by a Vapor-Solid Process,Adv.Funct.Mater 2006,16,2243-2251.
    [1]Lou,X.;Archer,L.A.;Yang,Z.Hollow Micro-/Nanostructures:Synthesis and Applications,Adv.Mater.2008,20,3987-4019.
    [2]Caruso,F.;Caruso,R.;Mohwald,H.Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating,Science 1998,282,1111-1114.
    [3]Kim,S.;Kim,M.;Lee,W.;Hyeon,T.Fabrication of Hollow Palladium Spheres and Their Successful Application to the Recyclable Heterogeneous Catalyst for Suzuki Coupling Reactions,J.Am.Chem.Soc.2002,124,7642-7643.
    [4]Liu,B.;Zeng,H.Fabrication of ZnO "Dandelions" via a Modified Kirkendall Process,J.Am.Chem.Soc.2004,126,16744-16746.
    [5]Yin,Y.;Rioux,R.M.;Erdonmez,C.K.;Hughes,S.;Sonmorjai,G.A.;.Alivisatos,A.P.Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect,Science 2004,304,711-714.
    [6]Sun,Y.;Xia,Y.Shape-Controlled Synthesis of Gold and Silver Nanoparticles,Science 2002,298,2176-2179.
    [7]He,T.;Chen,D.;Jiao,X.;Wang,Y.Co_3O_4 Nanoboxes:Surfactant-Templated Fabrication and Microstructure Characterization,Adv.Mater.2006,18,1078-1082.
    [8]Nakashima,T.;Kimizuku,N.Interfacial Synthesis of Hollow TiO_2 Microspheres in Ionic Liquids,J.Am.Chem.Soc.2003,125,6386-6387.
    [9]He,T.;Chen,D.;Jiao,X.;Xu,Y.;Gu,Y.Surfactant-Assisted Solvothermal Synthesis of Co_3O_4 Hollow Spheres with Oriented-Aggregation Nanostructures and Tunable Particle Size,Langmuir 2004,20,8404-8408.
    [10]Xu,Y.;Chen,D.;Jiao,X.;Xue,K.Nanosized CU_2O/PEG400 Composite Hollow Spheres with Mesoporous Shells,J.Phys.Chem.C 2007,111,16284-16289.
    [11]Lou,X.;Yuan,C.;Zhang,Q.;Archer,L.A.Platinum-Functionalized Octahedral Silica Nanocages:Synthesis and Characterization,Angew.Chem.,Int.Ed.2006,45,3825-3829.
    [12]Jiao,S.;Xu,L.;Jiang,K.;Xu,D.Well-Defined Non-spherical Copper Sulfide Mesocages with Single-Crystalline Shells by Shape-Controlled Cu_2O Crystal Templating,Adv.Mater.2006,18,1174-1177.
    [13]Yang,J.;Qi,L.;Lu,C.;Ma,J.;Cheng,H.Morphosynthesis of Rhombododecahedral Silver Cages by Self-Assembly Coupled with Precursor Crystal Templating,Angew.Chem.,Int.Ed.2005,44,598-603.
    [14]Lee,J.;Hasan,W.;Lee,M.;Odom,T.W.Optical Properties and Magnetic Manipulation of Bimaterial Nanopyramids,Adv.Mater.2007,19,4387-4391.
    [15]Hasan,W.;Lee,J.;Henzie,J.;Odom,T.W.Selective Functionalization and Spectral Identification of Gold Nanopyramids,J.Phys.Chem.C 2007,111,17176-17179.
    [16]Noda,I.;Yamada,M.One-Step Replication against a Thin-Layer Material Formed by Self-Assembly of Hollow Hemispheres on a Substrate,Adv.Mater.2002,14,1236-1238.
    [17]Love-Gates,B.D.;Wolfe,D.B.;Paul,K.E.;Whitesides,G.M.Fabrication and Wetting Properties of Metallic Half-Shells with Submicron,Nano Lett.2002,2,891-894.
    [18]Charnay,C.;Lee,A.;Man,S.;Moran,C.E.;Radloff,C.;Bradley,R.K.;Halas,N.J.Reduced Symmetry Metallodielectric Nanoparticles:Chemical Synthesis and Plasmonic Properties,J.Phys.Chem.B 2003,107,7327-7333.
    [19]Liu,J.;Maaroof,A.I.;Wieczorek,L.;Cortie,M.B.Fabrication of Hollow Metal "Nanocaps" and Their Red-Shifted Optical Absorption Spectra;Adv.Mater.2005,17,1276-1281.
    [20]Correa-Duarte,M.A.;Salgueirifio-Maceira,V.;Rodriguez- Gonzalez,B.;Liz-Marzan,L.M.;Kosiorek,A.;Kandulski,W.;Giersig,M.Asymmetric Functional Colloids Through Selective Hemisphere Modification,Adv.Mater.2005,17,2014-2018.
    [21]Yang,S.;Yang,D.;Kim,J.;Hong,J.;Kim,H.;Kim,I.;Lee,H.Hollow TiO_2Hemispheres Obtained by Colloidal Templating for Application in Dye-Sensitized Solar Cells,Adv.Mater.2008,20,1059-1064.
