废轮胎钢丝水泥基复合材料的电磁屏蔽性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在建筑物中应用电磁屏蔽材料是现代建筑设计的一个新内容。水泥基电磁屏蔽材料具有成本低廉、施工方便、防护面积大的优点,因此其未来市场前景将十分广阔。
     本文研究了废轮胎钢丝作为导电剂掺入水泥浆体中对材料力学性能、电学性能和电磁屏蔽性能的影响。研究了废轮胎钢丝水泥基材料的制备工艺;探讨了废轮胎钢丝对水泥浆体工作性能的影响;用四电极法测定了材料的导电性能;采用同轴法兰—频谱分析仪法探讨了废轮胎钢丝体积掺量、养护龄期、养护条件、钢丝与石墨(超导电炭黑)复掺等因素对材料电磁屏蔽性能的影响。
     研究表明,掺废轮胎钢丝水泥基材料的屏蔽性能及导电性能要优于掺等量普通平直钢纤维的材料。与掺普通平直钢纤维的材料相比,掺废轮胎钢丝水泥基材料的电磁屏蔽效能提高51%,且具有良好的导电性能与力学性能;适当增加废轮胎钢丝长度,可提高水泥基材料的电磁屏蔽性能与导电性能,但长度过长不利于钢丝在材料中的分散和材料制备;基体对材料电磁屏蔽性能具有一定影响,掺废轮胎钢丝水泥净浆试样与砂浆试样在频率低于1400 MHz时的屏蔽效能相近,但高于1400 MHz时水泥净浆的屏蔽效能要远好于水泥砂浆试样;试样厚度与屏蔽效能成正比关系,厚度为8mm的试样屏蔽效能比厚度为4 mm的试样屏蔽效能提高92%;养护龄期对材料导电性能的影响主要在早期,养护21 d后,材料电阻率基本趋于稳定;与单掺导电介质相比,复掺废轮胎钢丝与石墨、超导电炭黑等介质,可使材料导电性能及电磁屏蔽性能显著改善,复掺钢丝与炭黑的试样在30kHz—1500 MHz频率范围内的屏蔽效能最大可达29 dB。
The electromagnetic shielding materials used in the buildings become a new content of modern architecture design. Cement-based electromagnetic shielding materials have some advantages such as low cost, convenient construction and large protection area, so its market prospect will be very bright in future.
     The effect of the waste tire steel wire as conductive agent added into the cement paste on the mechanical properties, electrical properties and electromagnetic shielding properties of materials are mainly studied in the paper. The preparation process and work properties of the materials are also researched. The electromagnetic shielding properties of materials made under the different conditions are investigated by taking the coaxial planarspectrum analyzer method, the conditions contain the volume fraction of the waste tire steel wire, curing age, curing condition, adding steel wire and graphite (superconductivity carbon black) and so on, and the conductivity of materials are tested by the four-probe method.
     The results show that the shielding properties and conductivity of the waste tire steel wire cement-based materials are better than those of the same volume fraction common straight steel fiber cement-based materials. Compared with the steel fiber cement-based materials, the electromagnetic shielding effectiveness of the waste tire steel wire cement-based materials are improved by 51%, which have good conducti-vity and mechanical properties. Increasing the length of the waste tire steel wire properly can improve the electromagnetic shielding properties and conductivity of the cement-based materials, but the dispersion of steel wire in the materials and materials preparation are difficult if the steel wire is too long. The matrix has certain influence on electromagnetic shielding effectiveness of the materials, and the shielding effectiveness of the tire steel wire cement-based paste sample is close to that of the mortar sample when the frequency is lower than 1400 MHz, but compared with the mortar sample the shielding effectiveness of the cement paste sample is obviously improved if the frequency is above 1400 MHz. The shielding effectiveness of the sample is proportional to its thickness. Compared with the 4 mm sample, the shielding effectiveness of the 8 mm sample is improved by 92%. The effect of curing age on electrical conductivity of the materials occur in early periods, and the resistivity of the materials are tended to be stable 21 days later. Compared with the materials added by single conducting medium, the conductivity and electromagnetic shielding properties of the materials are significantly improved when the waste tire steel wire and graphite, steel wire and superconductivity carbon black or steel wire and other medium are added together. The material added by the steel wire and carbon black reaches the maximum shielding effectiveness of 29 dB in the frequency range of 30 kHz—1500 MHz.
