不同嵌段比的SBS改性沥青流变性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
交通流量日益增长、车速不断提升、车辆日益大型化、重载超载的比例不断增加以及交通渠化,对高等级公路主要路面形式——沥青路面提出了更高的要求,如安全、舒适、耐久等,这就需要提高沥青的路用性能。而我国大部分原油属于石蜡基原油,含蜡量比较高,芳香度比较低,沥青质比较低,国产基质沥青已经不能满足沥青路面的建设要求,所以促成了在沥青或沥青混合料中添加各种添加剂对沥青或沥青混合料进行改性研究的发展。对于目前越来越广泛使用的沥青路面,如何加强和改善沥青路面的使用品质,延长路面的使用寿命和提高投资效益是各国道路工作者所面临的重要课题。
     本文首先对动态剪切流变仪的试验平行板进行了分析,借助于动态频率扫描试验,研究了温度对于不同平行板进行试验时所得结果的影响,采用不同的平行板在一定的温度范围内对沥青试样进行试验,对频率模量主曲线进行拟合并通过WLF公式来计算沥青的基准温度值,从而确定在不同温度条件下动态剪切流变仪不同尺寸平行板的选择,为进一步的试验研究做准备。
     然后在实验室采用具有不同嵌段比S/B值的聚合物改性剂制备了特种SBS改性沥青。通过对特种聚合物改性沥青进行试验研究,分析了改性沥青中S链段和B链段各自的作用,由此得出建议,低速行车区采用低S/B制备的SBS改性沥青有更好的路用性能,高速行车区采用高S/B制备的SBS改性沥青显示出更优越的性能。对不同嵌段比S/B的SBS改性剂制备的改性沥青的复数模量、相位角和粘度进行了研究。
     基于实验室制备的不同嵌段比S/B的改性沥青的特点,在实际生产中制备出了具有高、低嵌段比S/B的特种聚合物改性沥青即高模量、高弹性改性沥青,并已申请专利。通过CAM模型对不同的SBS改性沥青进行拟合,获得的流变参数对改性剂改善基质沥青感温性进行了研究,分析不同嵌段比S/B对改性沥青流变性能的变化影响。从流变学的角度出发,通过不同加载模式下得到的ZSV,阐述了不同流变模型拟合的相关性以及对不同类型沥青的适用范围,结合不同嵌段比S/B的改性沥青在不同加载模式下拟合的零剪切粘度进行了评价。
     基于对Burgers流变模型的研究,分析了基于重复蠕变试验拟合的Gv指标在评价沥青高温性能的合理性和缺陷所在,并通过对Burgers流变模型的改进,在Gv指标的基础上提出了Gv(t)指标用以评价沥青性能。改进了流变模型对于沥青胶结料应力应变响应的本构关系的描述,提出了包含延迟弹性在内的新指标来评价改性沥青。采用累计耗散能量比对改性沥青的疲劳性能进行了对比,评价了不同嵌段比S/B对改性沥青疲劳性能的影响。从工程实际应用的角度考虑,提出了针对特种SBS改性沥青的工程指标,以便于在实际应用中能够简易地检测出其性能特点。
     最后在工程实际中采用具有不同嵌段比S/B的高模量、高弹性改性沥青应用于不同场合,与常用的普通SBS改性沥青进行对比,实践验证了其在工程实际中的应用效果。通过室内试验和试验段的跟踪检测,将三种改性沥青进行了实际工程效果的对比,说明在不同类型的沥青路面上有针对性地选用具有不同嵌段比S/B的SBS改性沥青具有很好的效果。
     本论文从对不同S/B的SBS改性剂研究出发,基于试验基础和工程检验来进一步评价改性效果,为实际生产选择提供了依据。
With the rise on the highway of traffic, the raising of vehicle speed, the growth of wheel load, the increase of overloading and channelized traffic, a higher demand is presented for asphalt pavement just as safety, comfortable, durability and so on, and these demands must rely on pavement performance of asphalt. Most kinds of crude oil are waxy, with high wax content, low aromatic rates content and low Asphaltene content, and base asphalt made in our country can’t meet asphalt pavement construction demands, so additives for asphalt and asphalt mixture get more and more research to improve those performance. It is an important task for road researcher to enhance asphalt pavement performance, extend pavement life and increase investment benefit.