    [22]Henzie,J.;Kwak,E.;Odom,T.W.Mesoscale Metallic Pyramids with Nanoscale Tips,Nano Lett.2005,5,1199-1202.
    [23]Xu,Q.;Tonks,I.;Fuerstman,M.J.;Love,J.C.;Whitesides,G.M.Fabrication of Free-Standing Metallic Pyramidal Shells,Nano Lett.2004,4,2509-2511.
    [24]Jiao,S.;Jiang,K.;Zhang,Y.;Xiao,M.;Xu,L.;Xu,D.Nonspherical Half-Shells by Ultrasonic Cleavage of the Hollow Polyhedral Particles in Water,J.Phys.Chem.C 2008,112,3358-3361.
    [25]Liu,K.;Lin,C.;Chen,S.Growth and Physical Characterization of Polygon Prismatic Hollow Zn-ZnO Crystals,Cryst.Growth Des.2005,5,483-487.
    [26]Lee,K.;Lee,H.;Kim,J.Synthesis of Phenolic/Furfural Gel Microspheres in Supercritical CO_2,J.Supercrit.Fluids 2000,17,73-80.
    [27]Yuan,J.;Chen,F.Degradation of Ascorbic Acid in Aqueous Solution,J..Agric.Food Chem.1998,46,5078-5082.
    [28]Smoot,J.M.;Nagy,S.Effects of Storage Temperature and Duration on Total Vitamin C Content of Canned Single-Strength Grapefruit Juice,J.Agric.Food Chem.1980,28,417-421.
    [29]Rodriguez,M.;Sadler,G.D.;Sims,C.A.;Braddock,R.J.Chemical Changes during Storage of an Alcoholic Orange Juice Beverage,J.Food Sci.1991,56,475-479.
    [30]Xuan,S.;Hao,L.;Jiang,W.;Song,L.;Hu,Y.;Chen,Z.;Fei,L.;Li,W.A FeCO_3Precursor-Based Route to Microsized Peanutlike Fe_3O_4,Cryst.Growth Des.2007,7,430-434.
    [31]Nadagouda,M.N.;Varma,R.S.A Greener Synthesis of Core(Fe,Cu)-Shell(Au,Pt,Pd,and Ag) Nanocrystals Using Aqueous Vitamin C,Cryst.Growth Des.2007,7,2582-2587.
    [32]Pinakidou,F.;Katsikini,M.;Paloura,E.C.;Kalogirou,O.;Erko,A.On the Local Coordination of Fe in Fe_2O_3-Glass and Fe_2O_3-Glass Ceramic Systems Containing Pb,Na and Si,J.Non-Cryst.Solids 2007,353,2717-2733.
    [33]Dzwigaj,S.;Stievano,L.;Wagner,F.E.;Che,M.Effect of Preparation and Metal Content on the Introduction of Fe in BEA Zeolite,Studied by DR UV-vis,EPR and M(o|¨)ssbauer Spectroscopy,J.Phys.Chem.Solids 2007,68,1885-1891.
    [34]Heinrichs,B.;Rebbouh,L.;Geus,J.W.;Lambert,S.;Abbenhuis,H.C.L.;Grandjean,F.;Long,G.J.;Pirard,J.;van Santen,R.A.Iron(Ⅲ) Species Dispersed in Porous Silica through Sol--Gel Chemistry,J.Non-Cryst.Solids 2008,354,665-672.
    [35]Zhong,L.;Hu,J.;Liang,H.;Cao,A.;Song,W.;Wan,L.Self-Assembled 3D Flowerlike Iron Oxide Nanostructures and Their Application in Water Treatment,Adv.Mater.2006,18,2426-2431.
    [36]Cao,S.;Zhu,Y.;Ma,M.;Li,L.:Zhang,L.Hierarchically Nanostructured Magnetic Hollow Spheres of Fe_3O_4 and γ-Fe_2O_3 Preparation and Potential Application in Drug Delivery,J.Phys.Chem.C 2008,112,1851-1856.
    [37]Schwickardi,M.;Olejnik,S.;Salabas,E.;Schmidt,W.;Sch(u|¨)th,F.Scalable Synthesis of Activated Carbon with Superparamagnetic Properties,Chem.Commun.2006,3987-3989.
    [38]Dumestre,F.;Chaudret,B.;Amiens,C.;Renaud,P.;Fejes,P.Superlattices of Iron Nanocubes Synthesized from Fe[N(SiMe_3)_2]_2,Science 2004,303,821-823.
    [39]Lee,J.;Kim,J.;Hyeon,T.Recent Progress in the Synthesis of Porous Carbon Materials,Adv.Mater.2006,18,2073-2094.
    [40]Sch(u|¨)th,F.Endo- and Exotemplating to Create High-Surface-Area Inorganic Materials,Angew.Chem.Int.Ed.2003,42,3604-3622.
    [41]Liang,C.;Li,Z.;Dai,S.Mesoporous Carbon Materials:Synthesis and Modification,Angew.Chem.Int.Ed.2008,47,3696-3717.
