基于MEMS矢量水听器阵列的声目标定向定位技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
将MEMS技术应用于水听器的研制是一种新的尝试。由中北大学自主研制的新型MEMS矢量水听器,具有体积小、矢量性、批量制造、一致性好且成本低等优势,其制作工艺和性能日趋成熟,因此研究基于MEMS矢量水听器阵列的声目标定向定位技术对其工程化应用具有重要的意义。
     本论文系统研究了声矢量阵列信号处理的相关内容,通过数学建模、理论分析、算法仿真和MEMS矢量水听器阵列实验数据的处理等各个方面,测试了所提各种算法的性能,检验了MEMS矢量水听器的工程实用性。论文主要研究成果有:
     (1)根据盖氏圆盘定理,提出了声矢量阵列的盖氏圆信号源数估计方法(GDE-V)及其修正形式(MGDE-V),给出了判断信号源数的准则,并通过在信号源相干时对协方差矩阵的修正,解决了相干信号源数的判断。仿真实验表明,GDE-V和MGDE-V方法可有效发挥矢量阵列的优势,与传统声压阵列相比,有更强的角度分辨能力,在左右舷声源分辨、相干声源分辨、低信噪比、小快拍数等方面具有更高的分辨概率,同时在相同阵列孔径下能分辨更多的信号源数。
     (2)通过对声矢量阵列协方差矩阵的重构和引导方位的自适应选取,提出了声矢量阵列的求根MUSIC算法,同时为减少计算量,又提出其实值化形式。理论推导和仿真实验表明,所提算法在低信噪比、小快拍数情况下的估计性能要优于传统声压阵列的求根MUSIC算法。同时在MEMS水听器阵列的湖试实验中进行了应用,准确估计了声源的方位,并成功跟踪了机动船的运行轨迹。
     (3)提出了声压振速联合处理的MUSIC算法。通过对观测方向的选择,将矢量水听器的振速输出进行投影,以此构成声压振速的互协方差矩阵,并通过特征分解实现声源的DOA估计。仿真实验表明了该算法在各向同性噪声场中具有比传统声压阵列的MUSIC算法更好的估计性能,同时也在MEMS矢量水听器阵列的湖试实验中得到成功应用。
     (4)结合二维MEMS矢量水听器的特点,分析了各种类型误差对阵列性能影响的表达式,建立了在误差影响下的矢量阵列信号模型,并进一步提出了矢量阵列误差的自校正算法,最后通过仿真实验和MEMS矢量水听器阵列的湖试实验数据进行了验证。
     (5)为解决非均匀结构矢量阵列的DOA估计,详细推导了四种常见非均匀结构矢量阵列的时延表达式,形成各阵列导向向量,提出了非均匀结构矢量阵列的MUSIC算法,并通过选择各阵列中性能最优的阵元结构设置,统计了各阵列在DOA估计中随信噪比和快拍数变化的成功概率和均方根误差,仿真实验表明,非均匀线阵在低信噪比和小快拍数的情况下具有更高的估计性能。
     (6)结合MEMS矢量水听器阵列在不同环境中的实验数据,分别从实验数据预处理、环境噪声测量、声压振速相关性、矢量阵阵增益、方位估计等多个方面进行了分析与讨论,验证了文中所提算法的实用性,同时为MEMS矢量水听器的工程应用提供技术支撑。
     论文主要创新有:
     (1)提出了矢量阵列信号源数估计的盖氏圆方法,使得矢量阵列在信号源数估计方面的性能得到提升;
     (2)提出了矢量阵列的Root-MUSIC算法及其实值化形式,使得矢量阵列在提高DOA估计精度的同时,能有效减少计算量,同时在MEMS矢量水听器阵列的实验中得到成功应用;
     (3)提出了MEMS矢量水听器阵列误差的自校正算法,提高了各类算法的工程实用性。
     MEMS矢量水听器的工程化应用是一个庞大的系统工程,仍然有大量的工作需要进行研究,真诚的希望本文的研究工作能有助于矢量阵列信号处理技术的深入研究和发展,推动MEMS矢量水听器更广泛的工程化应用。
The MEMS technology is a new attempt to design hydrophone. MEMS vectorhydrophone is a novel sensor researched independently by the North University of China,which has the advantages of small size, vector, lot manufacturing with well consistent, lowcost and so on. With the growing maturity of production process and performance, it is veryimportant for engineering applications that the research on the DOA estimation andlocalization technology to acoustic target for MEMS vector hydrophone array.