引文
[1]朱重德.电磁辐射污染与防护[J].上海环境科学,2004,23(2):81.
    [2]陈树君,杜利,殷树言.弧焊设备电磁干扰的危害[J].机械工人(热加工),2006(8):30-31.
    [3]周皓静,刘红杰.高压直流输电对通信的电磁干扰影响分析[J].广东电力,2008,21(2):19-22.
    [4]周志娣,张学明.变频器电磁干扰对船电设备的危害及防范[J].世界海运,1998(2):1-2.
    [5]孙蓓云.高压输电线路的电磁辐射研究及其防治措施[J].低压电器,2007(20):45.
    [6]丁国良,赵强,陈家文,等.电磁信息泄漏研究及进展[J].军械工程学院学报,2008,20(6):65-67.
    [7]张水霞.计算机的电磁信息泄漏防护[J].中国新技术新产品,2009(18):24.
    [8]张洪欣,吕英华,贺鹏飞,等.计算机电磁信息泄漏文字再现[J].西南交通大学学报,2007,42(6):653-657.
    [9]胡波,张洪欣,高光珍.计算机视频显示器电磁泄漏信息的再现[J].滨州学院学报,2008,24(3):69-72.
    [10]张云龙,卢春兰,曹宜森,等.军用计算机电磁信息安全与防护[J].装备环境工程,2008,5(1):69-70.
    [11]张琦,张华英.电磁辐射环境污染现状及防治对策研究[J].硅谷,2008(16):102.
    [12]陈素芳.论电磁污染的危害及其防护[J].高等函授学报(自然科学版),2004,18(5):8-10.
    [13]赵灵智,胡社军,何琴玉,等.电磁屏蔽材料的屏蔽原理与研究现状[J].包装工程,2006,27(2):1-2.
    [14]丁世敬,赵跃智,葛德彪.电磁屏蔽材料研究进展[J].材料导报,2008,22(4):30.
    [15]林鸿宾,陆万顺.电磁屏蔽原理及电磁屏蔽玻璃[J].玻璃,2008(3):39-41.
    [16]汝强,胡社军,胡显奇,等.电磁屏蔽理论及屏蔽材料的制备[J].包装工程,2004,25(5):21-22.
    [17]张拴勤.吸波材料和电磁屏蔽材料的研究现状[J].屏蔽技术与屏蔽材料,2007(6):62.
    [18]王晓辉,唐露新,李运智,等.电磁屏蔽技术及材料应用研究新动向[J].材料开发与应用,2008,23(2):67-68.
    [19]刘顺华,刘军民,董星龙等主编.电磁波屏蔽及吸波材料[M].北京:化学工业出版社,2006,65-68.
    [20]古映莹,邱小勇,胡启明,等.电磁屏蔽材料的研究进展[J].材料导报,2005,19(2):53.
    [21]王锦成.电磁屏蔽材料的屏蔽原理及研究现状[J].化工新型材料,2002,30(7):16-17.
    [22]邹华,赵素合,田明,等.功能硅橡胶在电磁屏蔽领域的应用现状及进展[J].特种橡胶制品,2008,29(5):49-50.
    [23]施冬梅,邓辉,杜仕国.新型电磁屏蔽材料的研究动态[J].化工新型材料,2001,29(10):20-21.
    [24]阮士朋,朱国辉,毛卫民.不同金属填料对电磁屏蔽涂料屏蔽效能的影响[J].材料导报,2008,22(11):136-137.
    [25]刘海霞.电磁屏蔽纺织品的研究[J].山东纺织经济,2008(5):80.
    [26]吴道伟,黄英,苏武.聚吡咯在电磁屏蔽材料中的研究进展[J].材料开发与应用,2008,23(4):89-90.
    [27]项苹,程和法,莫立娥,等.开孔泡沫铝的电磁屏蔽性能[J].金属功能材料,2008,15(1):12.
