单肺通气相关性肺损伤的特点、信号转导通路及防治策略
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分兔单肺通气模型的建立及三种方法的比较
     实验一兔单肺通气模型的建立
     目的建立兔单肺通气实验模型。
     方法健康日本大耳白兔10只,麻醉后仰卧位固定。右侧股静脉建立静脉通道,右侧股动脉置管监测动脉血压并采集动脉血标本;行气管切开并插入自制双腔气管导管实施机械通气,呼吸机通气参数为:FiO2 1.0 , RR 40/min,VT 10 ml/kg。以听诊法仔细调整自制双腔气管导管位置,并采用气泡试验法检测左侧气管膨大处的密闭效果。将动物调整为左侧卧位后,钳闭左侧管腔建立右肺单肺通气模型,并以纤支镜直接观察左侧肺叶呼吸运动是否停止并萎陷。单肺通气2h后,松开左侧管腔恢复双肺通气。在单肺通气前、单肺通气后30min和恢复双肺通气30min三个时间点测血压、心率、气道压和动脉血气分析。
     结果实验中单肺通气效果满意,操作方便,血流动力学稳定,各时点动脉血气变化规律与临床一致。
     结论采用自制双腔气管导管可以建立日本大耳白兔单肺通气模型。此模型简单方便,成功率高,适用于研究单肺通气相关的肺损伤和低氧血症的病理生理机制及其防治策略。
     实验二三种兔单肺通气模型的比较
     目的采用三种方法建立兔单肺通气模型并比较其效果。
     方法日本大耳白兔30只,随机分为3组(即A、B、C组)各10个,分别采用自制双腔气管导管法、左支气管结扎法和插管过深法。呼吸机通气参数为:FiO2 1.0 , RR 40/min,VT 10 ml/kg。单肺通气2h后恢复双肺通气。记录各组单肺通气实施的一次成功率、总成功率、从气管切开开始到单肺通气实施所需要的时间、动物失血量。
     结果各组进入实验的动物数分别为10、6、8只。与B、C组比较,A组一次成功率和总成功率高,所需时间明显较少(P<0.01),且出血量明显少于B组(P<0.01)。
     结论采用自制双腔气管导管能迅速有效的建立单肺通气模型,优于左支气管结扎法和插管过深法,是用于研究与单肺通气相关病理生理机制的理想模型。
     第二部分单肺通气后两侧肺损伤特点及不同时间的影响
     目的建立兔单肺通气模型后,观察两侧肺损伤的特点以及不同时间的影响,为后续的研究摸索条件。
     方法健康日本大耳白兔24只,随机分为4组:对照组(C组,n=6)双肺通气2h;右侧单肺通气组(O1组、O2组及O3组,n=6)单肺通气时间分别为1h、2h、3h,随后恢复双肺通气1h。在实验结束前开胸,分别由两侧肺静脉同时抽取肺静脉血、由股动脉抽取动脉血做血气分析并测定氧合指数;采用颈动脉快速放血处死动物,将各组左右肺分开处理。检测各组肺组织病理改变,并计算肺损伤评分;检测各肺组织湿干重比值、MPO、MDA、SOD。
     结果⑴C组左右侧肺、O1组右侧肺组织结构形态完整,肺泡内无明显渗出液,肺间质无明显水肿和炎症;O1组左侧肺、O2组右侧肺和O3组右侧肺肺泡内可见渗出液,肺间质增厚并可见炎性细胞浸润;O2组左侧肺、O3组左侧肺肺泡内可见渗出液,部分肺泡腔萎陷不张或充血,肺间质增厚并可见大量炎性细胞浸润。肺损伤评分:C组左右侧相比较差异无统计学意义(P﹥0.05),另三组组内左右侧比较则左侧明显增高(P<0.01);各组间右侧比较表现为逐步升高,其中O3组右侧与O1组右侧相比较明显增高(P<0.05);各组间左侧相比较亦表现为逐步升高,其中O2组左侧、O3组左侧与O1组左侧相比较明显增高(P<0.01),O1组左侧与C组左侧相比较明显增高(P<0.01)。⑵各组氧合指数比较,C组左右侧相比较差异无统计学意义(P﹥0.05),另三组组内左右侧比较则左侧明显下降(P<0.01);各组间右侧比较表现为逐步降低,其中O3组右侧与O1组右侧相比较明显降低(P<0.01);各组间左侧相比较亦表现为逐步降低,其中O2组左侧、O3组左侧与O1组左侧相比较明显下降(P<0.01),O1组左侧与C组左侧相比较明显降低(P<0.01)。动脉血气所测得氧合指数表现为逐步降低,O2组、O3组与O1组相比较明显下降(P<0.01),O1组与C组相比较明显降低(P<0.01)。⑶各组湿/干重比、MPO活性和MDA的变化表现为C组组内左右侧相比较差异无统计学意义(P﹥0.05),O1组、O2组和O3组组内左右侧比较则左侧明显增高(P<0.01);各组间右侧比较表现为逐步升高,其中O3组右侧与O1组右侧相比较明显增高(P<0.01),O1组右侧与C组右侧相比较明显增高(P<0.01);各组间左侧相比较亦表现为逐步升高,其中O2组左侧、O3组左侧与O1组左侧相比较明显增高(P<0.01),O1组左侧与C组左侧相比较明显增高(P<0.01)。⑷各组SOD值的变化表现为C组和O1组组内左右侧相比较差异无统计学意义(P﹥0.05),O2组和O3组组内左右侧比较则左侧明显降低(P<0.01);各组间右侧比较表现为逐步降低,其中O3组右侧与O1组右侧相比较明显降低(P<0.01),O1组右侧与C组右侧相比较明显降低(P<0.01);各组间左侧相比较表现为逐步降低,其中O2组左侧、O3组左侧与O1组左侧相比较明显降低(P<0.01),O1组左侧与C组左侧相比较明显降低(P<0.01)。
     结论长时间单肺通气可以导致急性肺损伤,这种损伤是不均一性的,损伤的程度与单肺通气时间相关,且非通气侧肺要比通气侧肺损伤严重。
     第三部分单肺通气所致肺损伤中NF-κB的作用
     目的通过建立兔单肺通气模型,观察NF- B在单肺通气肺损伤中的作用及对炎性因子TNF-和ICAM-1的影响,以探讨单肺通气肺损伤的机制。
     方法健康日本大耳白兔18只,随机分为3组:TLV组、OLV组和PDTC组,各6只。TLV组实施双肺机械通气3h。OLV组采用自制双腔气管导管实施右侧单肺通气2h后恢复双肺通气1h。PDTC组在实施单肺通气前由静脉输入PDTC50mg/kg,其后操作与OLV组相同。在实验结束前由股动脉抽取动脉血做血气分析测定氧合指数。各组左右肺分开处理。光学显微镜下观测各组肺组织病理改变,并计算肺损伤评分;检测各肺组织湿/干重比值、MPO、MDA、SOD; Western Blot检测肺细胞核内NF-κB p65蛋白和胞浆内IκB-α的表达水平;EMSA检测肺组织细胞NF-κB的活性;ELISA测TNF-α和ICAM-1的含量,并用RT-PCR检测肺组织中TNF-α和细胞粘附分子(ICAM-1)基因mRNA的表达水平。