    [42]Lu,A.;Schmidt,W.;Matoussevitch,N.;Brnnemann,H.;Spliethoff,B.;Tesche,B.;Bill,E.;Kiefer,W.;Sch(u|¨)th,F.Nanoengineering of a Magnetically Separable Hydrogenation Catalyst,Angew.Chem.Int.Ed.2004,43,4303-4306.
    [43]Lee.J.;Lee,D.;Oh,E.;Kim,J.;Kim,Y.;Jin,S.;Kim,H.;Hwang,Y.;Kwak,J.H.;Park,J.;Shin,C.;Kim,J.;Hyeon,T.Preparation of a Magnetically Switchable Bio-electrocatalytic System Employing Cross-linked Enzyme Aggregates in Magnetic Mesocellular Carbon Foam,Agnew.Chem.Int.Ed.2005,44,7427-7432.
    [44]Sun,Z.;Wang,L.;Liu,P.;Wang,S.;Sun,B.;Jiang,D.;Xiao,F.Magnetically Motive Porous Sphere Composite and Its Excellent Properties for the Removal of Pollutants in Water by Adsorption and Desorption Cycles,Adv.Mater.2006,18,1968-1971.
    [45]Zhu,Y.;Zhang,L.;Schappacher,F.M.;P(O|¨)ttgen,R.;Shi,J.;Kaskel,S.Synthesis of Magnetically Separable Porous Carbon Microspheres and Their Adsorption Properties of Phenol and Nitrobenzene from Aqueous Solution,J.Phys.Chem.C 2008,112,8623-8628.
    [46]Baumann,T.F.;Satcher,J.H.C.Homogeneous Incorporation of Metal Nanoparticles into Ordered Macroporous Carbons,Chem.Mater.2003,15,3745-3747.
    [47]Huwe,H.;Fr(o|¨)ba,M.Iron(Ⅲ) Oxide Nanoparticles within the Pore System of Mesoporous Carbon CMK-1:Intra-Pore Synthesis and Characterization,Micropor.Mesopor.Mater.2003,60,151-158.
    [48]Holmes,S.M.;Foran,P.;Roberts,E.P.L.;Newton,J.M.Encapsulation of Metal Particles within the Wall Structure of Mesoporous Carbons,Chem.Commun.2005,1912-1913.
    [49]Lee,J.;Jin,S.;Hwang,Y.;Park,J.;Park,H.;Hyeon,T.Simple Synthesis of Mesoporous Carbon with Magnetic Nanoparticles Embedded in Carbon Rods,Carbon 2005,43,2536-2543.
    [50]Zhang,Z.;Sun,H.;Shao,X.;Li,D.;Yu,H.;Han,M.Three-Dimensionally Oriented Aggregation of a Few Hundred Nanoparticles into Monocrystalline Architectures,Adv.Mater.2005,17,42-47.
    [51]Taibi,M.;Ammar,S.;Schoenstein,F.;Jouini,N.;Fievet,F.;Chauveau,T.;Greneche,J.M.Powder and Film of Nickel and Iron-layered Double Hydroxide:Elaboration in Polyol Medium and Characterization,J.Phys.Chem.Solids 2008,69,1052-1055.
    [52]Xu,Z.;Braterman,P.S.High Affinity of Dodecylbenzene Sulfonate for Layered Double Hydroxide and Resulting Morphological Changes,J.Mater.Chem.2003,13,268-273.
    [53]Serna,C.J.;Ocana,M.;Iglesias,J.E.Optical Property of α-Fe_2O_3 Microcrystals in the Infrared,J.Phys.C:Solid State Phys.1987,20,473-484.
    [54]Lu,J.;Chen,D.;Jiao,X.Fabrication,Characterization,and Formation Mechanism of Hollow Spindle-like Hematite via a Solvothermal Process,J.Colloid Interface Sci.2006,303,437-443.
    [55]Rujiwatra,A.;Kepert,C.J.;Claridge,J.B.;Rosseinsky,M.J.;Kumagai,H.;Kurmoo,M.Layered Cobalt Hydroxysulfates with Both Rigid and Flexible Organic Pillars:Synthesis,Structure,Porosity,and Cooperative Magnetism,J.Am.Chem.Soc.2001,123,10584-10594.
    [56]Bradley,D.C.;Mehrotra,R.C.;Gaur,D.P.Metal Alkoxides,Academic Press:London,1978.
    [57]Z(u|¨)mreoglu-Karan,B.The Coordination Chemistry of Vitamin C:An Overview,Coord.Chem.Rev.2006,250,2295-2307.
    [58]Xu,J.;Jordan,R.B.Kinetics and Mechanism of the Reaction of Aqueous Iron(Ⅲ) with Ascorbic Acid,Inorg.Chem.1990,29,4180-4184.
    [59]Ali,M.A.;Bose,R.N.Transition Metal Complexes of Furfural and Benzil Schiff Bases Derived from S-benzyldithiocarbazate,Polyhedron 1984,3,517-522.
    [60]Long,D.;Zhang,J.;Yang,J.;Hu,Z.;Li,T.;Cheng,G.;Zhang,R.;Ling,L.Preparation and Microstructure Control of Carbon Aerogels Produced Using M-Cresol Mediated Sol-Gel Polymerization of Phenol and Furfural,New Carbon Mater.2008,23,165-170.