    [28]陈飞飞,王光辉,杨锋,等.用造纸黑液中的木质素制备电磁屏蔽材料的研究[J].武汉科技学院学报,2008,21(12):11-12.
    [29]姜治云.努力提高我国废轮胎胶粉应用技术水平促进废轮胎循环利用事业的发展[J].中国轮胎资源综合利用,2005(7):7-9.
    [30]J.D.Sudha, S.Sivakala, R.Prasanth etc. Development of electromagnetic shielding materials from the conductive blends of polyaniline and polyaniline-clay nanocomposite-EVA:Prepa-ration and properties[J]. Composites Science and Technology,2009,69(3):358-364.
    [31]王连坡,茅文深.电磁屏蔽技术在结构设计中的应用[J].舰船电子工程,2009,29(1):173-177.
    [32]贾凌燕,王丹玉.结构设计中的电磁屏蔽处理[J].起重运输机械,2009(6):107-108.
    [33]赵东林,周万城.结构吸波材料及其结构型式设计[J].兵器材料科学与工程,1997,20(6):53-56.
    [34]黄鹏波,杜仕国,闫军,等.偶联剂对炭黑导电涂料导电性能的影响[J].化工新型材料,2005,33(1):49-51.
    [35]冯永成,瞿美臻,周固民,等.碳纳米管在导电涂料中的应用研究——(Ⅱ)碳纳米管对导电涂料导电性的影响[J].高分子材料科学与工程,2004,20(2):133-135.
    [36]Huarong Liu, Xuewu Ge, Yonghong Ni etc. Synthesis and characterization of polyacryloni-trile-silver nanocomposites by y-irradiation[J]. Radiation Physics Chemistry,2001,61(1): 89-90.
    [37]吴行,饶大庆,谢宁,等.镍基电磁屏蔽涂料的研究[J].功能材料,2001,32(3):240-242.
    [38]毛倩瑾,于彩霞,周美玲Cu/Ag复合电磁屏蔽涂料的研究[J].涂料工业,2004,34(4):8-10.
    [39]林硕,吴年强,李志章.偶联剂对铜系复合涂料导电稳定性的影响[J].复合材料学报,1999,16(4):44-48.
    [40]黄晓莉,武高辉,张强,等.开孔泡沫Fe-Ni的电磁屏蔽性能[J].稀有金属材料与工程,2010,39(4):731-734.
    [41]黄晓莉.泡沫Fe-Ni电磁屏蔽材料的设计与屏蔽机理研究[D].哈尔滨工业大学,2009.
    [42]王小英,孙明清,侯作富,等.纳米炭黑水泥砂浆的导电性与电热特性研究[J].功能材料,2006,37(11):1841-1843.
    [43]谢虎,陈国华.水泥基纳米石墨复合材料的电磁屏蔽性能[J].功能材料,2009,40(7):1219-1221.
    [44]司琼,董发勤.掺短碳纤维和石墨混凝土的低频电磁屏蔽性能[J].硅酸盐学报,2005,33(7):916-919.
    [45]S. Mindess, L. Chen, D.R. Morgan. Determination of the first-crack strength and flexural toughness of steel fiber-reinforced concrete[J]. ADVANCED CEMENT BASED MATERI-ALS,1994,1(5):201-208.
    [46]M. T. Kazemi, F. Fazileh, M. A. Ebrahiminezhad. Cohesive Crack Model and Fracture Energy of Steel-Fiber-Reinforced-Concrete Notched Cylindrical Specimens[J]. JOURNAL OF MATERIALS IN CIVIL ENGINEERING,2009,19(10):884-890.
    [47]Hiroshi Tsuda, JungRyul Lee, Yisheng Guan etc. Investigation of fatigue crack in stainless steel using a mobile fiber Bragg grating ultrasonic sensor[J]. Optical Fiber Technology,2007, 13(3):209-214.
    [48]Xiao Hui Wang, Stefan Jacobsen, Jian Ying He etc. Application of nanoindentation testing to study of the interfacial transition zone in steel fiber reinforced mortar[J]. Cement and Concrete Research,2009,39(8):701-715.