     结果⑴病理学改变TLV组左右侧肺组织结构形态完整;OLV组右侧肺泡内可见渗出液,肺间质增厚并可见炎性细胞浸润,而其左侧肺泡内可见渗出液,部分肺泡腔萎陷不张或充血,肺间质增厚并可见大量炎性细胞浸润;PDTC组右侧肺组织与OLV组右侧肺组织相似,而其左侧肺较OLV组明显改善,但肺泡内仍可见渗出液,肺间质增厚及炎性细胞浸润。肺损伤评分,OLV组和PDTC组左右侧比较则左侧明显增高(P<0.01);各组间比较,OLV组和PDTC组双侧均高于TLV组(P<0.01);PDTC组左侧明显低于OLV组(P<0.01)。⑵氧合指数与TLV组比较,OLV组和PDTC组均下降(P<0.01),且PDTC组与OLV组相比明显上升(P<0.05)。⑶各组湿/干重比、MPO活性和MDA的变化表现为OLV组和PDTC组组内左右侧比较则左侧明显增高(P<0.01);各组间比较,OLV组和PDTC组双侧均高于TLV组(P<0.01);与OLV组比较,PDTC组双侧均明显降低(P<0.01或P<0.05)。⑷各组SOD值的变化表现为OLV组左右侧比较则左侧明显降低(P<0.05);各组间比较,OLV组和PDTC组双侧肺均低于TLV组(P<0.01);PDTC组左侧明显高于OLV组(P<0.05)。⑸NF- B的含量与活性变化表现为OLV组和PDTC组左右侧比较左侧明显增高(P<0.01);各组间比较,OLV组和PDTC组双侧肺均高于TLV组(P<0.01),且与OLV组相比较,PDTC组明显降低(P<0.01或P<0.05)。I B-的含量变化表现为OLV组和PDTC组左右侧比较左侧明显增高(P<0.01);各组间比较,OLV组和PDTC组双侧肺均低于TLV组(P<0.01),且PDTC组高于OLV组(P<0.05)。⑹TNF-与ICAM-1的含量及mRNA的表达变化表现为OLV组和PDTC组左右侧比较左侧明显增高(P<0.01或P<0.05);各组间比较,OLV组和PDTC组双侧肺均高于TLV组(P<0.01或P<0.05),且与OLV组相比较,PDTC组明显降低(P<0.01)。
     结论单肺通气导致的肺损伤中NF- B途径被激活,促进炎症因子的合成,在单肺通气肺损伤中起到了重要作用,而采用特异性NF- B抑制剂PDTC可以抑制NF- B途径的激活,减少炎症因子的合成,减轻肺损伤程度。
     第四部分肺保护性通气和降低吸入氧浓度对单肺通气肺损伤的影响
     目的研究在兔OLV模型中采用肺保护性通气,同时降低吸入氧浓度,观察其对肺部炎症反应和NF-κB表达的影响,探讨OLV时合理的通气模式。
     方法健康日本大耳白兔18只,随机分为3组:A组、B组和C组,各6只。采用自制双腔气管导管建立单肺通气模型,右单肺通气2h后恢复双肺通气1h。呼吸机通气参数为:A组, RR 40/min,VT 10 ml/kg,FiO2100%;B组,RR 40/min,VT 7 ml/kg,PEEP 5cmH2O,FiO2 100%;C组,RR 40/min,VT 7 ml/kg,PEEP 5cmH2O,FiO2 60%。分别在OLV前、OLV后30min和恢复双肺通气(TLV)30min三个时间点做动脉血气分析并计算氧合指数。各组左右肺分开处理。光学显微镜下观测各组肺组织病理改变,并计算肺损伤评分;检测各肺组织湿/干重比值、MPO、MDA、SOD; Western Blot检测肺细胞核内NF-κB p65蛋白和胞浆内IκB-α的表达水平;EMSA检测肺组织细胞NF-κB的活性;ELISA测TNF-α和ICAM-1的含量, RT-PCR检测肺组织中TNF-α和ICAM-1mRNA的表达水平。
     结果⑴病理学改变A组右侧肺泡内可见渗出液,肺间质增厚并可见炎性细胞浸润,而其左侧肺泡内可见渗出液,部分肺泡腔萎陷不张或充血,肺间质增厚并可见大量炎性细胞浸润;B组右侧肺组织与A组右侧肺组织相似,而其左侧肺较A组明显改善;C组右侧与B组相似,而其左侧较B组轻。肺损伤评分,三组左右侧比较左侧明显增高(P<0.01);B组和C组双侧肺均低于A组(P<0.01),但B组与C组相比无统计学意义(P﹥0.05)。⑵氧合指数各组动物在各时点的pH值均在7.20以上,且PaCO2均小于50mmHg;三组动物氧合指数在各时点的变化表现为OLV30min后两组均显著下降(P<0.01),恢复TLV30min后上升,但仍低于OLV前(P<0.01)。三组动物在OLV前氧合指数无统计学意义(P﹥0.05);OLV30min后B组和C组高于A组(P<0.01或P<0.05);在恢复TLV30min后,B组和C组明显高于A组(P<0.01),且氧合指数B组和C组均大于300,而A组小于300。⑶各组湿/干重比、MPO活性和MDA的变化表现为组内左右侧比较左侧明显增高(P<0.01或P<0.05);各组间同侧比较,B组和C组均低于A组(P<0.01或P<0.05);C组左侧明显低于B组(P<0.05)。⑷各组SOD值的变化表现为左右侧比较左侧明显降低(P<0.05);各组间同侧比较,B组和C组均高于A组(P<0.01或P<0.05);C组左侧明显高于B组(P<0.05)。⑸NF- B的含量与活性变化表现为左右侧比较左侧明显增高(P<0.01);各组间同侧比较,B组和C组均低于A组(P<0.01),且与B组相比较,C组明显降低(P<0.05)。I B-的含量变化表现为左右侧比较左侧明显降低(P<0.01);各组间同侧比较,B组和C组均高于A组(P<0.01);C组左侧明显高于B组(P<0.05)。⑹TNF-与ICAM-1的含量及mRNA的表达变化表现为左右侧比较左侧明显增高(P<0.01或P<0.05);各组间同侧比较,B组和C组均低于A组(P<0.01),且与B组相比较,C组明显降低(P<0.05)。
     结论肺保护性通气+降低吸入氧浓度可以减少单肺通气时肺损伤程度,其作用机制可能与通过各种途径降低NF- B活化,减少炎症因子合成、炎症细胞聚集和氧化应激损伤有关。
Part one Building one-lung ventilation model in rabbits and comparisons of three kinds of methods
     Test one: Rabbit model of One-lung ventilation.
     Objective The purpose of this study was to build an experimental model of one lung ventilation (OLV) in rabbits.
     Method Ten rabbits weighing 2.3±0.2kg were anesthetized with ketamine (25 mg/kg, IM). A double-lumen endotracheal tube made by myself was inserted, and mechanical ventilation with 100% oxygen was used during the study. The ventilator settings were VT = 10 ml/kg, respiratory frequency = 40breaths/min and inspiratory-expiratory rate = 1:2. Mean arterial pressure, heart rate, pressure of air way and arterial blood gases were recorded in three phases: 5 minutes before OLV, 30 minutes after beginning OLV and 30 minutes after returning to two-lung ventilation (TLV).