     This paper researches the influence of experiment data with temperature for different parallel plates through dynamic frequency sweep testing by dynamic shear rheometer. This experiment is made in the definite temperature scope and different parallel plates. Choosing parallel plates criteria is confirmed by fitting frequency modulus master curve and calculate benchmark temperature values through WLF equaliton.
     On the basis of choosing criteria for instrument parallel plates, this paper adopts SBS polymer modifiers of different block proportion S/B values to prepare special kind SBS modified asphalts, and then analyses functions of S segment and B segment in SBS modified asphalt and draws these conclusions. Low speed area can get better pavement performance through SBS modified asphalt made by low S/B value and high speed area can get it by high S/B value. Research the influence of complex modulus, phase angles and viscous ity of modified asphalt by different block proportion S/B values.
     According to making modified asphalt in laboratory, SBS modified asphalts of high and low block proportion S/B are made in works namely high modulus modified asphalt and high elastic modified asphalt, and they both are apply patents. And then rheometer parameters getting by fitting SBS modified asphalt based on CAM model analysis the effect of modifiers for base asphalt temperature susceptibility by different block proportion S/B. Obtaining ZSV under different loading modes with rheology explains relativity of fitting values by different rheology models, and evaluates Zero Shear Value for modified asphalt.
     Analyses Burgers rheology model and research rationality and limitation of Gv value fitting based on repeated creep test, and then bring forward Gv(t) value to appraise asphalt’s performance by improving Burgers rheology model. Gv(t) value as a new index includes delay elastic and it can describe relationship of stress and strain roundly for modified asphalt. Adopting cumulative dissipated energy ratio appraise fatigue behavior of modified asphalt by different block proportion S/B. Considering engineering practical application, engineering indexes are put forward to check modified asphalt’s performance behavior easily.
     Comparing practical engineering applying effects with high modulus modified asphalt, high elastic modified asphalt and common SBS modified asphalt. These includes indoor experiment and test road pavement, and it proves that choosing SBS modified asphalts of different S/B values for different kinds asphalt pavement can get better effece.
     This paper researches SBS modifiers of different S/B values, and appraises modified effect based on indoor experiment and engineering verify, and provides criteria for practical application.
引文
1. Mulder E A, Whiteoak C D. An Objective Assessment of the In-Service Performance of Thermoplastic Rubber Modified Bitumen for Road Applications [M]. 16th ARRB Conference, Perth, Western Australia, 1992, 89: 252-262
    2. Lewadowski L H. Polymer Modification of Paving Asphalt Binders [J]. Rubber Chemistry and Technology, 1994, 67: 347-380