    [61]de Almeida Filho,C.;Zarbin,A.J.G.Hollow Porous Carbon Microspheres Obtained by the Pyrolysis of TiO_2/Poly(Furfuryl Alcohol) Composite Precursors,Carbon 2006,44,2869-2876.
    [62]Patel,M.N.;Patel,J.R.;Patel,S.H.Physicochemical Studies of a Furfural Copolymer and Its Polychelates,J.Macrom.Sci.Part A:Pure & Appl.Chem.1988,25,211-218.
    [63]Zhou,L.;Li,Y.;Zhang,S.;Chang,X.;Hou,Y.;Yang,H.Synthesis of Chelate Resins Derived from Furfural and Their Adsorption Properties for Metal Ions,J.Appl.Polym.Sci.2006,99,1620-1626.
    [64]Murugadoss,A.;Pasricha,R.;Chattopadhyay,A.Ascorbic Acid as a Mediator and Template for Assembling Metallic Nanoparticles,J..Colloid Interface Sci.2007,311,303-310.
    [1]Lu,A.;Salabas,E.L.;Sch(u|¨)th,F.Magnetic Nanoparticles:Synthesis,Protection,Functionalization,and Application,Angew.Chem.,Int.Ed.2007,46,1222-1244.
    [2]Jeong,U.;Teng,X.;Wang,Y.;Yang,H.;Xia,Y.Superparamagnetic Colloids Controlled Synthesis and Niche Applications,Adv.Mater.2007,19,33-60.
    [3]Zeng,H.;Sun,S.Syntheses,Properties,and Potential Applications of Multicomponent Magnetic Nanoparticles,Adv.Funct.Mater.2008,18,391-400.
    [4]Laurent,S.;Forge,D.;Port,M.;Roch,A.;Robic,C.;Elst,L.V.;Muller,R.N.Magnetic Iron Oxide Nanoparticles:Synthesis,Stabilization,Vectorization,Physicochemical Characterizations,and Biological Applications,Chem.Rev.2008,108,2064-2110.
    [5]Morales,M.P.;Veintemillas-Verdaguer,S.;Montero,M.I.;Serna,C.J.Surface and Internal Spin Canting in γ-Fe_2O_3 Nanoparticles,Chem.Mater.1999,11,3058-3064.
    [6]Dyal,A.,Loos,K.;Noto,M.;Chang,S.;Spagnoli,C.;Shaft,K.V.P.;Ulman,A.;Cowman,M.;Gross,R.A.Activity of Candida Rugosa Lipase Immobilized on γ-Fe_2O_3 Magnetic Nanopaticles,J.Am.Chem.Soc.2003,125,1684-1685.
    [7]Corr,S.A.;Byrne,S.J.;Tekoriute,R.;Meledandri,C.J.;Brougham,D.F.;Lynch,M.;Kerskens,C.;O'Dwyer,L.;Gun'ko,Y.K.Linear Assemblies of Magnetic Nanoparticles as MRI Contrast Agents,J.Am.Chem.Soc.2008,130,4214-4215.
    [8]Wei,H.;Wang,E.Fe_3O_4 Magnetic Nanoparticles as Peroxidase Mimetics and Their Applications in H_2O_2 and Glucose Detection,AnaL Chem.2008,80,2250-2254.
    [9]Park,J.;von Maltzahn,G.;Zhang,L.;Schwartz,M.P.;Ruoslahti,E.;Bhatia,S.N.;Sailor,M.J.Magnetic Iron Oxide Nanoworms for Tumor Targeting and Imaging,Adv.Mater.2008,20,1630-1635.
    [10]Lv,G.;He,F.;Wang,X.;Gao,F.;Zhang,G.;Wang,T.;Jiang,H.;Wu,C.;Guo,D.;Li,X.;Chen,B.;Gu,Z.Novel Nanocomposite of Nano Fe_3O_4 and Polylactide Nanofibers for Application in Drug Uptake and Induction of Cell Death of Leukemia Cancer Cells,Langmuir 2008,24,2151-2156.
    [11]Sun,S.;Zeng,H.Size-Controlled Synthesis of Magnetite Nanoparticles,J.Am.Chem.Soc.2002,124,8204-8205.
    [12]Jana,N.R.;Chen,Y.;Peng,X.Size-and Shape-Controlled Magnetic(Cr,Mn,Fe,Co,Ni) Oxide Nanocrystals via a Simple and General Approach,Chem.Mater.2004,16,3931-3935.
    [13]Cheon,J.;Kang,N.;Lee,S.;Lee,J.;Yoon,J.;Oh,S.Shape Evolution of Single-Crystalline Iron Oxide Nanocrystals,J.Am.Chem.Soc.2004,126,1950-1951.
    [14]Li,Z.;Chen,H.;Bao,H.;Gao,M.One-Pot Reaction to Synthesize Water-Soluble Magnetite Nanocrystals,Chem.Mater.2004,16,1391-1393.
    [15]Park,J.;An,K.;Hwang,Y.;Park,J.;Noh,H.;Kim,J.;Park,J.;Hwang,N.;Hyeon,T.Ultra-Large-Scale Syntheses of Monodisperse Nanocrystals,Nat.Mater.2004,3,891-895.