     Result This rabbit model of OLV is convenient, satisfactory and safety. The changes of Mean arterial pressure, heart rate, pressure of air way and arterial blood gases were similar to clinical.
     Conclusion The rabbit model of OLV was easy to perform and could reduce the spending of animals and equipments. This model is suitable for the investigation of the pathophysiological mechanism and possible protective interventions to lung injury and hypoxia induced by OLV.
     Test two: A comparison of three kinds of One-lung ventilation models in rabbits. Objective The purpose of this study was to compare three kinds of one-lung ventilation (OLV) models in rabbits.
     Method 30 rabbits weighing 2.3±0.2kg were anesthetized with ketamine (25 mg/kg, IM) and were ventilated via tracheotomy tubes at a rate of 40/min with a tide volume of 10 ml/kg with pure oxygen and divided randomly into three groups. In group A (n=10) OLV was carried out by a artificial double-lumen endotracheal tube. In group B thoracotomy was performed and the left main bronchus was completely clamped with a clip, so OLV was carried out. In group C tracheotomy tube was pushed into the right main bronchus to perform OLV. The successful rates of first time and overall, the time from tracheotomy beginning to OLV beginning and volume of bleeding were recorded. The rabbit’s tracheal was measured.
     Result In group A, the success rates of first time and overall were higher than group B and group C. The numbers of three groups coming into experiment were respectively 10, 6, 8. In group A the time from tracheotomy beginning to OLV beginning were significantly than group B and group C(P<0.01). To compared with group B the bleeding volume was significantly lower in group A (P<0.01).
     Conclusion The rabbit model of OLV performed by the artificial double-lumen endotracheal tube is convenient, satisfactory and safe. This model is suitable for the investigation of the pathophysiological mechanism associated with OLV.
     Part 2 Character of one-lung ventilation induced lung injury and the effect of different durations on lung injury degrees of bilateral lungs
     Objective To investigate the character of one-lung ventilation induced lung injury and the effect of different durations on lung injury degrees of bilateral lungs.
     Methods 24 white Japanese rabbits were divided into 4 groups (n = 6). The control group performed two-lung ventilation for 2h. The groups of O1、O2 and O3 performed one-lung ventilation for 1h、2h and 3h respectively, which were followed with two-lung ventilation for 1h. Lung separation was achieved with a artificial double-lumen tube. The blood samples were drawn from femoral artery、the right pulmonary vein and the left one to get the oxygenation indexes. Light microscopic evaluations were performed to get the lung injury scores. Wet/dry ratios (W/D), MDA、SOD、myeloperoxidase (MPO) activity were measured with corresponding methods.
     Results Lung injury scores were significant differences in left lung compared to right lung in the groups of O1、O2 and O3, though no significant differences were noted in the group C. Comparison of the right lungs of the four groups documented significant increase of lung injury scores. Compared with O1 group, Lung injury scores in O3 group was significantly elevated(P<0.05). The changes in the left lung were similar and more severe to the right ones. Compared with C group, Lung injury scores in O1 group was significantly elevated(P<0.01). Compared with O1 group, Lung injury scores in O2 and O3 groups were significantly elevated(P<0.01). Similar changes of oxygenation index、W/D、MDA and MPO activity were found in all the groups, which were significant differences in left lung compared to right lung in the groups of O1、O2 and O3, though no significant differences were noted in the group C. Comparison of the right lungs of the four groups documented significant increase of lung injury scores. Compared with O1 group, O3 group was significantly elevated(P<0.05). The changes in the left lung were similar and more severe to the right ones. Compared with C group, O1 group was significantly elevated(P<0.01). Compared with O1 group, O2 and O3 groups were significantly elevated(P<0.01). SOD was significant differences in left lung compared to right lung in the groups of O2 and O3. Compared with C group, SOD in right and left lung of O1 group were significantly decreased(P<0.01).SOD in right of O3 group was less than O1 group(P<0.01). SOD in left of O2 and O3 group were less than O1 group(P<0.01).
     Conclusion Long time OLV could provoke acute lung injury, which was inhomogeneous. The degrees of lung injury were related to OLV duration and were more severe in the non-ventilated lung.
     Part 3 Effects of nuclear factor- B on one-lung ventilation induced lung injury
     Objective To study the changes of nuclear factor- B activation and expression of cytokines in lung tissues after one lung ventilation on the rabbit models.
     Methods 18 white Japanese rabbits were divided into 3 groups (n = 6). The TLV group performed two-lung ventilation for 3h. The OLV group performed one-lung ventilation for 2h, which were followed with two-lung ventilation for 1h. Lung separation was achieved with a artificial double-lumen tube. The PDTC group were pretreated with pyrrolidine dithiocarbamate (PDTC) (50mg/kg, IV.) prior to one lung ventilation. The blood samples were drawn from femoral artery to get the oxygenation indexes. Light microscopic evaluations were performed to get the lung injury scores. Wet/dry ratios (W/D), MDA、SOD、myeloperoxidase (MPO) activity were measured with corresponding methods. NF-κB p65 and IκB-αwere detected with Western Blot. NF-κB activity was assayed with EMSA. TNF-αand ICAM-1 in lung tissues were detected with ELISA. The expression of TNF-αand ICAM-1 mRNA in lung tissue was measured by RT-PCR.
     Results (1)Lung injury scores were significant differences in left lung compared to right lung in the groups of OLV and PDTC(P<0.01). Compared with TLV group, Lung injury scores in OLV and PDTC groups were significantly elevated(P<0.05). Compared with OLV group, Lung injury scores in PDTC group was significantly decreased(P<0.01). (2) Compared with TLV group, the oxygenation of OLV and PDTC group were significantly decreased(P<0.01). Compared with OLV group, the oxygenation of PDTC group were significantly increased(P<0.05). (3) W/D、MDA and MPO activity were significant differences in left lung compared to right lung in the groups of OLV and PDTC(P<0.01). Compared with TLV group, OLV and PDTC groups were significantly elevated(P<0.01). Compared with OLV group, PDTC group was significantly decrease(dP<0.01 or P<0.05). (4)SOD was significant differences in left lung compared to right lung in OLV group(P<0.01). Compared with TLV group, OLV and PDTC groups were significantly decreased(P<0.01). Compared with OLV group, the left lung of PDTC group was significantly increased(P<0.01 or P<0.05). (5) NF-κB activity and NF-κB p65 were significant differences in left lung compared to right lung in the groups of OLV and PDTC(P<0.01). Compared with TLV group, OLV and PDTC groups were significantly elevated(P<0.01). Compared with OLV group, PDTC group was significantly decreased(P<0.01 or P<0.05). I B- was significant differences in left lung compared to right lung in the groups of OLV and PDTC(P<0.01). Compared with TLV group, OLV and PDTC groups were significantly decreased(P<0.01). Compared with OLV group, PDTC group was significantly increased(P<0.01 or P<0.05). (6) The quantity of TNF- and ICAM-1 and the expression of TNF- and ICAM-1mRNA were significant differences in left lung compared to right lung in the groups of OLV and PDTC(P<0.01 or P<0.05). Compared with TLV group, OLV and PDTC groups were significantly elevated(P<0.01 or P<0.05). Compared with OLV group, PDTC group was significantly decrease(dP<0.01 or P<0.05). Conclusion NF- B activation probably play an important role in lung injury caused by one-lung ventilation.