     In this thesis, we studied the signal processing for acoustic vector sensor array. Throughmathematical modeling,theoretical analysis,algorithm simulation and experimental dataprocessing of MEMS vector hydrophone array and so on, we test the performance of differentalgorithms and the engineering practicability of MEMS vector hydrophone. The mainresearch results are follows.
     (1)According to Gerschgorin disks theory, we propose the new signal numberestimation algorithm(GDE-V) and modified form(MGDE-V) for acoustic vector sensorarray, and given the criterion to detect the number of signals, in which the covariance matrixhas been adjusted for the coherent signals. Simulation experiments show that the GDE-Vmethod and MGDE-V method can efficiently exert the advantages of vector sensor array, andthey have better estimation performance for the port/starboard signals detecting, coherentsignals detecting, low SNR and few snapshot, and can distinguish more signals than acousticpressure sensor array with the same array aperture size.
     (2)Through re-construction for the covariance matrix of acoustic vector sensor array andself-adaptive selecting for the lead orientation, we propose a new root-MUSIC algorithm andits real-valued form for acoustic vector sensor array. The theoretical derivation and simulationexperiments show that two new algorithms have better DOA estimation performance in lowSNR and few snapshot than traditional root-MUSIC algorithm for acoustic pressure sensorarray. In the lake trials of MEMS vector hydrophone array, the azimuth of acoustic source hasbeen accurately estimated and the running tracks of moto boats have been successfullyfollowed by two new algorithms.
     (3)We propose a novel MUSIC algorithm with pressure and particle velocity combinedprocessing(PV-MUSIC) for acoustic vector sensor array, and make DOA estimation byeigen-decomposing for the cross-covariance matrix which is obtained by selecting for the lead orientation and projecting for the particle velocity of acoustic vector sensor. The simulationexperiments show the better DOA estimation performance of PV-MUSIC algorithm thantraditional MUSIC algorithm in isotropic noise field, and the PV-MUSIC algorithm has beensuccessfully application in lake trials of MEMS vector hydrophone array.
     (4)According to the characteristics of two-dimensional MEMS vector hydrophone, wederivate the expression of various kinds of array errors, and build the vector array signalmodel under the influence of the error, further proposes self-calibration algorithm of acousticvector array error, and verify the algorithm by the simulation experiment and the measureddata in lake trials of MEMS vector hydrophone array.
     (5)To solve the DOA estimation in non-uniform vector sensor array, we derivate thetime delay expression of four non-uniform vector sensor array and the array direction vector,and proposed the MUSIC algorithm for non-uniform vector array. Through selecting for thearray with optimization performance, we take statistic to the change of probability of successand RMSE with SNR and snapshots, simulate experiment shows that the performance ofnon-uniform line array is best, it has better DOA estimation performance in low SNR and fewsnapshots.
     (6)Though the experimental data of MEMS vector hydrophone array in differentenvironments, we analysis and discuss about data preprocessing, measuring for environmentalnoise, the correlation of pressure and particle velocity, the gain of vector sensor array, DOAestimation and so on, and verify the feasibility of the proposed algorithms in this thesis, andprovide technical support for the engineering application of MEMS vector hydrophone.
     The main innovations in the paper are follows.
     (1)We propose the Gerschgorin disks algorithm estimating the signal number, which cangreatly improve the estimation performance for acoustic vector sensor array.