    3. Maccarrone, G. Holleran and G. p. Gnanasseelan, Properties of Polymer Modified Binders and Relationship to Mix And Pavement Performance, Journal of The Association of Asphalt Paving Technologist, 1995 (64): 209-240
    4. Xiao hu LU and Ulf Isacsson, Evaluation of Fundamental Properties of SBS Polymer Modified Road Bitumen, 3rd International Conference on Road & Airfield Pavement Technology, 1998 (24):122-137
    5. Bernard Brule, Michel Maze, Appliation of SHRP Binder Tests to the Characterization of Polymer Modified Bitumen, Journal of the Association of Asphalt Paving Technologist 1995 (56):167-188
    6. Collins, W. J. Mikols, Improved Performance of Paving Asphalts by Polymer Modification. Journal of the Association of Asphalt Paving Technologist, 1991(60):177-182
    7. Xiao hu Lu and U. Isacsson, Characterization of Styrene-Butadiene-Styrene Polymer Modified Bitumen Comparison of Conventional Methods and Dynamic Mechanical Analysis, Journal of Testing and Evaluation, ASTM, Vol. 25, 1997
    8. Khattak, M. J. and G. Y. Baladi. Engineering Properties of Polymer Modified Asphalt Mixture. Transportation Research Record 1638, TRB, National Research Council, Washington, DC, 1998: 12~22
    9. D’Angelo, T. Performance Specification for Asphalt Binders in the USA. Plenary lecture at the 39th Annual Peterson Asphalt Research Conference, Laramie, Wyoming, 2002(9):33~45
    10. Sherwood, J., Thomas, N. L., and Qi, X. Correlation of Superpave G*/sinδwith Rutting Test Results from Accelerated Loading Facility. Transportation Research Record No. 1630, Transportation Research Board, National Research Council, Washington D.C. 1998: 207~229
    11. Stuart, K. D. and Mogawer, W. S. Validation of asphalt binder and mixture tests that predict rutting susceptibility using FHWA Accelerated Loading Facility. 1997, Proc. AAPT. Salt Lake City, UT: 109~152
    12. Bahia, H. U., Hanson, D. L., Zeng, M., Zhai, H., Khatri, M. A., and Anderson, R. M. Characterization of Modified Asphalt Binders in Superpave Mix Design. NCHRP Report 459, 2001: National Cooperative Highway Research Program, National Academy Press. Washington, D.C: 134~165
    13. Bouldin, M. G., Dongré, R., Zanzotto, L. and Rowe, G. M. The application of viscoelastic models to predict the relative performance of binders for grading purposes. Proceedings of 2nd Eurasphalt & Eurobitume Congress, 2000, Barcelona, Spain, Book 1: 74~82
    14. Bahia, H.U., M. Zeng., H. Zhai, and A. Khatri. Superpave Protocols For Modified Asphalt Binders. Fourteenth Quarterly Progress Report for NCHRP Project 9-10. Report submitted to NCHRP. Washington D. C. 1999:57~69
    15. Bouldin, M. G., Dongre, R., and D’Angelo, J. Proposed Refinement to The Superpave High Temperature Specification Parameter for Performance Graded Binders. Transportation Research Record, No. 1766, National Research Council, 2001. Washington, D.C.: 40~47
    16. Shenoy, A. Refinement of the Superpave Specification Parameter for Performance Grading of Asphalt. Journal of Transportation Engineering. 2001, 127(5): 357~362
    17. Dongre, Raj, D’Angelo, John and Gerry Reinke. A New Criterion for Superpave High Temperature Binder Specification. Transportation Research Record, TRB, 2004: Transportation Research Board, National Research Council, Washington D.C: 276~298
