普胸外科围手术期肺保护研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
呼吸衰竭是需要单肺通气的普胸外科(包括肺叶切除术和食管癌切除术等)术后最常见并发症,ARDS/ALI是引起呼吸衰竭的重要病因,死亡率超过50%。文献报道,肺叶切除术后ARDS/ALI发生率为0.9%-3.7%,食管癌切除术后发生率为10-20%。ARDS/ALI机制尚不完全清楚,手术创伤导致的炎症因子释放、肠源性内毒素吸收是可能的原因,而OLV则是术后ARDS/ALI另一重要原因。单肺通气时,非重力依赖侧肺萎陷,手术结束后肺再次复张可能会产生复张性肺损伤。若之前存在气胸、胸腔积液、肿瘤压迫等病理因素导致的长时间肺不张,在肺快速复张后可能会产生严重的复张性肺水肿。另一方面,在重力依赖侧,通气的单肺承受了相对更大的潮气量,肺泡被过度牵拉,可能导致机械通气相关性肺损伤。我们分别对非重力依赖侧和重力依赖侧在OLV时采取相应的保护性措施,使得两侧肺承受更小的损伤,以降低术后ARDs/ALI的发生率。
     第一部分褪黑素对复张性肺水肿的保护作用
     [目的]肺不张后快速复张会产生复张性肺水肿(reexpansion pulmonary edema, RPE),本实验旨在研究褪黑素对复张性肺水肿是否存在保护作用。[方法]我们通过夹闭大鼠左主支气管造成左肺不张,48小时后在开放左主支气管使得左肺复张以建立复张性肺水肿模型。在肺复张前30分钟我们分别腹腔注射melatonin(10mg/kg)和溶媒安慰剂,比较两组复张后的肺组织湿干比、氧合指数PaO2/FiO2、和肺组织中NO、MPO、MDA、IL-8含量的差异。[结果]通行检测我们发现,melatonin组大鼠复张后肺组织的湿/干比显著低于溶媒组,动脉血氧合指数PaO2/FiO2高于溶媒组,肺组织匀浆中NO、MPO、MDA和IL-8浓度均低于溶媒组。HE染色显示melatonin组肺组织水肿程度较轻、炎症细胞侵润较少。
     [结论]由此我们推断melatonin通过减少肺复张后的氧化性损伤,抑制炎症细胞的侵润,达到减轻肺水肿、改善肺部氧合的作用。
     第二部分单肺通气时保护性通气策略对术后肺损伤的影响的临床试验
     [目的]单肺通气时相对大潮气量会引起重力依赖侧肺的损伤,本试验旨在探究单肺通气时小潮气量是否能减轻术后肺损伤的程度。[方法]我们选择择期食管癌切除术的病人,随机分成OLV保护性同期策略组和常规通气策略组。保护性同期策略组病人在OLV时采用5ml/kg的潮气量和5cmH2O水平的PEEP,常规同期策略组采用8ml/kg的潮气量和0cmH2OPEEP。在术前和术毕即刻我们收集病人通气侧肺的肺泡灌洗液检测TNF-à、IL-1β、IL-6和IL-8浓度、术后18小时氧合指数、肺部CT扫描结果以及并发症发生率。[结果]试验结果显示,保护性通气策略组术后肺泡灌洗液中IL-1β和IL-8浓度明显低于常规通气策略组,术后18小时氧合指数PV组显著高于CV组,术后并发症发生率PV组低于CV组,但差异无统计学意义。[结论]该试验提示保护性通气策略可以减少0LV时炎症因子的释放,改善术后氧合能力。虽然PV组术后ARDS/ALI发生率和其他并发症的发生率低于CV组,但差异无显著性,这可能与本试验的样本量较小有关,今后可深入研究,扩大样本量,找出相关的差异性。
Respiratory failure is the most common complication after thoracic surgery (including pneumonectomy and esophagectomy) which needs one lung ventilation. ARDS/ALI is an important cause of postoperative respiratory failure with the mortality rate over 50%. Literatures show that ARDS/ALI occurs in 0.9%-3.75% of cases after pneumonectomy and incident rate in esophagectomy cases ranges from 10% to 20%. The mechanism of ARDS is unknown, and the release of inflammatory mediators and gut-related endotoxins may be the cause.Furthermore, OLV is another crucial cause of postoperative ARDS/ALI. During one lung ventilation, the nondependent lung collapses and then is sequentially reexpanded at the end of operation, which may cause reexpansion lung injury. If there is pneumothorax, pleural effusion or tumor pressing lungs before surgery which leads to long term atelectasis, rapid reexpansion of the lung can cause severe reexpansion pulmonary edema. On the other hand, ventilated dependent lung endure relative bigger tidal volume and alveolar is overstretched that can lead to ventilator induced lung injury. We apply protective methods respectively to nondependent lung and dependent lung during OLV to prevent both lungs from injuries, by which we can reduce the incident rate of postoperative ARDS/ALI.
     Part One:The protective effect of melatonin on reexpansion pulmonary edema.
     Objective
     Rapid reexpansion of collapsed lung will lead to reexpansion pulmonary edema. The experiment was to investigate whether melatonin could prevent expanded lung from reexpansion injury.
     Method We collapsed left lungs of rats by ligating the left bronchus with silk, and then reexpanded left lungs after 48 hours to achieve animal mode of reexpansion pulmonary edema.30 minutes before reexpansion we injected melatonin (10mg/kg) or vehicle placebo intraperitoneally. We compared Wet/Dry Ratio, Oxygenation Index and NO, MPO, MDA and IL-8 levels of reexpanded lungs between two groups.
     Results
     We found that wet/dry ratio of melatonin group was significantly lower than vehicle group, and oxygen index (PaO2/FiO2) of melatonin was higher than vehicle group.