     (2)We propose the Root-MUSIC algorithm and its real-valued form, which can improvethe DOA estimation accuracy and effectively reduce the computational complexity, and hasbeen successfully applied in the experiment of MEMS vector hydrophone array.
     (3)We proposes the self-calibration algorithm of MEMS vector hydrophone arrayerror,which can improve the engineering practicability of various algortithms.
     The engineering application of MEMS vector hydrophone is a huge systematic project,there are still a lot of work to research, we hope the work in this thesis are helpful to theresearch and development of acoustic vector array signal processing technology, and promotethe MEMS vector hydrophone more extensive engineering application.
引文
[1]汪文件,新世纪中国海洋方向安全分析[D],中共中央党校硕士学位论文,2001.
    [2]汪德昭尚尔昌.水声学[M].北京:科学出版社,1981.
    [3]刘伯胜,雷家煜.水声学原理[M].哈尔滨:哈尔滨工程大学出版社,2010.
    [4]孙超.水下多传感器阵列信号处理[M].西安:西北大学工艺出版社,2007.
    [5]田坦,刘国枝,孙大军,声呐技术[M].哈尔滨:哈尔滨工程大学出版社,2000.
    [6](美)弗里德曼,诺曼著,丁振林等编译,1945年以来的美国潜艇:配图解说潜艇设计史[M],北京:中国船舶信息中心,2000.
    [7]吕钱浩.矢量传感器阵列技术研究[D].哈尔滨工程大学博士学位论文,2004.
    [8] C.B. Lesie, J.M. Kendall, J.L. Jones, Hydrophone for measuring particle velocity[J]. J.Acoust. Soc. Am.,1956,28:711-715.
    [9] M.J. Berliner, J.F. Lindberg, Acoustic Particle Velocity Sensors: Design, Performance andApplications[M], Woodbury, NY: American Institute of Physics,1996.
    [10]孙贵青,李启虎.声矢量传感器研究进展[J].声学学报,2004,29(6):481-490.
    [11] B.M.Abraham et al, Ambient noise measurements with vector acoustic hydrophones[C],IEEE, Oceans2006:1-7.
    [12] J.A.Clark et al, Localization of radiating sources along the hull of a submarine using avector sensor array[C], IEEE, Oceans2006:1-3.
    [13] J.F.McEachern, ARAP-Deep ocean vector sensor research array[C], IEEE, Oceans2006:1-5.
    [14] V.A.Shchurov, Coherent and diffusive fields of underwater acoustic ambient noise[J],J.Acoust.Soc.Am.1991,90(2):991-1001.
    [15] V.A.Shchurov, The interaction of energy flows of underwater ambient noise andlocalsource[J]. J.Acoust.Soc.Am,1991,90(2):1002-1004.
    [16] V.A.Shchurov, Surface waves influence on underwater dynamic noise energytransport[C], Proc.IWAET-2, Harbin, China,1999,105-122.
    [17] V.A.Shchurov, ambient noise energy motion in the near surface layer in oceanwaveguide[J], J.Phys.Pt.2.1994,4(5):1273-1276.
    [18] V.A.Shchurov, A possible mechanism of dynamic ambient ocean noise horizontal energyflow forming, Proc.I.O.A, Array and beamforming in sonar[J], University of Bristol UK,1996,18(5):121-127.
    [19]贾志富,同振球型声压梯度水听器的研究[J],应用声学,1997,16(3):20-25.
    [20]谢斌,薛晨阳,张文栋,熊继军.硅微仿生矢量水声传感器研制[J].传感技术学报.2006,19(5):2300-2303.
    [21] C.Y.Xue, S.Chen and W.D.Zhang, Design, fabrication and preliminary characterizationof a novel MEMS bionic vector hydrophone[J],Microelectronics Journal,2007,38:1021-1026.