     Part 4 Effects of lung protective ventilation strategy and the fraction of inspired oxygen on lung injury degree in one-lung ventilation models
     Objective To study the effects of lung protective ventilation strategy and the fraction of inspired oxygen on lung injury degree in one-lung ventilation models.
     Methods 18 white Japanese rabbits were performed one-lung ventilation for 2h, which were followed with two-lung ventilation for 1h. Lung separation was achieved with a artificial double-lumen tube. The rabbits were divided into 3 groups (n = 6): (1) normal control group (A group): RR 40/min, VT 10 ml/kg and FiO2 100%; (2) protective ventilation group (B group): RR 40/min, VT 7 ml/kg, PEEP 5cmH2O and FiO2 100%; (3) protective ventilation and lower FiO2 group (C group): RR 40/min, VT 7 ml/kg, PEEP 5cmH2O and FiO2 60%. The blood samples were drawn from femoral artery to get the oxygenation indexes in three phases: 5 minutes before OLV, 30 minutes after beginning OLV and 30 minutes after returning to TLV. Light microscopic evaluations were performed to get the lung injury scores. Wet/dry ratios (W/D), MDA、SOD、myeloperoxidase (MPO) activity were measured with corresponding methods. NF-κB p65 and IκB-αwere detected with Western Blot. NF-κB activity was assayed with EMSA. TNF-a and ICAM-1 in lung tissues were detected with ELISA. The expression of TNF-a and ICAM-1 mRNA in lung tissue was measured by RT-PCR.
     Results (1)Lung injury scores were significant differences in left lung compared to right lung in all groups(P<0.01). Compared with A group, B and C groups were significantly decreased(P<0.05). (2) After returning to TLV, Compared with A group, the oxygenation indexes of B and C groups, which were greater than 300 while that of group A was less than 300, were significantly increased(P<0.01). (3) W/D、MDA and MPO activity were significant differences in left lung compared to right lung in all groups(P<0.01 or P<0.05). Compared with A group, B and C groups were significantly decreased(P<0.01). Compared with B group, the left lung of C group was significantly decreased(P<0.05). (4)SOD was significant differences in left lung compared to right lung in all group(sP<0.01). Compared with A group, B and C groups were significantly increased(P<0.01 or P<0.05). Compared with B group, the left lung of C group was significantly increased(P<0.01 or P<0.05). (5) NF-κB activity and NF-κB p65 were significant differences in left lung compared to right lung in all groups(P<0.01). Compared with A group, B and C groups were significantly deceased(P<0.01). Compared with B group, C group was significantly decreased(P<0.05). I B- was significant differences in left lung compared to right lung in all group(sP<0.01). Compared with A group, B and C groups were significantly increased(P<0.01). Compared with B group, the left lung of C group was significantly increased(P<0.05). (6) The quantity of TNF- and ICAM-1 and the expression of TNF- and ICAM-1mRNA were significant differences in left lung compared to right lung in all groups(P<0.01 or P<0.05). Compared with A group, B and C groups were significantly decreased(P<0.01 or P<0.05). Compared with B group C group was significantly decreased(P<0.05).
     Conclusion OLV with lung protective ventilation strategy and 60% inspired oxygen can attenuate lung injury by decreasing the activity of NF- B.
引文
1. Jordan MC, Mitchell JA, Quinlin GJ, et al. The pathogenesis of lung injury following pulmonary resection. Eur Respir J 2000; 15(4): 790–799
    2. De Perrot M, Liu M, Waddell TK, et al. Ischemia-reperfusion-induced lung injury.Am J Respir Crit Care Med. 2003;167(4):490-511.
    3. T. Funakoshi, Y. Ishibe, N. Okazaki et al. Effect of re-expansion after short-period lung collapse on pulmonary capillary permeability and pro-inflammatory cytokine gene expression in isolated rabbit lungs. British Journal of Anaesthesia, 2004; 92(4): 558-563
    4. De Leyn PR, Lerut TE, Schreinemakers HH, et al. Effect of inflation on adenosine triphosphate catabolism and lactate production during normothermic lung ischemia. Ann Thorac Surg 1993; 55(5): 1073–1078
    5. Hamvas A, Park CK, Palazzo R, et al. Modifying pulmonary ischemia–reperfusion injury by altering ventilatory strategies during ischemia. J Appl Physiol 1992; 73(5): 2112–2119
    6. Chabot F, Mitchell JA, Gutteridge JM,et al. Reactive oxygen species in acute lung injury. Eur Respir J 1998; 12(6):1486
    7. Clerch LB, Massaro D. Tolerance of rats to hyperoxia. Lung antioxidant enzyme gene expression. J Clin Invest 1993; 91(2): 499–508
    8. Misthos P, Katsaragakis S, Milingos N, et al. Postresectional pulmonary oxidative stress in lung cancer patients. The role of one-lung ventilation. Eur J Cardiothorac Surg 2005,27(3):379-383
    9. Pinhu L, Whitehead T, Evans T, and Griffiths M. Ventilator-associated lung injury. Lancet. 2003;361(9354):332-340.
    10. Tremblay LN, Slutsky AS. Pathogenesis of ventilator-induced lung injury: trials and tribulations. Am J Physiol Lung Cell Mol Physiol 2005;288(4): L596-L598,
    11. Michaud G, Cardinal P. Mechanisms of ventilator-induced lung injury: the clinician's perspective.Crit Care. 2003;7(3):209-210
    12. Dos Santos CC, Slutsky AS. Invited review: mechanisms of ventilator-induced lung injury: a perspective.J Appl Physiol. 2000;89(4):1645-1655.
    13. Sen R, Baltimore D. Multiple nuclear factor interact with the immunoglobulin enhancer sequences. Cell, 1986,46(5):705-716
    14. Hinz M, Lemke P, Anagnostopoulos I, et al. Nuclear factor kappaB-dependent gene expression profiling of Hodgkin's disease tumor cells, pathogenetic significance, and link to constitutive signal transducer and activator of transcription 5a activity.J Exp Med. 2002;196(5):605-617
    15. Haddad JJ. Science review: redox and oxygen-sensitive transcription factors in the regulation of oxidant-mediated lung injury: role for hypoxia-inducible factor- 1alpha. Crit Care. 2003;7(1):47-54.