     The levels of NO, MPO, MDA and IL-8 of lung homogenate were lower in melatonin group than those in vehicle group. Hematoxylin and eosin stain of reexpanded lungs showed that melatonin-pretreated lungs had less pulmonary edema level and less inflammatory cells infiltrating.
     Conclusion
     Hence we speculated that melatonin lessen pulmonary edema and improve oxygenation after reexpansion by attenuating oxidative stress and inhibiting leukocytes infiltration.
     Part Two:The impact of protective ventilation strategy during OLV on postoperative ALI:a prospective randomized control trial
     Objective
     Relatively large tidal volume during one lung ventilation(OLV) can cause injury of dependent lung. The trial was to investigate whether low tidal volume ventilation during OLV could attenuate postoperative lung injury.
     Method
     The patients for selective esophagectomy were randomly assigned to two groups: Pretective Ventilation Group(Group PV) and Conventional Ventilation Group(Group CV). Patients of Group PV were ventilated with tidal volume of 5ml/kg and 5 cmH2O PEEP, and patients of Group CV were ventilated with tidal volume of 8ml/kg and zero PEEP. We collected bronchial lavage fluid of all patients before surgery and at the end of operation to detect TNF-α,IL-1β,IL-6 and IL-8 level in BALF. And Oxygenation Index, postoperative CT scan of lungs as well as incidence rate of complications were collected.
     Results
     The results showed that IL-1 and IL-8 levels in BALF of Group PV were significantly lower than that of Group CV. Oxygenation Index of was significantly higher in patients of Group PV. Cases with postoperative complications in Group PV was less than that in Group CV, but that difference was not significant.
     Conclusion
     The trial suggested that protective ventilation strategy could attenuate release of cytokines and improve postoperative oxygenation capacity. Maybe the sample size of this trial was relatively small to detect the difference of incident rate of ARDS/ALI and other complications between two groups, so we would carry out a further tiral with a large sample capacity to fix the problem.
引文
1. Mahfood S, Hix WR, et al. "Reexpansion pulmonary edema." Ann Thorac Surg 1998; 45(3):340-5.
    2. Matsuura Y, Nomimura T, et al. "Clinical analysis of reexpansion pulmonary edema." Chest 1991; 100(6):1562-6.
    3. Marujo WC, Takaoka F, et al. "Early perioperative death associated with reexpansion pulmonary edema during liver transplantation." Liver Transpl 2005; 11(11):1439-43.
    4. Yanagidate F, Dohi S, et al. "Reexpansion pulmonary edema after thoracoscopic mediastinal tumor resection." Anesth Analg 2001; 92(6):1416-7.
    5. Kim YK, Kim H, et al. "New classification and clinical characteristics of reexpansion pulmonary edema after treatment of spontaneous pneumothorax." Am J Emerg Med 2009; 27(8):961-7.
    6. Iqbal M, Multz AS, et al. "Reexpansion pulmonary edema after VATS successfully treated with continuous positive airway pressure." Ann Thorac Surg 2000; 70(2):669-71.
    7. Sakao Y, Kajikawa O, et al."Association of IL-8 and MCP-1 with the development of reexpansion pulmonary edema in rabbits." Ann Thorac Surg 2001;71(6):1825-32.
    8. Nakamura M, Fujishima S, et al. "Importance of interleukin-8 in the development of reexpansion lung injury in rabbits." Am J Respir Crit Care Med 2000; 161(3 Pt 1):1030-6.
    9. Sivrikoz MC, Tuncozgur B, et al. "The role of tissue reperfusion in the reexpansion injury of the lungs." Eur J Cardiothorac Surg 2002; 22(5):721-7.
    10. Funakoshi T, Ishibe Y, et al."Effect of re-expansion after short-period lung collapse on pulmonary capillary permeability and pro-inflammatory cytokine gene expression in isolated rabbit lungs." Br J Anaesth 2004; 92(4):558-63.
    11. Saito S, Ogawa J, et al. "Pulmonary reexpansion causes xanthine oxidase-induced apoptosis in rat lung." Am J Physiol Lung Cell Mol Physiol 2005; 289(3): L400-6.
    12. Sawafuji M, Ishizaka A, et al. "Role of Rho-kinase in reexpansion pulmonary edema in rabbits." Am J Physiol Lung Cell Mol Physiol 2005; 289(6):L946-53.
    13. Slinger PD.Acute lung injury after pulmonary resection:More pieces of the puzzle. Anesth Analg 2003; 97:1555-7.
    14. Alam N, Park BJ, et al. Incidence and risk factors for lung injury after lung cancer resection. Ann Thorac Surg 2007; 84:1085-91.
    15. Licker M, de Perrot M, Spiliopoulos A, et al. Risk factors for acute lung injury after thoracic surgery for lung cancer. Anesth Analg 97:1558-65.
    16. Licker M, Fauconnet P, Villiger Y, et al.Acute lung injury and outcomes after thoracic surgery. Curr Opin Anaesthesiol 2009; 22:61-7.
    17. Ruffini E, Parola A, Papalia E, et al. Frequency and mortality of acute lung injury and acute respiratory distress syndrome after pulmonary resection for bronchogenic carcinoma. Eur J Cardiothorac Surg 2001; 20:30-36.
    18. Fernandez-Perez ER, Sprung J, Afessa B, et al.Intraoperative ventilator settings and acute lung injury after elective surgery:A nested case control study. Thorax 2009; 64:121-7.
    19. Ranieri VM, Mascia L, Fiore T, et al. Cardiorespiratory effects of positive end-expiratory pressure during progressive tidal volume reduction (permissive hypercapnia) in patients with acute respiratory distress syndrome. ANESTHESIOLOGY 1995; 83:710-20.
    20. Stuber F, Wrigge H, Schroeder S, et al. Kinetic and reversibility of mechanical ventilation-associated pulmonary and systemic inflammatory response in patients with acute lung injury. Intensive Care Med 2002; 28:834-41.