    [22] T.D. Wen, L.P. Xu, J.J. Xiong and W.D.Zhang, The meso-piezo-resistive effects inMEMS/NEMS[J], Solid State Phenomena,2007.121–123:619–622.
    [23] W.D. Zhang, C.Y.Xue and J.J.Xiong, Piezoresistive effects of resonant tunnelingstructure for application in micro-sensors[J]. Indian Journal of Pure&Applied Physics,2007,45:294-298.
    [24] C.Y. Xue, Z.M.Tong, B.Z.Zhang,W.D. Zhang. A Novel Vector Hydrophone Based on thePiezoresistive Effect of Resonant Tunneling Diode[J]. IEEE Sensors J.2008,8(4):401-402.
    [25]陈尚.硅微仿生矢量水声传感器研究[D].中北大学硕士学位论文,2007.
    [26]陈尚,薛晨阳,张斌珍等.一种新型的MEMS单矢量水听器研究[J].兵工学报.2008,29(6):673-677.
    [27]关凌纲,张国军,薛晨阳.基于纳机电矢量水听器的水下目标估计[J].海洋技术.2009,28(2):43-46.
    [28]关凌纲.基于MEMS矢量水听器的声目标探测技术研究[D].中北大学硕士学位论文,2009.
    [29] A. Nehorai and E. Paldi. Acoustic vector-sensor array processing[J]. IEEE Tarns. SignalProcessing,1994(9):2481-2491.
    [30] B.Hochwald and A.Nehorai. Identifiably in array processing models with vector-sensorapplications[J]. IEEE Trans. on Signal Processing, Jan.1996.44(1):83-95.
    [31] K.T.Wong, M.D.Zoltowski. Extended-aperture underwater acoustic multisourceazimuth/elevation direction-finding using uniformly but sparsely spaced vectorhydrophones[J]. IEEE J. Oceanic Eng.,1997,22:659-672.
    [32] K.T.Wong, M.D.Zoltowski. Closed-form underwater acoustic direction-finding witharbitrarily spaced vector-hydrophones at unknown locations[J]. IEEE J. OceanicEng.,1997,22:649-658.
    [33] K.T.Wong and M.D.Zoltowski. Self-Initiating MUSIC-Based Direction Fingind inUnderwater Acoustic Particle Velocity-Field Beamspace[J].IEEE Intl. Symposium on Circuits&Systems.1997,4:2553-2556.
    [34] K.T.Wong and M.D.Zoltowski. Polarization-Beamspace Self-Initiating MUSIC forAzimuth/Elevation angle estimation[J]. IEEE Conf. Radar97,1997,328-333.
    [35] M. Hawkes and A. Nehorai. Acoustic vector-sensor beamforming and capon directionestimation[J]. IEEE Trans. on Signal Processing,1998,SP-46:2291-2304.
    [36] M. Hawkes and A. Nehorai. Effects of sensor placement on acoustic vector-sensor arrayperformance[J]. IEEE J. Oceanic Eng. Jan.1999,24:33-40.
    [37]方世良,魏占海.声矢量传感器目标方位估计[J].东南大学学报.2002,32(5):688-691.
    [38]江南.基于水声矢量传感器阵的波达方向估计[J].贵州科学.2002,20(4):153-158.
    [39]乔刚.基于矢量传感器的水声通信技术研究[D].哈尔滨工程大学博士学位论文.,2004.
    [40]刘伯胜,田宝晶.矢量传感器估计目标方位的误差的仿真研究[J].哈尔滨工程大学学报.2004,24(5):491-494.
    [41]惠俊英,李春旭等.声压和振速联合信号处理抗相干干扰[J].声学学报.2000,25(5):389-394.
    [42]徐海东.基于声矢量阵的高分辨方位估计技术研究[D].哈尔滨工程大学博士学位论文,2004.
    [43]何祚镛,赵玉芳.声学基础[M],北京:国防工业出版社,1981.