    16. Madjdpour C, Jewell UR, Kneller S, et al. Decreased alveolar oxygen induces lung inflammation.Am J Physiol Lung Cell Mol Physiol. 2003;284(2):L360-367
    17. Dohlen G, Carlsen H, Blomhoff R, et al.Reoxygenation of hypoxic mice with 100% oxygen induces brain nuclear factor-kappa B. Pediatr Res. 2005 ;58(5):941-945
    18. Naidu BV, Krishnadasan B, Byrne K, et al. Regulation of chemokine expression by cyclosporine A in alveolar macrophages exposed to hypoxia and reoxygenation. Ann Thorac Surg. 2002 Sep;74(3):899-905
    19. Farivar AS, Mackinnon-Patterson BC, Barnes AD, et al. Cyclosporine modulates the response to hypoxia-reoxygenation in pulmonary artery endothelial cells. Ann Thorac Surg, 2005,79(3):1010-1016
    1.庄心良,曾因明,陈伯銮.现代麻醉学(第三版),人民卫生出版社,2003:1204
    2. Senturk M, Layer M, Pembeci K, et al. A comparison of the effects of 50 % oxygen combined with CPAP to the non-ventilated lung vs. 100 % oxygen on oxygenation during one-lung ventilation. Anasthesiol Intensivmed Notfallmed Schmerzther, 2004,39(6):360-364
    3. Wake M, Sanagawa Y, Okamoto Y. A case of anesthetic management for re-expansion pulmonary edema of the dependent lung saved by superimposed HFJV during one lung ventilation for the thoracoscopic operation associated with bilateral pneumothorax. Masui, 2000,49(6):643-645
    4. Gama de Abreu M, Heintz M, Heller A, et al. One-lung ventilation with high tidal volumes and zero positive end-expiratory pressure is injurious in the isolated rabbit lung model. Anesth Analg, 2003,96(1):220-228
    5. Riquelme M, Monnet E, Kudnig ST, et al. Cardiopulmonary changes induced during one-lung ventilation in anesthetized dogs with a closed thoracic cavity. Am J Vet Res, 2005,66(6):973-977.
    6. Bund M, Henzler D, Walz R, et al. Aerosolized and intravenous prostacyclin during one-lung ventilation. Hemodynamic and pulmonary effects. Anaesthesist, 2004,53:612-620.
    7. Russell WJ, James MF. The effects on arterial haemoglobin oxygen saturation and on shunt of increasing cardiac output with dopamine or dobutamine during one-lung ventilation. Anaesth Intensive Care, 2004,32(5):644-648.
    8.王楠,李文志,岳子勇等。通气侧肺动脉输注前列腺素E-1对家猪单肺通气期间分流及氧合的影响。中华麻醉学杂志,2004,24(10):754-757
    1.庄心良,曾因明,陈伯銮.现代麻醉学(第三版),人民卫生出版社,2003:1204
    2. M Nakamura, S Fujishima, M Sawafuji, et al. Importance of interleukin-8 in the development of reexpansion lung injury in rabbits. Am J Respir Crit Care Med. 2000.161(3):1030-1036
    3.屈正,孙衍庆,谭一忠等.家兔拟主动脉瘤手术单肺通气模型.心肺血管病杂志,1995,14(1):44-45
    4. Slinger P, Scott W. Arterial Oxygenation during One-lung Ventilation: A Comparison of Enflurane and Isoflurane. Anesthesiology, 1995, 82(4) : 940-946
    5. Senturk M, Layer M, Pembeci K, et al. A comparison of the effects of 50 % oxygen combined with CPAP to the non-ventilated lung vs. 100 % oxygen on oxygenation during one-lung ventilation[J]. Anasthesiol Intensivmed Notfallmed Schmerzther, 2004,39(6):360-364
    6. Wake M, Sanagawa Y, Okamoto Y. A case of anesthetic management for re-expansion pulmonary edema of the dependent lung saved by superimposed HFJV during one lung ventilation for the thoracoscopic operation associated with bilateral pneumothorax. Masui, 2000,49(6):643-645
    7. Gama de Abreu M, Heintz M, Heller A, et al. One-lung ventilation with high tidal volumes and zero positive end-expiratory pressure is injurious in the isolated rabbit lung model. Anesth Analg, 2003,96(1):220-228
    8. Funakoshi T, Ishibe Y, Okazaki N, et al. Effect of re-expansion after short-period lung collapse on pulmonary capillary permeability and pro-inflammatory cytokine gene expression in isolated rabbit lungs. British Journal of Anaesthesia, 2004, 92(4): 558-563
    9. Kirchner EA, Mols G, Hermle G, et al. Reduced activation of immunomodulatorytranscription factors during positive end-expiratory pressure adjustment based on volume-dependent compliance in isolated perfused rabbit lungs. British Journal of Anaesthesia 2005 94(4):530-535
    10. Riquelme M, Monnet E, Kudnig ST, et al. Cardiopulmonary changes induced during one-lung ventilation in anesthetized dogs with a closed thoracic cavity. Am J Vet Res, 2005,66(6): 973-977.
    11. Russell WJ, James MF. The effects on arterial haemoglobin oxygen saturation and on shunt of increasing cardiac output with dopamine or dobutamine during one-lung ventilation. Anaesth Intensive Care, 2004,32(5): 644-648.
    12. Misthos P, Katsaragakis S, Milingos N, et al. Postresectional pulmonary oxidative stress in lung cancer patients. The role of one-lung ventilation. Eur J Cardiothorac Surg 2005,27(3):379-383
    13. Hamvas A, Park CK, Palazzo R et al. Modifying pulmonary ischemia-reperfusion injury by altering ventilatory strategies during ischemia. J Appl Physiol. 1992,73(5): 2112-2119
    1. Slinger P,Triolet W, Wilson J.Improving oxygenation during one-lung ventilation. Anesthesiology, 1988, 68(2): 291-295
    2. Scott E, Sinclair, David A, et al. Hypercapnic Acidosis Is Protective in an In Vivo Model of Ventilator-induced Lung Injury. American Journal of Respiratory and Critical Care Medicine 2002, 166: 403-408
    3. Webb HH, Tierney DF. Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis 1974; 110: 556–565
    4.刘洪,赵凤瑞,郭作文,等.开胸术后复张性肺水肿的探讨.中日友好医院学报,2001;15(1):21-23
    5.方丹青,徐凡,何建行,等.微创电视胸腔镜手术临床研究.中华创伤杂志, 2006;22(1):32-35
    6. Matthay MA, Bhattacharya S, Gaver D, et al. Ventilator-induced lung injury: in vivo and in vitro mechanisms. Am J Physiol Lung Cell Mol Physiol 2002; 283: 678–682
    7.王月兰,姚尚龙.机械牵张导致肺上皮细胞损伤的信号转导机制研究进展.国外医学.麻醉学与复苏分册2004,25:362-365
    8. Jordan MC, Mitchell JA, Quinlin GJ,et al. The pathogenesis of lung injury following pulmonary resection. Eur Respir J 2000; 15(4): 790–799
    9. M. Cumhur Sivrikoz, Bülent Tun??zgür, Mustafa ?ekmen, et al. The role of tissue reperfusion in the reexpansion injury of the lungs. Eur J Cardiothorac Surg 2002;22: 721-727
    10. T. Funakoshi, Y. Ishibe, N. Okazaki et al. Effect of re-expansion after short-period lung collapse on pulmonary capillary permeability and pro-inflammatory cytokine gene expression in isolated rabbit lungs. British Journal of Anaesthesia, 2004; 92(4):558-563
    11. Misthos P, Katsaragakis S, Milingos N, et al. Postresectional pulmonary oxidative stress in lung cancer patients. The role of one-lung ventilation. Eur J Cardiothorac Surg 2005,27(3):379-383
    1. Sen R, Baltimore D. Multiple nuclear factor interact with the immunoglobulin enhancer sequences. Cell, 1986,46(5):705-716
    2. Fan J, Ye RD, Malik AB. Transcriptional mechanisms of acute lung injury Am J Physiol Lung Cell Mol Physiol. 2001,281(5):1037-1050
    3.游志坚,姚尚龙,梁华根.不同时间单肺通气后两侧肺损伤程度比较.中国急救医学2007,27(2):134-136
    4. Slinger P, Scott W. Arterial Oxygenation during One-lung Ventilation: A Comparison of Enflurane and Isoflurane. Anesthesiology, 1995, 82(4) : 940-946
    5. Webb HH, Tierney DF. Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis 1974; 110: 556–565
    6.庄心良,曾因明,陈伯銮.现代麻醉学(第三版),人民卫生出版社,2003:1204
    7. Bowie, A., O’Neill, L. A. (2000) Oxidative stress and nuclear factor- B activation: a reassessment of the evidence in the light of recent discoveries Biochem. Pharmacol. 59,13-23
    8. Hayashi, T., Sekine, T., Okamoto, T. (1993) Identification of a new serine kinase that activates NF- B by direct phosphorylation J. Biol. Chem. 268,26790-26795,
    9. Hayakawa, M., Miyashita, H., Sakamoto, I., Kitagawa, M., Tanaka, H., Yasuda, H., Karin, M., Kikugawa, K. (2003) Evidence that reactive oxygen species do not mediate NF- B activation EMBO J. 22,3356-3366
    10. Staal, F. J., Roederer, M., Herzenberg, L. A. (1990) Intracellular thiols regulate activation of nuclear factor B and transcription of human immunodeficiency virus Proc. Natl. Acad. Sci. USA 87,9943-9947
    11. Dos Santos CC, Slutsky AS. Invited review: mechanisms of ventilator-induced lunginjury: a perspective.J Appl Physiol. 2000, 89(4):1645-1655.