    21. ARDS Network:Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000; 342:1301-8.
    22. Wrigge H, Zinserling J, Stuber F, et al. Effects of mechanical ventilation on release of cytokines into systemic circulation in patients with normal pulmonary function. ANESTHESIOLOGY 2000; 93:1413-7.
    23. Wrigge H, Uhlig U, Zinserling J, et al. The effects of different ventilatory settings on pulmonary and systemic inflammatory responses during major surgery. Anesth Analg 2004; 98:775-81.
    24. Rogier M, Annick R, Ester K, et al. Ventilation with lower tidal volumes as compared to conventional tidal volumes for patients without acute lung injury-a preventive randomized controlled trial. Crit care 2010; 14(1):R1.
    25. Bregeon F, Delpierre S, Chetaille B,et al.Mechanical ventilation affects lung function and cytokine production in an experimental model of endotoxemia. ANESTHESIOLOGY 2005; 102:331-9.
    26. Wrigge H, Uhlig U, Zinserling J, et al. The effects of different ventilatory settings on pulmonary and systemic inflammatory responses during major surgery. Anesth Analg 2004; 98:775-81.
    27. Rogier M, Annick R, Esther K, et al:Ventilation with low tidal volumes as compared to conventional tidal volumes for patients without acute lung injury-a preventive randomized controlled trial. Crit Care 2010; 14(1):R1. Epub 2010 Jan 7.
    28. Michelet P, D'Journo XB, Roch A, et al. Protective ventilation influences systemic inflammation after esophagectomy:a randomized controlled study. Anesthesiology.2006 Nov; 105(5):911-9.
    29. Tandon S, Batchelor A, Bullock R, et al. Peri-operative risk factors for acute lung injury after elective oesophagectomy. Br J Anaesth.2001 May; 86(5):633-8.
    30. Ascherio A, et al. Relation of consumption of vitamin E, vitamin C, and carotenoids to risk for stroke among men in the United States. Ann. Intern. Med. 1999; 130:963-70.
    31. Lonn E, et al. Effects of vitamin E on cardiovascular and micro vascular outcomes in highrisk patients with diabetes:results of the HOPE study and MICRO-HOPE substudy. Diabetes Care 2002; 25:1919-27.
    32. Ward NC, et al. The effect of vitamin E on blood pressure in individuals with type 2 diabetes:a randomized, double-blind, placebocontrolled trial. J. Hypertens 2007; 25:227-34.
    33. Vivekananthan DP, Penn MS, Sapp SK, et al. Use of antioxidant vitamins for the prevention of cardiovascular disease:metaanalysis of randomised trials. Lancet 2003;361:2017-23.
    34. Eisenberg DM, et al. Trends in alternative medicine use in the United States, 1990-1997:results of a follow-up national survey. JAMA 1998; 280:1569-75.
    35. Woo JJ. Adverse event monitoring and multivitamin-multimineral dietary supplements. Am. J. Clin. Nutr 2007; 85:323S-4S.
    36. Pacher P, Beckman JS, Liaudet L. Nitricoxide and peroxynitrite in health and disease. Physiol. Rev 2007; 87:315-424.
    37. Forstermann U, Munzel T. Endothelial nitricoxide synthase in vascular disease: from marvel to menace. Circulation 2006; 113:1708-14.
    38. Demicheli V, Quijano C, Alvarez B, et al. Inactivation and nitration of human superoxide dismutase (SOD) by fluxes of nitricoxide and superoxide. Free Radic. Biol. Med 2007; 42:1359-68.
    39. Alvarez B, Radi R. Peroxynitrite reactivity with amino acids and proteins. Amino Acids 2003; 25:295-311.
    40. Alvarez B, Radi R. Peroxynitrite decay in the presence of hydrogen peroxide, mannitol and ethanol:a reappraisal. Free Radic. Res 2001.34:467-75.
    41. Szabo C. Multiple pathways of peroxynitrite cytotoxicity. Toxicol. Lett 2003. 140-141:105-12.
    42. Okamoto T, et al. Activation of matrix metalloproteinases by peroxynitrite-induced protein S-glutathiolation via disulfide S-oxide formation. J. Biol. Chem 2001; 276:29596-602.
    43. Wu J, et al. Enhanced vascular permeability in solid tumor involving peroxynitrite and matrix metalloproteinases. Jpn. J. Cancer Res 2001; 92:439-51.
    44. Whang YE, et al. Inactivation of the tumor suppressor PTEN/MMAC1 in advanced human prostate cancer through loss of expression. Proc. Natl. Acad. Sci. U.S.A.1998; 95:5246-50.
    45. Juedes MJ, Wogan GN. Peroxynitriteinduced mutation spectra of pSP189 following replication in bacteria and in human cells. Mutat. Res 1996; 349:51-61.
    46. Yoshie Y, Ohshima H. Nitric oxide synergistically enhances DNA strand breakage induced by polyhydroxyaromatic compounds, but inhibits that induced by the Fenton reaction. Arch. Biochem. Biophys 1997; 342:13-21.
    47. Chaturvedi N, et al. Effect of lisinopril on progression of retinopathy in normotensive people with type 1 diabetes. The EUCLID Study Group. EURODIAB Controlled Trial of Lisinopril in Insulin-Dependent Diabetes Mellitus. Lancet1998; 351:28-31.
    48. Yermilov V, Yoshie Y, Rubio J, et al. Effects of carbon dioxide/bicarbonate on induction of DNA single-strand breaks and formation of 8-nitroguanine, 8-oxoguanine and base-propenal mediated by peroxynitrite. FEBS Lett 1996; 399:67-70.
    49. Chien YH, Bau DT, Jan KY Nitric oxide inhibits DNA-adduct excision in nucleotide excision repair. Free Radic. Biol. Med 2004; 36:1011-7.
    50. Szabo C. Poly (ADP-ribose) polymerase activation by reactive nitrogen species—relevance for the pathogenesis of inflammation. Nitric Oxide 2006; 14:169-79.