    [49]Serkan Tokgoz. Effects of steel fiber addition on the behaviour of biaxially loaded high strength concrete columns[J]. Materials and Structures,2009,42(8):1125-1138.
    [50]Cengiz Duran Atis, Okan Karahan. Properties of steel fiber reinforced fly ash concrete[J]. Construction and Building Materials,2009,23(1):392-399.
    [51]Patrick L. Minnaugh, Kent A. Harries. Fatigue behavior of externally bonded steel fiber reinforced polymer(SFRP)for retrofit of reinforced concrete[J]. Materials and Structures, 2009,42(2):271-278.
    [52]Gurkan Ozden, Cihan Taylan Akdag. Lateral load response of steel fiber reinforced concrete model piles in cohesionless soil[J]. Construction and Building Materials,2009,23(2):785-794.
    [53]沈刚,董发勤,何登良.钢纤维石墨复相导电混凝土的研究[J].硅酸盐通报,2004(6):78-83.
    [54]魏小胜,肖莲珍,李宗津,等.钢纤维水泥基材料的导电机理和水化特性[J].混凝土,2006(4):11-13.
    [55]陈兵,姚武,吴科如.掺碳纤维和微细钢纤维水泥砂浆热电性能研究[J].建筑材料学报,2004,7(3):262-268.
    [56]Sihai Wen, D.D.L.Chung. Electromagnetic interference shielding reaching 70 dB in steel fiber cement[J]. Cement and Concrete Research,2004,34(2):329-330.
    [57]张小辉,康青,除守彬.钢纤维混凝土电磁屏蔽性能实验研究[J].功能材料,2007,38(增刊):2979-2980.
    [58]李良超,郝斌,向晨,等.聚吡咯/Gd-掺杂铜锌铁氧体复合物的制备及电/磁性能[J].化学学报,2010,68(6):583-589.
    [59]刘学东,卢佃清,云月厚.掺杂聚苯胺的合成及电磁性能和吸波性能研究[J].塑料科技,2010,38(4):52-55.
    [60]邓姝皓,陈军,王之顺,等.热处理工艺对硫酸掺杂聚苯胺性能的影响[J].高分子材料科学与工程,2010,26(7):109-112.
    [61]杜宁,罗欣,汪晓东.化学镀法制备电磁屏蔽聚酯织物的研究[J].北京化工大学学报,2007,34(3):276-278.
    [62]陈文兴,杜莉娟,姚玉元,等.磁控溅射法制备电磁屏蔽织物的研究[J].真空科学与技术学报,2007,27(3):265-268.
    [63]展义臻,王炜,赵雪,等.高效宽频电磁屏蔽织物的开发[J].印染,2008(22):32-35.
    [64]王科伟,时家明,樊祥.宽频带吸波材料的设计方法[J].兵器材料科学与工程,2005,29(6):42-45.
    [65]谢兵,余忠,兰中文,等.高密度高磁导率高饱和磁感应强度MnZn铁氧体的研究进展[J].材料导报,2007,21(11):30-33.
    [66]李卫,张忠仕,陈文.宽频高磁导率锰锌铁氧体材料的研制[J].磁性材料及器件,2006,37(4):59-61.
    [67]袁兴华.TN230B高磁导率NiCuZn铁氧体材料的开发[J].磁性材料及器件,2004,35(6):43.
    [68]陆明岳.高磁导率MnZn铁氧体TL13材料的研制[J].磁性材料及器件,1999,30(2):34-36.
    [69]张建.钢纤维混凝土性能研究及其应用现状[J].山西建筑,2010,36(5):180.
    [70]赵国藩,彭少民,黄承逵.钢纤维混凝土结构[M].北京:中国建筑工业出版社,1999,59-63.
    [71]高丹盈,刘建秀.钢纤维混凝土基本理论[M].北京:科学技术文献出版社,1994,200-203.
    [72]刘永胜.纤维混凝土增强机理的界面力学分析[J].混凝土,2008(4):34-35.
    [73]郑争旗,余洋,闫曦.炭纤维增强水泥复合材料的制备及力学性能研究[J].玻璃钢/复合材料,2009(6):31-34.