    12. Clerch LB, Massaro D. Tolerance of rats to hyperoxia. Lung antioxidant enzyme gene expression. J Clin Invest 1993; 91(2): 499–508
    13. Funakoshi T, Ishibe Y, Okazaki N, et al. Effect of re-expansion after short-period lung collapse on pulmonary capillary permeability and pro-inflammatory cytokine gene expression in isolated rabbit lungs. British Journal of Anaesthesia, 2004, 92(4): 558-563
    14. De Perrot M, Liu M, Waddell TK, et al. Ischemia–Reperfusion–induced Lung Injury. Am J Respir Crit Care Med. 2003 ,167(4):490-511.
    15. Haddad JJ. Science review: redox and oxygen-sensitive transcription factors in the regulation of oxidant-mediated lung injury: role for hypoxia-inducible factor-1alpha. Crit Care, 2003,7(1):47-54.
    1. Williams EA, Quinlan GJ, Goldstraw P, et al.Postoperative lung injury and oxidative damage in patients undergoing pulmonary resection. Eur Respir J. 1998;11(5): 1028- 1034.
    2. Haddad JJ. Science review: redox and oxygen-sensitive transcription factors in the regulation of oxidant-mediated lung injury: role for hypoxia-inducible factor-1alpha. Crit Care. 2003;7(1):47-54
    3.游志坚,姚尚龙,梁华根.不同时间单肺通气后两侧肺损伤程度比较.中国急救医学2007,27(2):134-136
    4. Webb HH, Tierney DF. Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis 1974; 110: 556–565
    5. Amato MB, Barbas CS, Medeiros DM, et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome.N Engl J Med. 1998;338(6): 347-354.
    6. The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network.N Engl J Med. 2000;342(18):1301-1308
    7. Takeuchi M, Goddon S, Dolhnikoff M, et al. Set positive end-expiratory pressure during protective ventilation affects lung injury.Anesthesiology. 2002;97(3):682-692.
    8. Brower RG, Ware LB, Berthiaume Y, et al. Treatment of ARDS. Chest. 2001;120(4): 1347-1367.
    9. Sen R, Baltimore D. Multiple nuclear factor interact with the immunoglobulin enhancer sequences. Cell, 1986,46(5):705-716
    10. Fan J, Ye RD, Malik AB. Transcriptional mechanisms of acute lung injury Am J Physiol Lung Cell Mol Physiol. 2001,281(5):1037-1050
    11. Fracica PJ, Knapp MJ, Piantadosi CA, et al. Responses of baboons to prolonged hyperoxia: physiology and qualitative pathology.J Appl Physiol. 1991; 71(6):2352- 2362.
    12. Rothen HU, Sporre B, Engberg G, et al. Influence of gas composition on recurrence of atelectasis after a reexpansion maneuver during general anesthesia. Anesthesiology 1995; 82: 832–42
    13. Rothen HU, Sporre B, Engberg G, Wegenius G, Hedenstierna G. Re-expansion of atelectasis during general anaesthesia may have a prolonged effect. Acta Anaesthesiol Scand 1995; 39: 118–25
    14. Rothen HU, Sporre B, Engberg G, et al. Atelectasis and pulmonary shunting during induction of general anaesthesia– can they be avoided? Acta Anaesthesiol Scand 1996; 40: 524–9
    15. Dohlen G, Carlsen H, Blomhoff R, et al.Reoxygenation of hypoxic mice with 100% oxygen induces brain nuclear factor-kappa B. Pediatr Res. 2005 ;58(5):941-9415
    1. Sen R, Baltimore D. Multiple nuclear factor interact with the immunoglobulin enhancer sequences. Cell, 1986,46(5):705-716
    2. Piette J, Piret B. Multiple redox regulation in NF-κB transcription factor activation. Biol Chem, 1997,378(11): 1237-1245.
    3. Bowie A, O'Neill LA. Oxidative stress and nuclear factor-kappaB activation: a reassessment of the evidence in the light of recent discoveries. Biochem Pharmacol. 2000;59(1):13-23.
    4. Ye J, Ding M, Zhang X, et al. On the role of hydroxyl radical and the effect of tetrandrine on nuclear factor--kappaB activation by phorbol 12-myristate 13-acetate. Ann Clin Lab Sci. 2000;30(1):65-71.
    5. Wang P, Wu P, Siegel MI, et al. Interleukin (IL)-10 inhibits nuclear factor kappa B (NF kappa B) activation in human monocytes. IL-10 and IL-4 suppress cytokine synthesis by different mechanisms. J Biol Chem 1995 ,270(16):9558-9563
    6. Bohrer H, Nawroth PP. Nuclear factor kappaB--a new therapeutic approach?Intensive Care Med. 1998;24(11):1129-1130.
    7. Hinz M, Lemke P, Anagnostopoulos I, et al. Nuclear factor kappaB-dependent gene expression profiling of Hodgkin's disease tumor cells, pathogenetic significance, and link to constitutive signal transducer and activator of transcription 5a activity.J Exp Med. 2002;196(5):605-617.
    8. Abraham E, Carmody A, Shenkar R, et al. Neutrophils as early immunologic effectors in hemorrhage- or endotoxemia-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2000;279(6):L1137-1145.