    18.陈佩茹.沥青高温基础性能指标研究.同济大学学位论文. 2001: 33~42
    19. Phillips, M. C. and Robertus, C. Binder Rheology and Asphaltic Pavement Permanent Deformation: The Zero-shear Viscosity. 1st Eurasphalt and Eurobitume Congress, Strasbourg, 1996, Paper No. 5.134
    20. Desmazes, C., Lecomte, M., Lesueur, D. and Phillips, M. A protocol forreliable measurement of zero-shear-viscosity in order to evaluate the anti-rutting performance of binders. Proceedings of 2nd Eurasphalt & Eurobitume Congress, 2000, Barcelona, Spain, Book 1: 202~211
    21. Sybilski, D., Zero-Shear Viscosity of Bituminous Binder and Its Relation to Bituminous Mixtures Rutting Resistance. Transportation Research Record 1535, TRB, 1996: 15~21
    22.方伽俐,黄卫东.沥青结合料零剪切粘度简介.中外公路. 2003, 23(6):83~86
    23. Dongre, Raj, and D’Angelo, John. Evaluation of Different Parameters for Superpave High Temperature Binder Specification Based on Rutting Performance in the Accelerated Loading Facility at FHWA. Transportation Research Record, TRB, 2004: Transportation Research Board, National Research Council, Washington D.C: 177~194
    24. Kevin D. Stuart, Jack S. Youtcheff. Evaluating the Performance of Modified Asphalt Binders with Identical High-Temperatures PG’s but Varied Polymer Chemistries. Transportation Research Board, National Research Council, 2004, Washington D.C: 213~223
    25.陈佩茹,李立寒等.沥青高温性能指标评价.石油沥青:2002,12(3):27~30
    26. Rodrigo Delgadillo, Kitae Nam, Hussain Bahia. Why Do We Need to Change G*/sinδand How? Transportation Research Board, National Research Council, 2004, Washington D.C:49~65
    27. Bahia, H.U., H. Zhai, M. Zenge et al. Development of Binder Specification Parameters Based on Characterization of Damage Behavior. Paper submitted for presentation at the 2001 Annual Meeting of the Association of Asphalt Paving Technologists:163~172
    28. Aroon Shenoy, Kevin Stuart, Walaa Mogawer. Do Asphalt Mixtures Correlate Better with Mastics or Binders in Evaluating Permanent Deformation? Transportation Research Record 2441, TRB, 2003, Washington D.C:262~290
    29. J. Carswell and P. J. Green. Prediction of Rutting Resistance in Hot-Rolled Asphalt Using Rheological Parameter. The Asphalt Yearbook 2000, The Institute of Aspahtl Technology Publication, 2000: 27~36
    30.赵可.不同评价体系间改性沥青高温性能指标的相关分析.石油沥青,2002,16(2):26~31
    31. Dr. David A. Anderson. Improved Procedure for Laboratory Aging of Asphalt Binders in Pavements. National Cooperative Highway Research Program Project 9-36. 2003~2005
    32.张登良.沥青与沥青混合料.人民交通出版社,1993:60~62
    33. Nahaas. N. C. Polymer Modified Asphalt for High Performance Hot Mix Pavement. Journal of Association of Asphalt Paving Technologists, 1990, 59(6): 509~525
    34. Hagen A. P. Johnson M. P. and Randolph B. B. C-NMR Studies on Roadway Asphalts, Fuel Sci & Technol, Intl, 1987, 7: 1289~1326
    35. Michon L. C. Netzel D. A. and Turner T. F. C-NMR and DSC Study of the Amorphous and Crystalline Phases in Asphalts, Energy & Fuels, 1999, 13: 602~610
    36. Jennings. P.W. Fonnesbeck. J. and Smith. J. etc. Asphalt chemistry: an NMR investigation of the benzylic hydrogen and oxidation, Asphalt Science and Technology, edited by A. M. Usmani, Marcel Dekker Co., New York, 1997, 1~10