    [16]Park,J.;Lee,E.;Hwang,N.;Kang,M.;Kim,S.C.;Hwang,Y.;Park,J.;Noh,H.;Kim,J.;Park,J.One-Nanometer-Scale Size-Controlled Synthesis of Monodisperse Magnetic Iron Oxide Nanoparticles,Angew.Chem.,Int.Ed.2005,44,2872-2877.
    [17]Cozzoli,P.D.;Snoeck,E.;Garcia,M.A.;Giannini,C.;Guagliardi,A.;Cervellino,A.;Gozzo,F.;Hernando,A.;Achterhold,K.;Ciobanu,N.;Parak,F.G;Cingolani,R.;Manna,L.Colloidal Synthesis and Characterization of Tetrapod-Shaped Magnetic Nanocrystals,Nano Lett.2006,6,1966-1972.
    [18]Kovalenko,M.V.;Bodnarchuk,M.I.;Lechner,R.T.;Hesser,G.;Sch(a|¨)ffler,F.;Heiss,W.Fatty Acid Salts as Stabilizers in Size- and Shape-Controlled Nanocrystal Synthesis:The Case of Inverse Spinel Iron Oxide,J.Am.Chem.Soc.2007,129,6352-6353.
    [19]Zhang,Z.;Chen,X.;Wang,B.;Shi,C.Hydrothermal Synthesis and Self-Assembly of Magnetite(Fe_3O_4) Nanoparticles with the Magnetic and Electrochemical Properties,J.Cryst.Growth 2008,5453-5457.
    [20]Caruntu,D.;Caruntu,G.;Chen,Y.;O'Connor,C.J.;Goloverda,G.;Kolesnichenko,V.L.Synthesis of Variable-Sized Nanocrystals of Fe_3O_4 with High Surface Reactivity,Chem.Mater.2004,16,5527-5534.
    [21]Wang,X.;Zhang,J.;Peng,Q.;Li,Y.A General Strategy for Nanocrystal Synthesis,Nature 2005,437,121-124.
    [22]Iida,H.;Takayanagi,K.;Nakanishi,T.;Osaka,T.Synthesis of Fe_3O_4Nanoparticles with Various Sizes and Magnetic Properties by Controlled Hydrolysis,J.Colloid Interface Sci.2007,314,274-280.
    [23]Li,Z.;Tan,B.;Allix,M.;Cooper,A.I.;Rosseinsky,M.J.Direct Coprecipitation Route to Monodisperse Dual-Functionalized Magnetic Iron Oxide Nanocrystals Without Size Selection,Small 2008,4,231-239.
    [24]Chin,S.F.;Iyer,K.S.;Raston,C.L.;Saunders,M.Size Selective Synthesis of Superparamagnetic Nanoparticles in Thin Fluids under Continuous Flow Conditions,Adv.Funct.Mater.2008,18,922-927.
    [25]Redl,F.X.;Black,C.T.;Papaefthymiou,G.C.;Sandstrom,R.L.;Yin,M.;Zeng,H.;Murray,C.B.;O'Brien,S.P.Magnetic,Electronic,and Structural Characterization of Nonstoichiometric Iron Oxides at the Nanoscale,J.Am.Chem.Soc.2004,126,14583-14599.(b)
    [26]Si,S.;Li,C.;Wang,X.;Yu,D.;Peng,Q.;Li,Y.Magnetic Monodisperse Fe_3O_4Nanoparticles,Cryst.Growth Des.2005,5,391-393.
    [27]Kang,Y.S.;Risbud,S.;Rabolt,J.F.;Stroeve,P.Synthesis and Characterization of Nanometer-Size Fe_3O_4 and γ-Fe_2O_3 Particles,Chem.Mater.1996,8,2209-2211.
    [28]Ray,I.;Chakraborty,S.;Chowdhury,A.;Majumdar,S.;Prakash,A.;Pyare,R.;Sen,A.Room Temperature Synthesis of γ-Fe_2O_3 by Sonochemical Route and Its Response towards Butane,Sensors Actuators B 2008,130,882-888.
    [29]Rockenberger,J.;Scher,E.C.;Alivisatos,A.P.A New Nonhydrolytic Single-Precursor Approach to Surfactant-Capped Nanocrystals of Transition Metal Oxides,J.Am.Chem.Soc.1999,121,11595-11596.
    [30]Hyeon,T.;Lee,S.;Park,J.;Chung,Y.;Na,H.Synthesis of Highly Crystalline and Monodisperse Maghemite Nanocrystallites without a Size-Selection Process,J.Am.Chem.Soc.2001,123,12798-12801.
    [31]Glaria,A.;Kahn,M.L.;Falqui,A.;Lecante,P.;Colliere,V.;Respaud,M.;Chaudret,B.An Organometallic Approach for Very Small Maghemite Nanoparticles: Synthesis,Characterization,and Magnetic Properties,ChemPhysChem 2008,9,2035-2041.
    [32]Puntes,V.F.;Zanchet,D.;Erdonmez,C.K.;Alivisatos,A.P.Synthesis of hcp-Co Nanodisks,J.Am.Chem.Soc.2002,124,12874-12880.