    [44] R.J.尤立克.水声原理[M].哈尔滨:哈尔滨船舶工程学院出版社,1990:67-75.
    [45]惠俊英,刘宏余,华兵,范敏毅.声压振速联合信息处理及其物理基础初探[J].声学学报,2000,25(4):303-307.
    [46]李春旭,声压、振速联合信号处理[D],哈尔滨工程大学博士学位论文,2000.
    [47]罗鹏飞,统计信号处理[M],北京:电子工业出版社,2009.
    [48]王永良.空间谱估计理论与算法[M].北京:清华大学出版社,2009.
    [49] M. Wax,T. Kailath. Detection of signals by information theoretic criteria[J], IEEE Trans.Acoust., Speech, Signal Process.,1985,33(2):387-392.
    [50] E.Fishler,M.Grosmann,H.Messer.Detection of Signals by Information TheoreticPerformance Analysis:General Asymptotic Performance Analysis[J]. IEEE Trans. SignalProcess.,2002,50(5):1027-1036.
    [51] S. Valaee, P. Kabal. An Information Theoretic Approach to Source Enumeration in ArraySignal Processing[J], IEEE Trans. Signal Process.,2004,52(5):1171-1178.
    [52] E.Fishler, H.V.Poor. Estimation of the Number of Sources in Unbalanced Arrays ViaInformation Theoretic Criteria[J]. IEEE Trans. Signal Process.,2005,53(9):3543-3553.
    [53] M. Wax, I. Ziskind. Detection of the number of coherent signals by the MDLprinciple[J], IEEE Trans. Acoust., Speech, Signal Process.,1989,37(8):1190-1196.
    [54] E.Fishler, H. Messer. On the Use of Order Statistics for Improved Detection of Signalsby the MDL Criterion[J], IEEE Trans. Signal Process.,2000,48(8):2242-2247.
    [55] L.Huang, S.Wu. Low-complexity MDL method for accurate source enumeration[J],IEEE Signal. Process. Lett.,2007,14(9):581-584.
    [56] L.Huang, S.Wu, X.Li. Reduced-rank MDL method for source enumeration inhigh-resolution array processing[J], IEEE Trans. Signal Process.,2007,55(12):5658-5667.
    [57] H. T. Wu, J. F. Yang,F. K. Chen. Source Number Estimator Using Gerschgorin Disks[J].IEEE,Proc ICASSP, Adelaide1994:261-264.
    [58] H. T. Wu, J. F. Yang. Gerschgorin radii based source number detection for closely spacedsignals[J], IEEE,Proc ICASSP, Atlanta,1996:3054-3057.
    [59] L.Huang, T.Long, S. Wu. Source enumeration for high-resolution array processing usingimproved Gershgorin radii without eigendecomposition[J], IEEE Trans. SignalProcess.,2008,56(12):5916-5925.
    [60] H. T. Wu, J. F. Yang, F. K. Chen. Source Number Estimators Using TransformedGerschgorin Radii[J]. IEEE Trans. Signal Process.,1995,43(6):1325-1333.
    [61] D.Kundu. Modified MUSIC Algorithm for Estimating DOA of Signals[J]. SignalProcessing,1994,48:85-90.
    [62]李启虎,声呐信号处理引论(第二版)[M],北京:海洋出版社,2000.
    [63]姜灿臣.基于矢量传感器阵列的宽带恒定束宽波束形成的研究[D],昆明理工大学硕士学位论文,2008.
    [64]苏文涛.基于矢量水听器阵的波束形成及DSP实现[D],西北工业大学硕士学位论文,2007.
    [65]冯杰.稳健波束形成与高分辨方位估计技术研究[D],西北工业大学博士学位论文,2006.
    [66] H.Cox, R.M.Zeskind,M.M.Owen. Robust adaptive beamforming[J]. IEEE Trans. onSignal Proccssing, ASSP,1987,35(10):1365-1376.