    37. Miknis F. P. and Michon L.C. Some applications of Nuclear Magnetic Resonance Imaging to Crumb Rubber Modified Asphalts, Fuel, 1998, 77(5): 394~397
    38.蔡菊香.红外光谱法测定橡胶沥青中含胶量.浙江大学学报(自然科学版),1994, 28(4): 385~388
    39. Jemison H. B. Burr B. L. and Davison R. etc, Application and use of the ATR, FTIR Method to Asphalt Aging Studies, Fuel Sci. & Technol. Intl, 1992, 10(4&6): 795~808
    40. Lu X. and Isacsson U. Chemical and Rheological Evaluation of Aging Properties of SBS Polymer Modified Bitumens, Fuel, 1998, 77(9/10): 961~972
    41. Choquet F.S and Ista E. J. The determination of SBS, APP polymers in modified bitumens, Polymer Modified Asphalt Binders. ASTM STP 1108, Keneth R, Wardlaw and Scott Schular, Eds. American Society for Testing and Materials, Philadelphia, 1992: 35~42
    42. Brule B. Paving Asphalt Polymer Blends Relationships Between Composition Structure and Properties, Journal of Association of Asphalt Paving Technologists, 1988, 57(1): 41~64
    43. Lenoble C. Performance/Macrostructure Relationship of Blends of Asphalts with Two Incompatible Polymers. Preprints– Division of Petroleum Chemistry, ACS. 1990, 35(3): 541~549
    44.沈金安.改性沥青与SMA路面.人民交通出版社, 1999: 82~83
    45. Lee. Y. J, France. L.M, Hawley M. C. Effect of Network Formation on the Rheological Properties of SBR Modified Asphalt Binders, Rubber Chemistry and Technology, 1997, 70(2): 256~263
    46. H.U. Bahia, H. Zhai, A.Rangel, Evaluation of Stability, Nature of Modified, and Short Term Aging of Modified Binders Using New Tests: the LAST, the PAT, and the MRTOF, Transportation Research Board 77th Annual Meeting,1997:122-128
    47. Panda M, Mazumdar M. Engineering Properties of EVA-modified Asphalt Mixture. J. Mater. Civ. Eng. 1999, 11(2): 131~137
    48.冯新军,郝培文. SBS聚合物改性剂与基质沥青的配伍性研究.公路. 2007(7):186~190
    49.张帆,李三喜,李旭日,刘海涛,李常春. SBS改性沥青的制备与性能.沈阳化工学院学报. 2003(17):25~28
    50.谭忆秋,曹丽萍,董泽蛟. SBS改性沥青低温性能的影响因素分析.哈尔滨工业大学学报. 2004.12(36):1631~1634
    51.黄卫东.聚合物改性沥青:显微结构、存储稳定性、流变性能及其关系的研究[D].上海:同济大学博士学位论文,2001: 17~36
    52.赵可,原健安.聚合物改性沥青流体流变性及改性剂的亚微观形态[J].中国市政工程.2001.4(95):4~7
    53.张肖宁,孟勇军,邹桂莲.基于重复蠕变的改性沥青高温指标的探讨[J].华南理工大学学报(自然科学版).2007.3:23~28
    54.袁燕,肖云,张肖宁.SBS改性沥青剪切发育过程的动态力学热分析[J].中国公路学报.2006.5: 3(19):29~34.
    55.张争奇,李平,王秉刚.SBS改性沥青性能及老化的影响[J].公路.2005.9.9: 150~155
    56.王仕峰,张隐西,张勇,朱玉堂.聚合物反应共混改性沥青的进展[J].中国建筑防水.2003.3:7~9
    57.杨林江,金海山,张仁瀑.提高SBS改性沥青分散度及热储存稳定性.筑路机械与施工机械化. 1999, 16(4):42~43
    58.邹桂莲,张肖宁,李智.改性沥青应用SHRP PG高温分级存在的几点问题.中南公路工程. 2004,29(1):42~44
    59. Bahia, H.U., M. Zeng., H. Zhai, and A. Khatri. Superpave Protocols For Modified Asphalt Binders. Fourteenth Quarterly Progress Report for NCHRP Project 9-10. Report submitted to NCHRP. 1999, Washington D. C:356~371
    60. L.H.Lewandowski. Polymer Modification of Paving Asphalt Binders Rubber Chemistry and Technology. Vol(67) 1994: 203~224
    61. Naga Shashidhar, Aroon Shenoy. On using Micromechanical Models to Describe Dynamic Mechanical Behavior of Asphalt Mastic. 79th Annual meeting of the Transportation Research Board, Washington, D. C., January 9,2000, Session 483:320~356
    62. Shenoy, A. Refinement of the Superpave Specification Parameter for Performance Grading of Asphalt. Journal of Transportation Engineering. 2001, 127(5): 357 ~362.