    [33]Casula,M.F.;Jun,Y.;Zaziski,D.J.;Chan,E.M.;Corrias,A.;Alivisatos,A.P.The Concept of Delayed Nucleation in Nanocrystal Growth Demonstrated for the Case of Iron Oxide Nanodisks,J.Am.Chem.Soc.2006,128,1675-1682.
    [34]Park,S.;Kim,S.;Lee,S.;Khim,Z.;Char,K.;Hyeon,T.Synthesis and Magnetic Studies of Uniform Iron Nanorods and Nanospheres,J.Am.Chem.Soc.2000,122,8581-8582.
    [35]Puntes,V.F.;Krishnan,K.M.;Alivisatos,A.P.Colloidal Nanocrystal Shape and Size Control:The Case of Cobalt,Science 2001,291,2115-2117.
    [36]Sigman,M.B.,Jr.;Ghezelbash,A.;Hanrath,T.;Saunders,A.E.;Lee,F.;Korgel,B.A.Solventless Synthesis of Monodisperse Cu_2S Nanorods Nanodisks,and Nanoplatelets,J.Am.Chem.Soc.2003,125,16050-16057.
    [37]Cao,Y.Synthesis of Square Gadolinium-Oxide Nanoplates,J.Am.Chem.Soc.2004,126,7456-7457.
    [38]Lian,S.;Kang,Z.;Wang,E.;Jiang,M.;Hu,C.;Xu,L.Convenient Synthesis of Single Crystalline Magnetic Fe_3O_4 Nanorods,Solid State Commun.2003,127,605-608.
    [39]Feng,L.;Jiang,L.;Mai,Z.;Zhu,D.Polymer-Controlled Synthesis of Fe_3O_4Single-Crystal Nanorods,J.Colloid Interface Sci.2004,2 78,372-375.
    [40]Wang,J.;Chen,Q.;Zeng,C.;Hou,B.Magnetic-Field-Induced Growth of Single-Crystalline Fe_3O_4 Nanowires,Adv.Mater.2004,16,137-140.
    [41]Wan,J.;Chen,X.;Wang,Z.;Yang,X.;Qian,Y.A Soft-Template-Assisted Hydrothermal Approach to Single-Crystal Fe_3O_4 Nanorods,J.Cryst.Growth 2005,276,571-576.
    [42]Wang,D.;Cao,C.;Xue,S.;Zhu,H.γ-Fe_2O_3 Oriented Growth by Surfactant Molecules in Microemulsion,J.Cryst.Growth 2005,277,238-245.
    [43]Han,Q.;Liu,Z.;Xu,Y.;Chen,Z.;Wang,T.;Zhang,H.Growth and Properties of Single-Crystalline γ-Fe_2O_3 Nanowires,J.Phys.Chem.C 2007,111,5034-5038.
    [44]Chueh,Y.;Lai,M.;Liang,J.;Chou,L.;Wang,Z.Systematic Study of the Growth of Aligned Arrays of α-Fe_2O_3 and Fe_3O_4 Nanowires by a Vapor-Solid Process,Adv.Funct.Mater.2006,16,2243-2251.
    [45]Chin,K.;Chong,G;Poh,C.;Van,L.;Sow,C.;Lin,J.;Wee,A.Large-Scale Synthesis of Fe_3O_4 Nanosheets at Low Temperature,J.Phys.Chem.C 2007,111,9136-9141.
    [46]Cao,S.;Zhu,Y.;Ma,M.;Li,L.;Zhang,L.Hierarchically Nanostructured Magnetic Hollow Spheres of Fe_3O_4 and γ-Fe_2O_3:Preparation and Potential Application in Drug Delivery,J.Phys.Chem.C 2008,112,1851-1856.
    [47]Ni,Y.;Ge,X.;Zhang,Z.;Ye,Q.Fabrication and Characterization of the Plate-Shaped γ-Fe_2O_3 Nanocrystals,Chem.Mater.2002,14,1048-1052.
    [48]Pileni,M.E Nanoerystal Self-Assemblies Fabrication and Collective Properties,J.Phys.Chem.B 2001,105,3358-3371.
    [49]Petit,C.;Russier,V.;Pileni,M.P.Effect of the Structure of Cobalt Nanoerystal Organization on the Collective Magnetic Properties,J.Phys.Chem.B 2003,107,10333-10336.
    [50]Sahoo,Y.;Cheon,M.;Wang,S.;Luo,H.;Furlani,E.P.;Prasad,P.N.Field-Directed Self-Assembly of Magnetic Nanoparticles,J.Phys.Chem.B 2004,108,3380-3383.
    [51]Sun,J.;Zhang,Y.;Chen,Z.;Zhou,J.;Gu,N.Fibrous Aggregation of Magnetite Nanopartieles Induced by a Time-Varied Magnetic Field,Angew.Chem.Int.Ed.2007,46,4767-4770.
    [52]Sheparovych,R.;Sahoo,Y.;Motornov,M.;Wang,S.;Luo,H.;Prasad,P.N.;Sokolov,I.;Minko,S.Polyelectrolyte Stabilized Nanowires from Fe_3O_4 Nanoparticles via Magnetic Field Induced Self-Assembly,Chem.Mater.2006,18,591-593.