    [67] M.Hawker,A.Nehorai.Acoustic Vector-Sensor Beamforming and Capon DriectionEstimation[J]. IEEE Traps on Signal Processing.1998(9):2291-2304.
    [68] B.D.VanVeen,K.M.Buckley, Beamforming: a versatile approach to spatial filtering[J],IEEE ASSP Magazine,1988(4):4-24.
    [69]喻敏.声矢量传感器阵的Capon方位估计[D].哈尔滨工程大学硕士学位论文,2004.
    [70] D.G.Childers. Modern Spectrum Analysis[M], New York, IEEE. Press.1978.
    [71] R.O.Schmide. Multiple emitter location and signal parameter estimation[J]. IEEE Tran.on AP,1986,34(3):276-280.
    [72] P.Stoica,A.Nehorai. MUSIC,maximum likehood,and Cramer-Rao bound[J]. IEEE Tran.on ASSP,1989,37(5):720-741.
    [73] P.Stoica,A.Nehorai. MUSIC,maximum likehood,and Cramer-Rao bound:further resultsand comparisons[J]. IEEE Tran. on ASSP,1990,38(12):2140-2150.
    [74] B.P.Ng. Constraints for linear predictive and minimum-norm methods in bearingestimation[J]. IEE Proc.-F,1990,137(3):187-192.
    [75] R.Roy,T.Kai.ESPRIT-a subspace rotation approach to estimation of parameters ofcissoids in noise[J]. IEEE Trans. on ASSP,1986,34(10):1340-1342.
    [76] K.G.Nagananda, G.V.Anand. Subspace intersection method of high-resolution bearingestimation in shallow ocean using acoustic vector sensors[J].Signal Processing,2010,90:105-118.
    [77]石娴文,陆锦辉.改进MUSIC算法对相关信号源DOA的估计[J],舰船电子工程,2007,27(5):80-95.
    [78]王浩.基于矢量传感器阵列的空间谱估计技术的研究[D].昆明理工大学硕士学位论文,2008.
    [79]王友华,张建秋.矢量水听器阵列超复数模型及在高分辨率波达角估计中的应用[J],复旦学报(自然科学版),2008,47(6):679-684.
    [80]张揽月,杨德森.矢量阵MUSIC空间谱方位估计性能的实验研究[J],应用声学,2009,28(2):90-96.
    [81]赵微,李秀坤.矢量线阵二维波达方位估计的方法[J],声学技术,2008,27(5):658-661.
    [82]张揽月,许继友,姜俊奇.矢量线阵MUSIC算法抗空间混叠性能研究[J],声学技术,2008,27(5):741-745.
    [83]周浩,顾晓东,蒋兴舟.矢量水听器阵列MUSIC估计算法研究[J].武汉理工大学学报(交通科学与工程版),2006,30(4):565-568.
    [84]陈新华.矢量阵信号处理技术研究[D],哈尔滨工程大学博士学位论文,2004.
    [85]姚爱红.声矢量传感器信号处理技术研究[D].哈尔滨工程大学博士学位论文,2005.
    [86]闫雷.基于矢量水听器阵的处理技术研究和DSP实现[D].西北工业大学硕士学位论文,2006.
    [87]张揽月,杨德森.基于MUSIC算法的矢量水听器阵源方位估计[J],哈尔滨工程大学学报,2004,25(1):30-33.
    [88] T. J. Shan T. Kailath, and M. Wax, Adaptive Beamforming for Signals and Interference[J],IEEE. Trans. ASSP1985,7:527-536.
    [89] R.T.Williams, S.Prasal, A.K.Mahalanabis and L.H.Sibul, An Coherent Improved SpatialSmoothing Technique for Bearing Estimation in a Multipath Environment[J], IEEE.Trans.ASSP1988,4:425-431.
    [90] S.U.Pillai and B.H.Kwon, Forward/Backward Spatial Smoothing Techniques forCoherent Signal Identification[J], IEEE. Trans. ASSP,1989,1:8-15.