    51. Korkmaz A, Yaren H, Topal T, et al. Molecular targets against mustard toxicity: implication of cell surface receptors, peroxynitrite production, and PARP activation. Arch. Toxicol 2006; 80:662-70.
    52. Korkmaz A, Topal T, Oter S. Pathophysiological aspects of cyclophosphamide and ifosfamide induced hemorrhagic cystitis; implication of reactive oxygen and nitrogen species as well as PARP activation. Cell Biol. Toxicol 2007; 23:303-12.
    53. Yaren H, et al. Lung toxicity of nitrogen mustard may be mediated by nitric oxide and peroxynitrite in rats. Res. Vet. Sci 2007; 83:116-22.
    54. Korkmaz A, et al. Peroxynitrite may be involved in bladder damage caused by cyclophosphamide in rats. J. Urol 2005; 173:1793-6.
    55. Tan DX, et al. Melatonin:a hormone, a tissue factor, an autocoid, a paracoid, and an antioxidant vitamin. J. Pineal Res 2003; 34:75-8.
    56. Reiter RJ, et al. Medical implications of melatonin:receptor-mediated and receptorindependent actions. Adv. Med. Sci 2007; 52:11-28
    57. Reiter RJ, Tan DX, Burkhardt S. Reactive oxygen and nitrogen species and cellular and organismal decline:amelioration with melatonin. Mech. Ageing Dev 2002; 123:1007-19.
    58. Reiter RJ, Tan DX, Allegra M. Melatonin:reducing molecular pathology and dysfunction due to free radicals and associated reactants. Neuro. Endocrinol. Lett 2002; 23(Suppl 1):3-8.
    59. Reiter RJ, et al. Melatonin:detoxification of oxygen and nitrogen-based toxic reactants. Adv. Exp. Med. Biol 2003.527:539-48.
    60. Lopez-Burillo S, Tan DX, Mayo JC, et al. Melatonin, xanthurenic acid, resveratrol, EGCG, vitamin C and alpha-lipoic acid differentially reduce oxidative DNA damage induced by Fenton reagents:a study of their individual and synergistic actions. J. Pineal Res 2003; 34:269-77.
    61. Sudnikovich EJ, et al. Melatonin attenuates metabolic disorders due to streptozotocin-induced diabetes in rats. Eur. J. Pharmacol 2007; 569:180-7.
    62. Gilad E, Cuzzocrea S, Zingarelli B, et al. Melatonin is a scavenger of peroxynitrite. Life Sci.1997; 60:PL 169-74.
    63. Ucar M, et al. Melatonin alleviates lung damage induced by the chemical warfare agent nitrogen mustard. Toxicol. Lett 2007; 173:124-31.
    64. Topal T, et al. Melatonin ameliorates bladder damage induced by cyclophosphamide in rats. J. Pineal Res 2005.38:272-7.
    65. Tan DX, Manchester LC, Terron MP, Flores LJ, Reiter RJ. One molecule, many derivatives:a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J. Pineal Res 2007.42:28-42.
    66. Reiter RJ, Tan DX, Terron MP, Flores LJ, Czarnocki Z. Melatonin and its metabolites:new findings regarding their production and their radical scavenging actions. Acta. Biochim. Pol 2007.54:1-9.
    67. Reiter RJ, et al. Biogenic amines in the reduction of oxidative stress:melatonin and its metabolites. Neuro Endocrinol. Lett 2008.29:391-8.
    68. Peyrot F, Houee-Levin C, Ducrocq C. Melatonin nitrosation promoted by NO*2; comparison with the peroxynitrite reaction. Free Radic. Res 2006.40:910-20.
    69. Zhang H, Squadrito GL, Uppu R, Pryor WA. Reaction of peroxynitrite with melatonin:a mechanistic study. Chem. Res. Toxicl 1999.12:526-34.
    70. Soung DY, et al. Peroxynitrite scavenging activity of indole derivatives: interaction of indoles with peroxynitrite. J. Med. Food 2004; 7:84-9.
    71. Rodriguez C, et al. Regulation of antioxidant enzymes:a significant role for melatonin. J. Pineal Res 2004; 36:1-9.
    72. Reiter RJ, Tan DX, Maldonado MD. Melatonin as an antioxidant:physiology versus pharmacology. J. Pineal Res 2005; 39:215-6.
    73. Winiarska K, Fraczyk T, Malinska D, Drozak J, Bryla J. Melatonin attenuates diabetesinduced oxidative stress in rabbits. J. Pineal Res 2006; 40:168-76.
    74. Baydas G, Canatan H, Turkoglu A. Comparative analysis of the protective effects of melatonin and vitamin E on streptozocin-induced diabetes mellitus. J. Pineal Res 2002; 32:225-30.
    75. Wahab MH, Akoul ES, Abdel-Aziz AA. Modulatory effects of melatonin and vitamin E on doxorubicin-induced cardiotoxicity in Ehrlich ascites carcinoma-bearing mice. Tumori 2000; 86:157-62.
    76. Montilla P, et al. (2001) Melatonin versus vitamin E as protective treatment against oxidative stress after extra-hepatic bile duct ligation in rats. J. Pineal Res 2001; 31:138-44.
    77. Hsu C, Han B, Liu M, Yeh C, Casida JE. Phosphine-induced oxidative damage in rats:attenuation by melatonin. Free Radic. Biol. Med 2000; 28:636-42.
    78. Gultekin F, Delibas N, Yasar S, Kilinc I. In vivo changes in antioxidant systems and protective role of melatonin and a combination of vitamin C and vitamin E on oxidative damage in erythrocytes induced by chlorpyrifos-ethyl in rats. Arch. Toxicol 2001.75:88-96.
    79. Rosales-Corral S, et al. Orally administered melatonin reduces oxidative stress and proinflammatory cytokines induced by amyloid-beta peptide in rat brain:a comparative, in vivo study versus vitamin C and E. J. Pineal Res 2003.35:80-4.