    [53]Park,J.;Jun,Y.;Choi,J.;Cheon,J.Highly Crystalline Anisotropic Superstructures via Magnetic Field Induced Nanoparticle Assembly,Chem.Commun.2007,5001-5003.
    [54]Fujii,T.;de Groot,F.M.F.;Sawatzky,G A.;Voogt,F.C.;Hibma,T.;Okada,K.In situ XPS Analysis of Various Iron Oxide Films Grown by NO_2-Assisted Molecular-Beam Epitaxy,Phys.Rev.B 1999,59,3195-3202.
    [55]Teng,X.;Black,D.;Watkins,N.;Gao,Y.;Yang,H.Platinum-Maghemite Core-Shell Nanoparticles Using a Sequential Synthesis,Nano Lett.2003,3,261-264.
    [56]Brundle,C.R.;Chuang,T.J.;Wandelt,K.Core and Valence Level Photoemission Studies of Iron Oxide Surfaces and the Oxidation of Iron,Surface Sci.1977,68,459-468.
    [57]Zhang,D.;Liu,Z.;Han,S.;Li,C.;Lei,B.;Stewart,M.P.;Tour,J.M.;Zhou,C. Magnetite(Fe_3O_4) Core-Shell Nanowires:Synthesis and Magnetoresistance,Nano Lett.2004,4,2151-2155.
    [58]Daou,T.J.;Pourroy,G.;Begin-Colin,S.;Greneche,J.M.;Ulhaq-Bouillet,C.;Legare,P.;Bernhardt,P.;Leuvrey,C.;Rogez,G.Hydrothermal Synthesis of Monodisperse Magnetite Nanoparticles,Chem.Mater.2006,18,4399-4404.
    [59]Li,Z.;Chen,H.;Bao,H.;Gao,M.One-Pot Reaction to Synthesize Water-Soluble Magnetite Nanocrystals,Chem.Mater.2004,16,1391-1393.
    [60]Lu,X.;Niu,M.;Qiao,R.;Gao,M.Superdispersible PVP-Coated Fe_3O_4Nanocrystals Prepared by a "One-Pot" Reaction,J.Phys.Chem.B 2008,112,14390-14394.
    [61]Zhang,Z.;Zhao,B.;Hu,L.PVP Protective Mechanism of Ultrafine Silver Powder Synthesized by Chemical Reduction Processes,J.Solid State Chem.1996,121,105-110.
    [62]He,T.;Chen,D.;Jiao,X.;Xu,Y.;Gu,Y.Surfactant-Assisted Solvothermal Synthesis of Co_3O_4 Hollow Spheres with Oriented-Aggregation Nanostructures and Tunable Particle Size,Langmuir 2004,20,8404-8408.
    [63]Hou,Y.;Yu,J.;Gao,S.Solvothermal Reduction Synthesis and Characterization of Superparamagnetic Magnetite Nanoparticles,J.Mater.Chem.2003,13,1983-1987.
    [64]Klokkenburg,M.;Vonk,C.;Claesson,E.M.;Meeldijk,J.D.;Erne,B.H.;Philipse,A.P.Direct Imaging of Zero-Field Dipolar Structures in Colloidal Dispersions of Synthetic Magnetite,J.Am.Chem.Soc.2004,126,16706-16707.
    [65]Tang,Z.;Kotov,N.A.One-Dimensional Assemblies of Nanoparticles:Preparation,Properties,and Promise,Adv.Mater.2005,17,951-962.
    [66]Xiong,Y.;Ye,J.;Gu,X.;Chen,Q.Synthesis and Assembly of Magnetite Nanocubes into Flux-Closure Rings,J.Phys.Chem.C 2007,111,6998-7003.
    [67]Huber,D.L.Synthesis,Properties,and Applications of Iron Nanoparticles,Small 2005,1,482-501.
    [68]Butter,K.;Bomans,P.H.H.;Frederik,P.M.;Vroege,G.J.;Philipse,A.P.Direct Observation of Dipolar Chains in Iron Ferrofluids by Cryogenic Electron Microscopy,Nat.Mater.2003,2,88-91.
    [69]Tripp,S.L.;Pusztay,S.V.;Ribbe,A.E.;Wei,A.Self-Assembly of Cobalt Nanoparticle Rings,J.Am.Chem.Soc.2002,124,7914-7915.
    [70]Tripp,S.L.;Dunin-Borkowski,R.E.;Wei,A.Flux Closure in Self-Assembled Cobalt Nanoparticle Rings,Angew.Chem.,Int.Ed.2003,42,5591-5593.
    [71]Keng,P.;Shim,I.;Korth,B.D.;Douglas,J.F.;Pyun,J.Synthesis and Self-Assembly of Polymer-Coated Ferromagnetic Nanoparticles,ACS Nano 2007,1,279-292.
    [72]Hu,M.;Lu,Y.;Zhang,S.;Guo,S.;Lin,B.;Zhang,M.;Yu,S.High Yield Synthesis of Bracelet-like Hydrophilic Ni-Co Magnetic Alloy Flux-Closure Nanorings,J.Am.Chem.Soc.2008,130,11606-11607.