    [91] H.Wang and M.Kaven, Coherent Signal-Subspace Processing for the Detection andEstimation of Angles of Arrival of Multiple Wide-Band Sources[J], IEEE. Trans. ASSP,1985(3):823-831.
    [92] T.J.Shan, M.Wax. On spatial smoothing for estimation of coherent signals[J]. IEEE Trans.on ASSP,1985,33(4):806-811.
    [93] H.S.Hung, M.Kaveh, Focussing Matrices for coherent signal-subspace processing[J],IEEE Trans. ASSP1988,36(8):1272-1281.
    [94] H.S.Hung, C.Y.Mao, Robust coherent signal-subspace processing for directions of arrivalestimation of wideband sources[J], IEEE Proc. Radar Sonar Navig.1994,141(5):256-262.
    [95] P.Stoica and M.Jansson, On forward–backward MODE for array signal processing[J],Digital Signal Process.,1997,7(4)239-252.
    [96] S.U.Pillai and B.H.Kwon, Performance analysis of MUSIC-type high resolutionestimators for direction finding in correlated and coherent scenes[J], IEEE Trans. Acoust.,Speech,Signal Process.,1989,37(8):1176-1189.
    [97] B. D. Rao and K. V. S. Hari, Weighted subspace methods and spatial smoothing: Analysisand comparison[J], IEEE Trans. Acoust., Speech,Signal Process.,1993,41(2):788-803.
    [98] D.A.Linebarger, R.D.DeGroat, and E.M.Dowling,Efficient direction-finding methodsemploying forward–backward averaging[J], IEEE Trans. Signal Process.,1994,42(8):2136-2145.
    [99] B.D.Rao and K.V.S.Hari, Performance analysis of root-MUSIC[J], IEEE Trans. Acoust.,Speech, Signal Process.,1989,37(12):1939-1949.
    [100] M.D.Zoltowski, G.M.Kautz, and S.D.Silverstein, Beamspace root-MUSIC[J], IEEETrans. Signal Process.,1993,41(1):344-364.
    [101] B.Friedlander.The root-MUSIC algorithm for direction finding with interpolatedarrays[J], Signal Processing,1993,30:15-25.
    [102] F.Belloni, A.Richter and V.Koivunen, Extension of root-MUSIC to non-ULA arrayconfigurations[C], Proc. ICASSP, Toulouse, France,2006,4:897-900.
    [103] Carine ElKassi. Jose Picheral and Chafic Mokbel, Advantages of nonuniform arraysusing root-MUSIC[J], Signal Processing.2010.90:689-695.
    [104]梁华强,何明一,张麟兮,李南京.基于共轭酉ROOT-MUSIC的一维散射中心提取算法[J],系统仿真学报,2009,21(11):3203-3206.
    [105]吕荣峰,杨力生.酉变换步进搜索求根MUSIC算法的研究与仿真[J],计算机仿真,2009,26(1):327-330.
    [106] P.Marius,B.G.Alex and H.Martin,Unitary Root-MUSIC with a Real-ValuedEigendecomposition:A Theoretical and Experimental Performance Study[J].IEEE Trans.Signal Process.,2000,48(5):1306-1314.
    [107]刘志刚,汪晋宽,王福利.基于实值分解技术的循环root-MUSIC算法[J],系统仿真学报,2006,18(9):2438-2441.
    [108] R.Roy,T.Kai. ESPRIT-estimation of signal parameters via rotational invariancetechniques[J]. IEEE Trans. on ASSP,1989,37(7):984-995.
    [109] M.Haardt,J.A.Nossek, Unitary ESPRIT: How to obtain increased estimation accuracywith a reduced computational burden[J], IEEE Trans.Signal Process.,1995,43(5):1232-1242.
    [110] J.He, L.Zhong.Two-dimensional direction finding of acoustic sources by a vector sensorarray using the propagator method[J]. Signal Processing,2008,88:2492-2499.