    [74]封孝信,孙晓华.低水灰比对硅酸盐水泥水化程度的影响[J].河北理工大学学报(自然科学版),2007,29(4):118-120.
    [75]曹国娥,欧志华,刘亚君.钢纤维形状特征对钢纤维混凝土力学性能的影响[J].新型建筑材料,2002(2):37-38.
    [76]黄煜镔,钱觉时.龄期和养护方式对高强混凝士力学性能的影响[J].硅酸盐学报,2007,26(3):429-430.
    [77]王海涛,王丰,韩菊红.环境条件对钢纤维混凝土强度的影响[J].河南科学2004,22(4):524.
    [78]崔素萍,刘永肖,兰明章,等.石墨*水泥基复合材料的制备与性能[J].硅酸盐学报,2007,35(1):94.
    [79]王小英.炭黑水泥砂浆的电热性能及在室内采暖中的应用研究[D].武汉理工大学,2007.
    [80]姚武,张超.碳纤维水泥基材料与电极的接触电阻[J].材料导报,2007,21(4):104-106.
    [81]侯作富,李卓球,王建军.电极对碳纤维导电发热混凝土性能的影响[J].武汉理工大学学报,2006,28(9):46-47.
    [82]伍建平,姚武,刘小艳.导电水泥基材料的制备及其电阻率测试方法研究[J].材料导报,2004,18(12):86-87.
    [83]王闯,李克智,李贺军,等.碳纤维的分散性与CFRC复合材料的导电性[J].功能材料,2007,38(10):1643.
    [84]李广军,李广立,张彩霞,等.碳纤维水泥石导电性能试验研究[J].佳木斯大学学报(自然科学版),2008,26(1):134-135.
    [85]范五一,黄锐,蔡碧华.铜纤维长径比的分布对复合材料性能的影响[J].现代塑料加工应用,1996,8(3):10.
    [86]方鲲,白树林,高校维,等.不锈钢纤维填充ABS的制备与性能研究[J].工程塑料应用,2007,35(3):16-18.
    [87]周何铤,吴奕欣,张燕琼.钢纤维外形对其增强性能的影响[J].山西建筑,2009,35(20):168.
    [88]范晓明,董旭,孙明清,等.石墨水泥基复合材料的导电及压敏特性研究[J].武汉理工大学学报,2009,31(12):14.
    [89]杨玉山,董发勤.掺石墨导电功能基元材料电热混凝土的研究[J].功能材料,2008,39(3):386.
    [90]范晓明,董旭,孙明清,等.掺CCCW的碳纤维石墨水泥基复合材料的导电及压阻特性[J].复合材料学报,2009,26(6):140-142.
    [91]李国宝.碳纤维/纳米炭黑复合材料的电性能及应用研究[D].汕头大学,2006.
    [92]季小勇,李惠,欧进萍.炭黑分散状态对炭黑/环氧树脂导电复合材料电阻率和力电性能的影响[J].复合材料学报,2009,26(5):41-43.
    [93]凤仪,郑海务,朱震刚,等.闭孔泡沫铝的电磁屏蔽性能[J].中国有色金属学报,2004,14(1):35-36.
    [94]陶宇,夏艳平,张国庆,等.填料长径比对导电胶渗流阈值的影响[J].复合材料学报,2010,27(6):215.
    [95]戴银所,陆春华,倪亚茹,等.异型钢纤维水泥净浆的吸波性能研究[J].武汉理工大学学报,2009,31(19):18-19.
    [96]王光华,董发勤,贺小春.氧化铁—石墨/ABS复合材料制备及电磁屏蔽性能[J].功能材料,2008,39(2):203-204.
    [97]洪雷,宋玉普.石墨水泥砂浆注浆钢纤维混凝土导电性能研究[J].建筑材料学报,2006,9(6):650-652.
    [98]刘顺华,郭辉进,段玉平,等.炭黑/ABS/金属网复合材料电磁屏蔽性能的研究[J].材料工程,2004(9):28-31.
    [99]何和智,杨彪,刘玥彤,等.炭黑/聚乙烯复合材料的电磁屏蔽性能[J].塑料,2010,39(3):43-47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700