    [73]Klokkenburg,M.;Vonk,C.;Claesson,E.M.;Meeldijk,J.D.;Erne,B.H.;Philipse,A.P.Direct Imaging of Zero-Field Dipolar Structures in Colloidal Dispersions of Synthetic Magnetite,J.Am.Chem.Soc.2004,126,16706-16707.
    [74]Xiong,Y.;Ye,J.;Gu,X.;Chen,Q.Synthesis and Assembly of Magnetite Nanocubes into Flux-Closure Rings,J.Phys.Chem.C 2007,111,6998-7003.
    [75]Wang,N.;Cao,X.;Kong,D.;Chen,W.;Guo,L.;Chen,C.Nickel Chains Assembled by Hollow Microspheres and Their Magnetic Properties,J.Phys.Chem.C 2008,112,6613-6619.
    [76]Zhou,W.;Zheng,K.;He,L.;Wang,R.;Guo,L.;Chen,C.;Han,X.;Zhang,Z.Ni/Ni_3C Core-Shell Nanochains and Its Magnetic Properties:One-Step Synthesis at Low Temperature,Nano Lett.2008,8,1147-1152.
    [77]An,K.;Lee,N.;Park,J.;Kim,S.;Hwang,Y.;Park,J.;Kim,J.;Park,J.;Han,M.;Yu,J.;Hyeon,T.Synthesis,Characterization,and Self-Assembly of Pencil-Shaped CoO Nanorods,J.Am.Chem.Soc.2006,128,9753-9760.
    [78]Comell,R.M.;Schwertmann,U.The Iron Oxides,Wiley-VCH:Weinheim,2003,p129.
    [79]Yin,Y.;Alivisatos,A.P.Colloidal Nanocrystal Synthesis and the Organic/Inorganic Interface,Nature 2005,437,664-670.
    [80]Wang,Z.Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies,J.Phys.Chem.B 2000,104,1153-1175.
    [81]Baetzold,R.C.;Yang,H.Computational Study on Surface Structure and Crystal Morphology of γ-Fe_2O_3:Toward Deterministic Synthesis of Nanocrystals,J.Phys.Chem.B 2003,107,14357-14364.
    [82]Zhang,D.;Zhang,X.;Ni,X.;Song,J.;Zheng,H.Fabrication and Characterization of Fe_3O_4 Octahedrons via an EDTA-Assisted Route,Cryst.Growth Des.2007,7,2117-2119.
    [83]He,T.;Chen,D.;Jiao,X.Controlled Synthesis of Co_3O_4 Nanoparticles through Oriented Aggregation,Chem.Mater.2004,16,737-743.
    [84]He,T.;Chen,D.;Jiao,X.;Wang,Y.;Duan,Y.Solubility-Controlled Synthesis of High-Quality Co_3O_4 Nanocrystals,Chem.Mater.2005,17,4023-4030.
    [85]He,T.;Chen,D.;Jiao,X.;Wang,Y.Co_3O_4 Nanoboxes:Surfactant-Templated Fabrication and Microstructure Characterization,Adv.Mater.2006,18,1078-1082.
    [86]Woo,K.;Hong,J.;Choi,S.;Lee,H.;Ahn,J.;Kim,C.;Lee,S.Easy Synthesis and Magnetic Properties of Iron Oxide Nanoparticles,Chem.Mater.2004,16,2814-2818.
    [87]Fan,N.;Ma,X.;Liu,X.;Xu,L.;Qian,Y.The Formation of A Layer of Fe_3O_4Nanoplates between Two Carbon Films,Carbon 2007,45,1839-1846.
    [88]Yang,T.;Shen,C.;Li,Z.;Zhang,H.;Xiao,C.;Chen,S.;Xu,Z.;Shi,D.;Li,J.;Gao,H.Highly Ordered Self-Assembly with Large Area of Fe_3O_4 Nanoparticles and the Magnetic Properties,J.Phys.Chem.B 2005,109,23233-23236.
    [89]Gross,A.F.;Diehl,M.R.;Beverly,K.C.;Richman,E.K.;Tolbert,S.H.Controlling Magnetic Coupling between Cobalt Nanoparticles through Nanoscale Confinement in Hexagonal Mesoporous Silica,J.Phys.Chem.B 2003,107,5475-5482.
    [90]Zysler,R.D.;Fiorani,D.;Testa,A.M.Investigation of Magnetic Properties of Interacting Fe_2O_3 Nanoparticles,J.Magn.Magn.Mater.2001,224,5-11.
    [91]Cannas,C.;Ardu.A.;Musinu,A.;Peddis,D.;Piccaluga,G.Spherical Nanoporous Assemblies of Iso-Oriented Cobalt Ferrite Nanoparticles:Synthesis,Microstructure,and Magnetic Properties,Chem.Mater.2008,20,6364-6371.
    [92]Ge,J.;Hu,Y.;Biasini,M.;Beyermann,W.P.;Yin,Y.Superparamagnetic Magnetite Colloidal Nanocrystal Clusters,Angew.Chem.Int.Ed.2007,46,4342-4345.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700