    [111] P.Palanisamy,N.Kalyanasundaram,P.M.Swetha.Two-dimensional DOA estimation ofcoherent signals using acoustic vector sensor array,Signal Processing,2012,92(1):19-28.
    [112]陈德莉.波达方向估计中阵列误差校正技术研究[D],国防科技大学博士学位论文,2008.
    [113]曾奋.复杂环境下阵列幅相误差的校正[D],哈尔滨工业大学硕士学位论文,2009.
    [114]赵学伟.阵列误差对DOA估计的影响及校正[D],电子科技大学硕士学位论文,2008.
    [115]廖斌.阵列校正与非均匀噪声环境下DOA估计方法研究[D],西安电子科技大学硕士学位论文,2009.
    [116]顾建峰.阵列信号处理中的若干问题研究[D],电子科技大学博士学位论文,2004
    [117] B.Friedlander,A.J.Weiss. Direction finding in the presence of mutual coupling[J].IEEE.Tran.on Antennas and Propagation,1991,39(3):273-284.
    [118] B.Friedlander,A.J.Weiss. Effects of Model Errors on Waveform Estimation Using theMUSIC Algorithm[J].IEEE Trans.on SP,1994,42(1):147-155.
    [119]费腾.矢量水听器校准装置[J].声学技术.2005,增刊:289-291.
    [120]杨德森,洪连进.矢量水听器原理及应用引论[M].北京:科学出版社,2009:129-136.
    [121]尚华.基于矢量水听器的海洋环境噪声场相关特性研究[D],哈尔滨工程大学硕士学位论文,2008.
    [122]高源,杜选民.声矢量阵阵增益研究[J].舰船科学技术,2002,25(6):30-33.
    [123]岳剑平.水下动目标被动跟踪研究[D].哈尔滨工程大学博士学位论文,2004.
    [124] H.Krim, M.Viberg. Two decades of array signal processing research[J]. IEEE SignalProcessing Magazine,1996,13(4):67-94.
    [125]刘伟,王昌明,张自嘉.水声二维方向角估计降维算法及其仿真分析[J].系统仿真学报,2009,21(2):360-363.
    [126]赵春晖,李刚,唐爱华.五元十字交叉阵的测向模糊分析及阵列改进措施[J].应用科技.2006.33(2):1-3
    [127]王昕,魏江,段渭军,范红刚.基于十字阵的高阶累积量DOA估计算法[J].计算机仿真,2009,26(11):113-116.
    [128] J.J.Fuchs. Extension of the Pisarenko method to sparse linear arrays[J]. IEEE Trans. onSignal Processing,1997,45(10):2413-2421.
    [129] Y.I.Abramovith,N.K.Spencer,A.Y.Gorokhov. Resolving manifold ambiguities indirection-of-arrival estimation for nonuniform linear antenna arrays[J]. IEEE Trans. on SignalProcessing,1999,47(10):2629-2643
    [130]赵志伟.噪声目标被动定位方法研究[D].哈尔滨工程大学硕士学位论文,2008.
    [131]樊羚珂.被动测距声呐的数据处理[D].哈尔滨船舶工程学院硕士学位论文,1985.
    [132]宋新见,惠俊英,殷冬梅等.水下噪声目标被动测距技术研究[J].应用声学,2005,24(3):134-135.
    [133] Daifeng Zha, Tianshuang Qiu. Underwater sources location in non-Gaussian impulsivenoise environments[J].Digital Signal Processing.2006(16)149-163.
    [134]王新勇.互谱法被动测距改进研究[D],哈尔滨工程大学博士学位论文,2004.
    [135]宋新见,殷冬梅,惠俊英.基于矢量信号处理的水声定位系统[J],海洋工程,2003,21(3):110-114.
    [136]凌青.基于多站址信息综合的水下探测定位技术研究[D],哈尔滨工程大学博士学位论文,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700