    80. Anwar MM, Meki AR. Oxidative stress in streptozotocin-induced diabetic rats: effects of garlic oil and melatonin. Comp. Biochem. Physiol. A Mol. Integr. Physiol 2003; 135:539-47.
    81. Forrest CM, Mackay GM, Stoy N, et al. Inflammatory status and kynurenine metabolism in rheumatoid arthritis treated with melatonin. Br. J. Clin. Pharmacol 2007;64:517-26.
    82. Kedziora-Kornatowska K, et al. Antioxidative effects of melatonin administration in elderly primary essential hypertension patients. J. Pineal Res 2008; 45:312-7.
    83. Tamura H, et al. Oxidative stress impairs oocyte quality and melatonin protects oocytes from free radical damage and improves fertilization rate. J. Pineal Res2008; 44:280-7.
    84. Tomas-Zapico C, Coto-Montes A. A proposed mechanism to explain the stimulatory effect of melatonin on antioxidative enzymes. J. Pineal Res 2005; 39:99-104.
    85. Korkmaz A, Reiter RJ. Epigenetic regulation:a new research area for melatonin? J. Pineal Res 2008; 44:41-4.
    86. Korkmaz A, Sanchez-Barcelo EJ, Tan DX, Reiter RJ. Role of melatonin in the epigenetic reg- ulation of breast cancer. Breast Cancer Res. Treat 2008; Jul 1 [Epub ahead of print].
    87. Brown GC. Control of respiration and ATP synthesis in mammalian mitochondria and cells. Biochem. J 1992; 284(Pt 1):1-13.
    88. Reiter RJ, Paredes SD, Korkmaz A, et al. Melatonin combats molecular terrorism at the mitochondrial level. Interdisc. Toxicol 2008.1:137-49.
    89. Leon J, Acuna-Castroviejo D, Escames G, et al. Melatonin mitigates mitochondrial malfunctions. J. Pineal Res 2005; 38:1-9.
    90. Gilad E, et al. Melatonin inhibits expression of the inducible isoform of nitric oxide synthase in murine macrophages:role of inhibition of NFkappaB activation. FASEB J 1998; 12:685-93.
    91. Crespo E, et al. Melatonin inhibits expression of the inducible NO synthase II in liver and lung and prevents endotoxemia in lipopolysaccharide- induced multiple organ dysfunction syndrome in rats. FASEB J 1999; 13:1537-46.
    92. Dong WG, et al. Effects of melatonin on the expression of iNOS and COX-2 in rat models of colitis. World J. Gastroenterol 2003; 9:1307-11.
    93. Rodriguez MI, et al. Chronic melatonin treatment prevents age-dependent cardiac mitochondrial dysfunction in senescence-accelerated mice. Free Radic. Res 2007. 41:15-24.
    94. Lopez LC, et al. Identification of an inducible nitric oxide synthase in diaphragm mitochondria from septic mice:its relation with mitochondrial dysfunction and prevention by melatonin. Int. J. Biochem. Cell Biol 2006.38:267-78.
    95. Teixeira A, et al. Melatonin protects against pro-oxidant enzymes and reduces lipid peroxidation in distinct membranes induced by the hydroxyl and ascorbyl radicals and by peroxynitrite. J. Pineal Res 2003; 35:262-8.
    96. Mayo JC, et al. Anti-inflammatory actions of melatonin and its metabolites, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK) in macrophages. J. Neuroimmunol 2005; 165:139-49.
    97. Rao VS, Santos FA, Silva RM, Teixiera MG. Effects of nitric oxide synthase inhibitors and melatonin on the hyperglycemic response to streptozotocin in rats. Vascul. Pharmacol 2002; 38:127-30.
    98. Montilla PL, et al. Oxidative stress in diabetic rats induced by streptozotocin: protective effects of melatonin. J. Pineal Res 1998; 25:94-100.
    99. Korkmaz A, Topal T, Oter S, et al. Hyperglycemia-related pathophysiologic mechanisms and potential beneficial actions of melatonin. Mini Rev. Med. Chem 2008; 8:1144-53.
    100. Sadir S, Deveci S, Korkmaz A, Oter S. Alpha-tocopherol, beta-carotene and melatonin administration protects cyclophosphamideinduced oxidative damage to bladder tissue in rats. Cell Biochem. Funct 2007; 25:521-6.
    101. Yildirim I, Korkmaz A, Oter S, Ozcan A, Oztas E. Contribution of antioxidants to preventive effect of mesna in cyclophosphamide-induced hemorrhagic cystitis in rats. Cancer Chemother. Pharmacol 2004; 54:469-73.
    102. Li JH, et al. Melatonin reduces inflammatory injury through inhibiting NF-kappaB activation in rats with colitis. Mediators Inflamm.2005:185-93.
    103. Reiter RJ. Melatonin:clinical relevance Best Pract. Res Clin Endocrinol. Metab2003; 17:273-85.
    104. Dugo L, et al. Effect of melatonin on cellular energy depletion mediated by peroxynitrite and poly (ADP-ribose) synthetase activation in an acute model of inflammation. J. Pineal Res 2001; 31:76-84.
    105. Tan DX, et al. Interactions between melatonin and nicotinamide nucleotide: NADH preservation in cells and in cell-free systems by melatonin. J. Pineal Res. 2005; 39:185-94.
    106. Lopez LC, Escames G, Ortiz F, et al. Melatonin restores the mitochondrial production of ATP in septic mice. Neuro. Endocrinol. Lett 2006; 27:23-630.
    107. Tan DX, et al. The pineal hormone melatonin inhibits DNA-adduct formation induced by the chemical carcinogen safrole in vivo. Cancer Lett 1993.70:65-71.
    108. Mollace V, Muscoli C, Masini E, et al. Modulation of prostaglandin biosynthesis by nitric oxide and nitric oxide donors. Pharmacol. Rev 2005; 57:217-52.