    9. Shenkar, R, and Abraham E. Mechanisms of lung neutrophil activation after hemorrhage or endotoxemia: roles of reactive oxygen intermediates, NF-kappa B, andcyclic AMP response element binding protein. J Immunol, 1999;163(2): 954-962
    10. Wang CY, Mayo MW, Korneluk RG, et al. NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science. 1998;281(5383):1680-1683
    11. Parsey MV, Kaneko D, Shenkar R, et al. Neutrophil apoptosis in the lung after hemorrhage or endotoxemia: apoptosis and migration are independent of IL-1beta.Clin Immunol. 1999;91(2):219-225
    12. Hashimoto S, Pittet JF, Hong K,et al. Depletion of alveolar macrophages decreases neutrophil chemotaxis to Pseudomonas airspace infections. Am J Physiol. 1996;270(5):L819-828.
    13. Lentsch AB, Czermak BJ, Bless NM, et al. NF-kappaB activation during IgG immune complex-induced lung injury: requirements for TNF-alpha and IL-1beta but not complement.Am J Pathol. 1998;152(5):1327-1336.
    14. Lentsch AB, Shanley TP, Sarma V, et al. In vivo suppression of NF-kappa B and preservation of I kappa B alpha by interleukin-10 and interleukin-13. J Clin Invest. 1997;100(10):2443-2448
    15. Lentsch AB, Czermak BJ, Bless NM,et al. Essential role of alveolar macrophages in intrapulmonary activation of NF-kappaB. Am J Respir Cell Mol Biol. 1999;20(4):692-6928
    16. Fan J, Kapus A, Li YH, et al. Priming for enhanced alveolar fibrin deposition after hemorrhagic shock: role of tumor necrosis factor. Am J Respir Cell Mol Biol. 2000;22(4):412-421.
    17. Schwartz MD, Moore EE, Moore FA, et al. Nuclear factor-kappa B is activated in alveolar macrophages from patients with acute respiratory distress syndrome.Crit Care Med. 1996;24(8):1285-1292.
    18. Ward PA, Hunninghake GW. Lung inflammation and fibrosis.Am J Respir Crit Care Med. 1998;157(4):S123-129.
    19. Fan J, Ye RD, Malik AB. Transcriptional mechanisms of acute lung injury.Am J Physiol Lung Cell Mol Physiol. 2001;281(5):L1037-1050.
    20. Slinger P,Triolet W, Wilson J.Improving oxygenation during one-lung ventilation. Anesthesiology, 1988, 68(2): 291-295
    21.刘洪,赵凤瑞,郭作文,等.开胸术后复张性肺水肿的探讨.中日友好医院学报,2001;15(1):21-23
    22.方丹青,徐凡,何建行,等.微创电视胸腔镜手术临床研究.中华创伤杂志, 2006;22(1):32-35
    23. Dos Santos CC, Slutsky AS. Invited review: mechanisms of ventilator-induced lung injury: a perspective.J Appl Physiol. 2000;89(4):1645-1655
    24. Misthos P, Katsaragakis S, Milingos N, et al. Postresectional pulmonary oxidative stress in lung cancer patients. The role of one-lung ventilation. Eur J Cardiothorac Surg 2005,27(3):379-383
    25. Haddad JJ. Science review: redox and oxygen-sensitive transcription factors in the regulation of oxidant-mediated lung injury: role for hypoxia-inducible factor-1alpha.Crit Care. 2003;7(1):47-54.
    26. T. Funakoshi, Y. Ishibe, N. Okazaki et al. Effect of re-expansion after short-period lung collapse on pulmonary capillary permeability and pro-inflammatory cytokine gene expression in isolated rabbit lungs. British Journal of Anaesthesia, 2004; 92(4): 558-563
    27. De Perrot M, Liu M, Waddell TK, et al. Ischemia-reperfusion-induced lung injury.Am J Respir Crit Care Med. 2003;167(4):490-511
    28. Dohlen G, Carlsen H, Blomhoff R, et al.Reoxygenation of hypoxic mice with 100% oxygen induces brain nuclear factor-kappa B. Pediatr Res. 2005 ;58(5):941-945.
    29. Madjdpour C, Jewell UR, Kneller S, et al. Decreased alveolar oxygen induces lung inflammation.Am J Physiol Lung Cell Mol Physiol. 2003;284(2):L360-367.
    30. Zhang H, Xu Y, Zhang Z, et al. Effect of nuclear factor-kappa B on vascularendothelial growth factor mRNA expression of human pulmonary artery smooth muscle cells in hypoxia. J Huazhong Univ Sci Technolog Med Sci. 2004,24(1):9-12, 18
    31. Naidu BV, Krishnadasan B, Byrne K, et al. Regulation of chemokine expression by cyclosporine A in alveolar macrophages exposed to hypoxia and reoxygenation. Ann Thorac Surg. 2002 Sep;74(3):899-905
    32. Farivar AS, Mackinnon-Patterson BC, Barnes AD, et al. Cyclosporine modulates the response to hypoxia-reoxygenation in pulmonary artery endothelial cells. Ann Thorac Surg, 2005,79(3):1010-1016
    1. Benumof JL. Chapter 2: distribution of ventilation and perfusion. Anesthesia for thoracic surgery. 2nd edition. Philadelphia: WB Saunders; 1995.
    2. Larsson A, Malmkvist G, Werner O. Variations in lung volume and compliance during pulmonary surgery.Br J Anaesth. 1987;59(5):585-591.
    3. West JB. Respiratory physiology: the exxentials. 5th edition. Baltimore: Williams and Wilkins;1995
    4. Hakim TS, Lisbona R, Dean GW . Gravity-independent inequality in pulmonary blood flow in humans. J Appl Physiol. 1987;63(3):1114-1121
    5. Glenny RW.Blood flow distribution in the lung. Chest. 1998;114(1 Suppl):8-16.
    6. Slinger PD, Lesiuk L.Flow resistances of disposable double-lumen, single-lumen, and Univent tubes.J Cardiothorac Vasc Anesth. 1998;12(2):142-144
    7. Aaronson PI, Robertson TP, Knock GA,et al. Hypoxic pulmonary vasoconstriction: mechanisms and controversies.J Physiol. 2006,570(1):53-58
    8. Naeije R, Brimioulle S. Physiology in medicine: importance of hypoxic pulmonary vasoconstriction in maintaining arterial oxygenation during acute respiratory failure.Crit Care. 2001;5(2):67-71.
    9. Chen L, Miller FL, Williams JJ, et al.Hypoxic pulmonary vasoconstriction is not potentiated by repeated intermittent hypoxia in closed chest dogs.Anesthesiology. 1985;63(6):608-610.
    10. Hambraeus-Jonzon K, Bindslev L, Mellgard AJ, et al.Hypoxic pulmonary vasoconstriction in human lungs. A stimulus-response study. Anesthesiology. 1997;86(2):308-315.
    11. Slinger P,Triolet W, Wilson J.Improving oxygenation during one-lung ventilation. Anesthesiology, 1988, 68(2): 291-295
    12.刘洪,赵凤瑞,郭作文等.开胸术后复张性肺水肿的探讨.中日友好医院学报.2001,15(1):21~23
    13. Szegedi LL, Bardoczky GI, Engelman EE,et al. Airway pressure changes during one-lung ventilation. Anesth Analg. 1997;84(5):1034-1037.
    14. Licker M, De Perrot M, Spiliopoulos A,Risk factors for acute lung injury after thoracic surgery for lung cancer. Anesth Analg. 2003;97(6):1558-1565.