    109. Landino LM, Crews BC, Timmons MD, et al. Peroxynitrite, the coupling product of nitric oxide and superoxide, activates prostaglandin biosynthesis. Proc. Natl. Acad. Sci. U. S. A 1996; 93:15069-74.
    110. Deng WG, Tang ST, Tseng HP, Wu KK. Melatonin suppresses macrophage cyclooxygenase-2 and inducible nitric oxide synthase expression by inhibiting p52 acetylation and binding. Blood 2006; 108:518-24.
    111. Regoli F, Winston GW. Quantification of total oxidant scavenging capacity of antioxidants for peroxynitrite, peroxyl radicals, and hydroxyl radicals. Toxicol. Appl. Pharmacol 1999; 156:96-105.
    112. Tan DX, et al. Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger. Curr. Top. Med. Chem 2002.2:181-97.
    113. Seabra ML, Bignotto M, Pinto LR et al. Randomized, double-blind clinical trial, controlled with placebo, of the toxicology of chronic melatonin treatment. J. Pineal Res 2000.29:193-200.
    114. Jahnke G, et al. Maternal and developmental toxicity evaluation of melatonin administered orally to pregnant Sprague-Dawley rats. Toxicol Sci1999; 50:271-9.
    115. Reiter R, Gultekin F, Flores LJ,et al. Melatonin:potential utility for improving public health. TAF Prev. Med. Bull 2006; 5:131-58.
    116. Pontoppidan H, Geffin B, Lowenstein E. Acute respiratory failure in the adult. N Engl J Med 1972; 287:799-806.
    117. Gattinoni L, Pesenti A, Avalli L, Rossi F, Bombino M. Pressure-volume curve of total respiratory system in acute respiratory failure. Computed tomographic scan study. Am Rev Respir Dis 1987; 136:730-6.
    118. Hickling KG, Henderson SJ, Jackson R. Low mortality associated with low volume pressure limited ventilation with permissive hypercapnia in severe adult respiratory distress syndrome. Intensive Care Med 1990; 16:372-7.
    119. Tremblay L, Valenza F, Ribeiro SP, Li J, Slutsky AS. Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 1997; 99:944-52.
    120. Ranieri VM, Suter PM, Tortorella C, et al. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome:a randomized controlled trial. JAMA 1999; 282:54-61.
    121. Dreyfuss D, Ricard JD, Saumon G. On the physiologic and clinical relevance of lung-borne cytokines during ventilatorinduced lung injury. Am J Respir Crit Care Med 2003; 167:1467-71.
    122. Pelosi P, Cereda M, Foti G, Giacomini M, Pesenti A. Alterations of lung and chest wall mechanics in patients with acute lung injury:effects of positive end-expiratory pressure. Am J Respir Crit Care Med 1995; 152:531-7.
    123. Suter PM, Fairley HB, Isenberg MD. Effect of tidal volume and positive end-expiratory pressure on compliance during mechanical ventilation. Chest 1978; 73:158-62.
    124. Katz JA, Zinn SE, Ozanne GM, Fairley HB. Pulmonary, chest wall, and lung-thorax elastances in acute respiratory failure. Chest 1981; 80:304-11.
    125. Jardin F, Genevray B, Brun-Ney D, Bourdarias JP. Influence of lung and chest wall compliances on transmission of airway pressure to the pleural space in critically ill patients. Chest 1985; 88:653-58.
    126. Gattinoni L, Pelosi P, Suter PM, Pedoto A, Vercesi P, Lissoni A. Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease. Different syndromes? Am J Respir Crit Care Med 1998; 158:3-11.
    127. Ranieri VM, Brienza N, Santostasi S, et al. Impairment of lung and chest wall mechanics in patients with acute respiratory distress syndrome:role of abdominal distension. Am J Respir Crit Care Med 1997; 156:1082-91.
    128. Weibel ER. Functional morphology of lung parenchyma. In:American Physiological Society, ed. Handbook of Physiology:a Critical, Comprehensive Presentation of Physiological Knowledge and Concepts. Baltimore, MD, Waverly press, Inc.,1986; pp.89-111.
    129. Wilson TA. Solid mechanics. In:American Physiological Society, ed. Handbook of Physiology:a Critical, Comprehensive Presentation of Physiological Knowledge and Concepts. Bethesda, MD, Waverly Press, Inc., 1986; pp.35-9.
    130. Bachofen H, Schurch S. Alveolar surface forces and lung VENTILATOR-INDUCED LUNG INJURY 23s architecture. Comp Biochem Physiol A Mol Integr Physiol 2001; 129:183-93.
    131. Mead J, Takishima T, Leith D. Stress distribution in lungs:a model of pulmonary elasticity. J Appl Physiol 1970; 28:596-608.
    132. Muscedere JG, Mullen JB, Gan K, Slutsky AS. Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 1994; 149: 1327-34.
    133. D9Angelo E, Pecchiari M, Baraggia P, Saetta M, Balestro E, Milic-Emili J. Low-volume ventilation causes peripheral airway injury and increased airway resistance in normal rabbits. J Appl Physiol 2002; 92:949-56.
    134. Maksym GN, Bates JH. A distributed nonlinear model of lung tissue elasticity. J Appl Physiol 1997; 82:32-41.
    135. Maksym GN, Fredberg JJ, Bates JH. Force heterogeneity in a two-dimensional network model of lung tissue elasticity. J Appl Physiol 1998; 85: 1223-9.
    136. Weibel ER. The Pathway for Oxygen Structure and Function in the Mammalian Respiratory System. Cambridge, MA, Harvard University Press, 1984; pp.303-8.
    137. Edwards YS. Stretch stimulation:its effects on alveolar type II cell function in the lung. Comp Biochem Physiol A Mol Integr Physiol 2001; 129:245-60.