    15. Van der Werff YD, Van der Houwen HK, Heijmans PJ, et al. Postpneumonectomy pulmonary edema. A retrospective analysis of incidence and possible risk factors. Chest. 1997;111(5):1278-1284.
    16. Dos Santos CC, Slutsky AS.Mechanisms of ventilator-induced lung injury: a perspective.J Appl Physiol. 2000;89(4):1645-1655.
    17. Amato MB, Barbas CS, Medeiros DM, et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome.N Engl J Med. 1998; 338 (6): 347-354.
    18. The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network.N Engl J Med. 2000;342(18):1301-1308.
    19. Gama de Abreu M, Heintz M, Heller A, et al. One-lung ventilation with high tidal volumes and zero positive end-expiratory pressure is injurious in the isolated rabbit lung model.Anesth Analg. 2003;96(1):220-228
    20. Murphy DB, Cregg N, Tremblay L, et al.Adverse ventilatory strategy causes pulmonary-to-systemic translocation of endotoxin. Am J Respir Crit Care Med. 2000;162(1):27-33
    21. Wrigge H, Uhlig U, Zinserling J, et al. The effects of different ventilatory settings on pulmonary and systemic inflammatory responses during major surgery.Anesth Analg. 2004;98(3):775-781
    22. Takeuchi M, Goddon S, Dolhnikoff M, et al. Set positive end-expiratory pressureduring protective ventilation affects lung injury.Anesthesiology. 2002;97(3):682-692.
    23. Slinger PD, Kruger M, McRae K, et al. Relation of the static compliance curve and positive end-expiratory pressure to oxygenation during one-lung ventilation.Anesthesiology. 2001;95(5):1096-1102.
    24. Tusman G, Stephan HB, Fernando SS,et al.Lung Recruitment Improves the Efficiency of Ventilation and Gas Exchange During One-Lung Ventilation Anesthesia.Anesth Analg 2004;98:1604-1609
    25. Tusman G, Bohm SH, Melkun F, et al. Alveolar recruitment strategy increases arterial oxygenation during one-lung ventilation. Ann Thorac Surg. 2002 Apr;73(4):1204-1209.
    26. Fracica PJ, Knapp MJ, Piantadosi CA, et al. Responses of baboons to prolonged hyperoxia: physiology and qualitative pathology.J Appl Physiol. 1991 ;71(6): 2352- 2362.
    27. Williams EA, Quinlan GJ, Goldstraw P, et al.Postoperative lung injury and oxidative damage in patients undergoing pulmonary resection. Eur Respir J. 1998;11(5): 1028-1034.
    28. Brower RG, Ware LB, Berthiaume Y, et al. Treatment of ARDS. Chest. 2001;120(4): 1347-1367.
    29. Campbell RS, Davis BR.Pressure-controlled versus volume-controlled ventilation: does it matter?Respir Care. 2002;47(4):416-424
    30. Tugrul M, Camci E, Karadeniz H, et al. Comparison of volume controlled with pressure controlled ventilation during one-lung anaesthesia. Br J Anaesth. 1997;79(3): 306-310.
    31. Slinger PD. Acute lung injury after pulmonary resection: more pieces of the puzzle.Anesth Analg. 2003;97(6):1555-1557.
    32. Dubniks M, Persson J, Grande PO. Plasma volume expansion of 5% albumin, 4% gelatin,6% HES 130/0.4, and normal saline under increased microvascular permeability in the rat.Intensive Care Med. 2007;33(2):293-199.
    33. Lang K, Boldt J, Suttner S, Haisch G. Colloids versus crystalloids and tissue oxygen tension in patients undergoing major abdominal surgery. Anesth Analg. 2001;93(2): 405-409
    34. Boldt J. The good, the bad, and the ugly: should we completely banish human albumin from our intensive care units? Anesth Analg. 2000;91(4):887-895
    35. Choi PT, Yip G, Quinonez LG, et al. Crystalloids vs. colloids in fluid resuscitation: a systematic review. Crit Care Med. 1999;27(1):200-210.
    36.尚游,姚尚龙袁世荧,高渗溶液与粘附分子,国外医学麻醉与复苏分册,2003,24(5):275-277
    37.袁世荧,张雪萍,曾邦雄,高晶体一高胶体渗透压混合液抑制中性粒细胞的激活。中华麻醉学杂志,2002,22(11):688-689
    38. Slinger P. Post-pneumonectomy pulmonary edema: is anesthesia to blame? Curr Opin Anaesthesiol. 1999;12(1):49-54.
    39. Szegedi LL, Van der Linden P, Ducart A, et al. The effects of acute isovolemic hemodilution on oxygenation during one-lung ventilation. Anesth Analg. 2005;100(1): 15-20.
    40. Rocca GD, Passariello M, Coccia C, et al. Inhaled nitric oxide administration during one-lung ventilation in patients undergoing thoracic surgery. J Cardiothorac Vasc Anesth. 2001;15(2):218-223.
    41. Sticher J, Scholz S, Boning O, et al. Small-dose nitric oxide improves oxygenation during one-lung ventilation: an experimental study. Anesth Analg. 2002;95(6): 1557-1562
    42. Ullrich R, Bloch KD, Ichinose F, et al. Hypoxic pulmonary blood flow redistribution and arterial oxygenation in endotoxin-challenged NOS2-deficient mice. J Clin Invest. 1999;104(10):1421-1429.
    43. Lowson SM. Inhaled alternatives to nitric oxide.Crit Care Med. 2005;33(3S):188-195
    44. Sutcliffe N, McCluskey A. Simple apparatus for continuous nebulisation ofprostacyclin. Anaesthesia. 2000;55(4):405
    45. Jolliet P, Bulpa P, Ritz M, et al. Additive beneficial effects of the prone position, nitric oxide, and almitrine bismesylate on gas exchange and oxygen transport in acute respiratory distress syndrome. Crit Care Med. 1997;25(5):786-794.
    46. Moutafis M, Liu N, Dalibon N, et al. The effects of inhaled nitric oxide and its combination with intravenous almitrine on Pao2 during one-lung ventilation in patients undergoing thoracoscopic procedures.Anesth Analg. 1997;85(5):1130-1135.
    47. Moutafis M, Dalibon N, Liu N, et al.The effects of intravenous almitrine on oxygenation and hemodynamics during one-lung ventilation. Anesth Analg. 2002;94(4):830-834.
    48. Bardoczky GI, d'Hollander A. Continuous monitoring of the flow-volume loops and compliance during anesthesia. J Clin Monit. 1992;8(3):251-252.
    49. Bardoczky GI, Levarlet M, Engelman E, et al. continuous spirometry for detection of double-lumen endobronchial tube displacement.Br J Anaesth. 1993;70(5):499-502.
    50. Grenier B, Verchere E, Mesli A, et al. Capnography monitoring during neurosurgery: reliability in relation to various intraoperative positions.Anesth Analg. 1999;88(1):43-48.
    51. Short JA, Paris ST, Booker PD,et al. Arterial to end-tidal carbon dioxide tension difference in children with congenital heart disease.Br J Anaesth. 2001;86(3):349-353.
    52. Tobias JD. Noninvasive carbon dioxide monitoring during one-lung ventilation: end-tidal versus transcutaneous techniques. J Cardiothorac Vasc Anesth. 2003;17(3):306-308.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700