    138. Vlahakis NE, Hubmayr RD. Invited review:plasma membrane stress failure in alveolar epithelial cells. J Appl Physiol 2000; 89:2490-96.
    139. Vlahakis NE, Hubmayr RD. Response of alveolar cells to mechanical stress. Curr Opin Crit Care 2003; 9:2-8.
    140. Liu M, Tanswell AK, Post M. Mechanical force-induced signal transduction in lung cells. Am J Physiol 1999; 277:L667-83.
    141. Dos Santos CC, Slutsky AS. Invited review:mechanisms of ventilator-induced lung injury:a perspective. J Appl Physiol 2000; 89:1645-55.
    142. Uhlig S. Ventilation-induced lung injury and mechanotransduction: stretching it too far? Am J Physiol Lung Cell Mol Physiol 2002; 282:L892-6.
    143. Pugin J. Molecular mechanisms of lung cell activation induced by cyclic stretch. Crit Care Med 2003; 31:S200-6.
    144. Bachofen H, Schurch S, Urbinelli M, Weibel ER. Relations among alveolar surface tension, surface area, volume, and recoil pressure. J Appl Physiol 1987; 62:1878-87.
    145. Vlahakis NE, Schroeder MA, Pagano RE, Hubmayr RD. Role of deformation-induced lipid trafficking in the prevention of plasma membrane stress failure. Am J Respir Crit Care Med 2002; 166:1282-89.
    146. Vlahakis NE, Schroeder MA, Pagano RE, Hubmayr RD. Deformation-induced lipid trafficking in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 2001; 280:L938-46.
    147. GajicO,Lee J, DoerrCH, Berrios JC,et al. Ventilator-induced cell wounding and repair in the intact lung. Am J Respir Crit Care Med 2003; 167:1057-63.
    148. Dudek SM, Garcia JG. Cytoskeletal regulation of pulmonary vascular permeability. J Appl Physiol 2001; 91:1487-500.
    149. Pugin J, Dunn I, Jolliet P, et al. Activation of human macrophages by mechanical ventilation in vitro. Am J Physiol 1998; 275:L1040-50.
    150. Haseneen NA, Vaday GG, Zucker S, Foda HD. Mechanical stretch induces MMP-2 release and activation in lung endothelium:role of EMMPRIN. Am J Physiol Lung Cell Mol Physiol 2003; 284:L541-7.
    151. Yamamoto H, Teramoto H, Uetani K, Igawa K, Shimizu E. Cyclic stretch upregulates interleukin-8 and transforming growth factor-b1 production through a protein kinase Cdependent pathway in alveolar epithelial cells. Respirology 2002; 7:103-9.
    152. Vlahakis NE, Schroeder MA, Limper AH, Hubmayr RD. Stretch induces cytokine release by alveolar epithelial cells in vitro. Am J Physiol 1999; 277: L167-73.
    153. Tschumperlin DJ, Margulies SS. Equibiaxial deformationinduced injury of alveolar epithelial cells in vitro. Am J Physiol 1998; 275:L1173-83.
    154. Casetti AV, Bartlett RH, Hirschl RB. Increasing inspiratory time exacerbates ventilator-induced lung injury during highpressure/ high-volume mechanical ventilation. Crit Care Med 2002; 30:2295-9.
    155. Tschumperlin DJ, Oswari J, Margulies AS. Deformationinduced injury of alveolar epithelial cells. Effect of frequency, duration, and amplitude. Am J Respir Crit Care Med 2000; 162:357-62.
    156. Hotchkiss JR Jr, Blanch L, Naveira A, et al. Relative roles of vascular and airspace pressures in ventilator-induced lung injury. Crit Care Med 2001; 29: 1593-8.
    157. Mascheroni D, Kolobow T, Fumagalli R, Moretti MP, Chen V, Buckhold D. Acute respiratory failure following pharmacologically induced hyperventilation: an experimental animal study. Intensive Care Med 1988; 15:8-14.
    158. Belperio JA, Keane MP, Burdick MD, et al. Critical role for CXCR2 and CXCR2 ligands during the pathogenesis of ventilator-induced lung injury. J Clin Invest 2002; 110:1703-16.
    159. Egan EA, Nelson RM, Olver RE. Lung inflation and alveolar permeability to non-electrolytes in the adult sheep in vivo. J Physiol 1976; 260:409-24.
    160. Dreyfuss D, Basset G, Soler P, Saumon G. Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats. Am Rev Respir Dis 1985; 132:880-4.
    161. Parker JC, Townsley MI, Rippe B, Taylor AE, Thigpen J. Increased microvascular permeability in dog lungs due to high peak airway pressures. J Appl Physiol 1984; 57:1809-16.
    162. Woo SW, Hedley-Whyte J. Macrophage accumulation and pulmonary edema due to thoracotomy and lung over inflation. J Appl Physiol 1972; 33:14-21.
    163. Kolobow T, Moretti MP, Fumagalli R, et al. Severe impairment in lung function induced by high peak airway pressure during mechanical ventilation. An experimental study. Am Rev Respir Dis 1987; 135:312-35.
    164. Webb HH, Tierney F. Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis 1974; 110:556-65.
    165. Parker JC, Hernandez LA, Longenecker GL, Peevy K, Johnson W. Lung edema caused by high peak inspiratory pressures in dogs. Role of increased microvascular filtration pressure and permeability. Am Rev Respir Dis 1990; 142: 321-8.
    166. Fu Z, Costello ML, Tsukimoto K, et al. High lung volume increases stress failure in pulmonary capillaries. J Appl Physiol 1992; 73:123-33.
    167. Mathieu-Costello O, Willford DC, Fu Z, Garden RM, West JB. Pulmonary capillaries are more resistant to stress failure in dogs than in rabbits. J Appl Physiol 1995; 79:908-17.
    168. West JB. Invited review:pulmonary capillary stress failure. J Appl Physiol 2000; 89:2483-89.
    169. Michel CC, Curry FE. Microvascular permeability. Physiol Rev 1999; 79: 703-61.
    170. Parker JC, Ivey CL, Tucker JA. Gadolinium prevents high airway pressure-induced permeability increases in isolated rat lungs. J Appl Physiol 1998; 84:1113-8.
    171. Parker JC. Inhibitors of myosin light chain kinase and phosphodiesterase reduce ventilator-induced lung injury. J Appl Physiol 2000; 89:2241-8.
    172. Parker JC, Hernandez LA, Peevy KJ. Mechanisms of ventilator-induced lung injury. Crit Care Med 1993; 21:131-43.
    173. Broccard AF, Vannay C, Feihl F, Schaller MD. Impact of low pulmonary vascular pressure on ventilator-induced lung injury. Crit Care Med 2002; 30: 2183-90.
    174. Broccard A, Shapiro RS, Schmitz LL, Adams AB, Nahum A, Marini JJ. Prone positioning attenuates and redistributesventilator-induced lung injury in dogs. Crit Care Med 2000; 28:295-303.
    175. Nishimura M, Honda O, Tomiyama N, Johkoh T, Kagawa K, Nishida T. Body position does not influence the location of ventilator-induced lung injury. Intensive Care Med 2000; 26:1664-9.
    176. Guo F, Qiu H, Tan Y. [Low flow technique to perform static pressure-volume curve during mechanical ventilation.]. Zhonghua Jie He He Hu Xi Za Zhi 2001; 24:728-31.
    177. Reta GS, Riva JA, Piriz H, Medeiros AS, Rocco PR, Zin WA. Effects of halothane on respiratory mechanics and lung histopathology in normal rats. Br J Anaesth 2000; 84:372-7.
    178. Allen G, Lundblad LK, Parsons P, Bates JH. Transient mechanical benefits of a deep inflation in the injured mouse lung. J Appl Physiol 2002; 93:1709-15.
    179. Mercer RR, Russell ML, Crapo JD. Alveolar septal structure in different species. J Appl Physiol 1994; 77:1060-6.
    180. Dreyfuss D, Soler P, Basset G, Saumon G. High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 1988; 137:1159-64.
    181. Dreyfuss D, Soler P, Saumon G. Mechanical ventilationinduced pulmonary edema. Interaction with previous lung alterations. Am J Respir Crit Care Med 1995;151:1568-75.
    182. Hernandez LA, Coker PJ, May S, Thompson AL, Parker JC. Mechanical ventilation increases microvascular permeability in oleic acid-injured lungs. J Appl Physiol 1990; 69:2057-61.
    183. Gattinoni L, Pesenti A, Baglioni S, Vitale G, Rivolta M, Pelosi P. Inflammatory pulmonary edema and positive endexpiratory pressure:correlations between imaging and physiologic studies. J Thorac Imaging 1988; 3:59-64.
    184. Gattinoni L, D9Andrea L, Pelosi P, Vitale G, Pesenti A, Fumagalli R. Regional effects and mechanism of positive end-expiratory pressure in early adult respiratory distress syndrome. JAMA 1993; 269:2122-7.
    185. Held HD, Boettcher S, Hamann L, Uhlig S. Ventilationinduced chemokine and cytokine release is associated with activation of nuclear factor-κB and is blocked by steroids. Am J Respir Crit Care Med 2001; 163:711-6.
    186. Pelosi P, Goldner M, McKibben A, et al. Recruitment and derecruitment during acute respiratory failure:an experimental study. Am J Respir Crit Care Med 2001; 164:122-30.
    187. Gattinoni L, Pelosi P, Valenza F, Mascheroni D. Patient positioning in acute respiratory failure. In:Tobin M ed. Principles and Practice of Mechanical Ventilation. New York, NY, McGraw-Hill,1994; pp.1067-77.
    188. Mutoh T, Guest RJ, Lamm WJ, Albert RK. Prone position alters the effect of volume overload on regional pleural pressures and improves hypoxemia in pigs in vivo. Am Rev Respir Dis 1992; 146:300-6.
    189. Gattinoni L, Tognoni G, Pesenti A, et al. Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med 2001; 345: 568-73.
    190. Dreyfuss D, Saumon G. Ventilator-induced lung injury:lessons from experimental studies. Am J Respir Crit Care Med 1998; 157:294-323.
    191. Slutsky AS. Consensus conference on mechanical ventilation-January 28-30,1993 at Northbrook, Illinois, USA. Part 2. Intensive Care Med 1994; 20: 150-62.
    192. Stewart TE, Meade MO, Cook DJ, et al. Evaluation of a ventilation strategy to prevent barotrauma in patients at high risk for acute respiratory distress syndrome. Pressure- and Volume-Limited Ventilation Strategy Group. The Multicenter Trial Group on Tidal Volume Reduction in ARDS. N Engl J Med 1998;338:355-61.
    193. Amato MB, Barbas CS, Medeiros DM, et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 1998; 338:347-54.
    194. Brochard L, Roudot-Thoraval F, Roupie E, et al. Tidal volume reduction for prevention of ventilator-induced lung injury in acute respiratory distress syndrome. Am J Respir Crit Care Med 1998; 158:1831-8.
    195. Brower RG, Shanholtz CB, Fessler HE, et al. Prospective, randomized, controlled clinical trial comparing traditional versus reduced tidal volume ventilation in acute respiratory distress syndrome patients. Crit Care Med 1999; 27:1492-8.
    196. The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000; 342:1301-8.
    197. Eichacker PQ, Gerstenberger EP, Banks SM, Cui X, Natanson C. Meta-analysis of acute lung injury and acute respiratory distress syndrome trials testing low tidal volumes. Am J Respir Crit Care Med 2002; 166:1510-4.
    198. Tobin MJ. Culmination of an era in research on the acute respiratory distress syndrome. N Engl J Med 2000; 342:1360-1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700