    63. Elbirli, B, and Shaw, M. T. Time Constants from Shear Viscosity Data. Journal of Rheology. John Wiley and Sons Inc., 1978, Vol. 22, No. 5: 561~570
    64. Anderson, D. A., Le Hir, Y. M., Planche, J., Martin D., Zero Shear Viscosity of Asphalt Binders. Presented at the 81st Annual Transportation Research Board Meeting, TRB, National Research Council, Washington D. C., 2001:2~19
    65. Sybilski. Zero-Shear Viscosity of Bituminous Binder and its Relation to Bituminous Mixtures Rutting Resistance, Transportation Research Record 1535, TRB, 1996: 15~21
    66. Desmazes, C., Lecomte, M., 1, D., Phillips, M. A Protocol for Reliable Measurement of Zero-Shear-Viscosity in order to Evaluate the Anti-Rutting Performance of Binders,”Proceedings, 2nd Eurasphalt & Eurobitume Congress, Barcelona, Spain.2000:200~203
    67.方伽俐,黄卫东.沥青结合料零剪切粘度简介.中外公路. 2003, 23(6):83~86
    68. Ferry, J. D., Viscoelastic Properties of Polymers, Third Edition. John Wiley and Sons Inc., New York. 1980: 114~125
    69. Phillips, M. C. and Robertus, C. Binder Rheology and Asphaltic Pavement Permanent Deformation: The Zero-shear Viscosity. 1st Eurasphalt and Eurobitume Congress, Strasbourg, 1996, Paper No. 5.134
    70. Dongre, Raj, D’Angelo, John and Gerry Reinke. A New Criterion for Superpave High Temperature Binder Specification. Transportation Research Record, TRB, 2004: Transportation Research Board, National Research Council, Washington D.C:25~41
    71. X.Lu, U. Isacsson. Rheological Characterization of Styrene-butadiene-styrene Copolymer Modified Bitumens. Construction and Building Materials.1997: 23~32
    72.交通部公路科学研究所.道路沥青及沥青混合料路用性能的研究. 85-404-02-01研究报告. 1995: 18~27
    73.张国强,黄卫东.不同改性沥青的软化点及动稳定度的评价与分析.石油沥青. 2001,15(3):33~35
    74.交通部公路科学研究所.公路沥青路面施工技术规范(JTG F40-2004).人民交通出版社, 2004: 9~10
    75.过梅丽,高聚物与复合材料的动态力学热分析.化学工业出版社, 2002:34~35
    76.何平笙.高聚物的力学性能.合肥:中国科学技术大学出版社,1997:15~50
    77.徐世法,王劲松,钱培中,周朝晖. SBS改性沥青质量检测及路用性能评价指标的研究.公路2003. 9: 137~142
    78.谭忆秋.基于粘性流动沥青低温流变特性的研究与应用.哈尔滨建筑大学博士学位论文,1999:96~112
    79.熊萍,郝培文. SBS改性沥青储存稳定性试验方法和评价指标的研究.中国公路学报2005. 18(1): 1~6
    80.姬杨蓓蓓,陈华鑫,鲍燕妮.改性沥青存储稳定性试验方法与指标.同济大学学报(自然科学版) 2006. 34(8): 1035~1039
    81.曹丽萍,董泽蛟,谭忆秋,孙立军.基质沥青标号对SBS改性沥青低温性能的影响.公路交通科技2005. 22(12): 13~16
    82.张争奇,崔文社,马良,李平. SBS改性沥青软化点试验特性.长安大学学报(自然科学版) 2007. 27(6): 6~10
    83.邹桂莲,张肖宁,李智.改性沥青应用SHRP PG高温分级存在的几点问题.中南公路工程2004. 29(1): 42~44
    84.赵可,李海骢.改性沥青感温性评价指标的讨论.中国公路学报2000.13(4): 1~7
    85.交通部重庆公路研究所编译.性能分级沥青结合料规范和试验,美国沥青协会Superpave丛书[M].重庆:重庆公路研究所, 1997: 78~95
    86.沈金安.沥青及沥青混合料路用性能.人民交通出版社. 2001: 1~3
    87. BonnaureF, GestG, GravoisA, etal. A New Method of Predicting the Stiffness Modulus of Asphalt Paving Mixtures [J].Proceeding of Journal of the Association of Asphalt Paving Technologist.1977.(46):64~66
    88.何曼君.陈维孝.董西侠.高分子物理[M].上海:复旦大学出版社,1990:65~79
    89.黄卫东.聚合物改性沥青:显微结构,存储稳定性,流变性能及其关系的研究[D].上海:同济大学, 2001:41~45
    90.过梅丽.高聚物与复合材料的动态力学热分析[M].北京:化学工业出版社, 2002: 35~46
    91. M. Stroup-Gardiner. D.E. Newcomb. Polymer Literature Review, Report No.MN/RC,1995: 27~33
    92.张肖宁.沥青与沥青混合料的粘弹力学原理及应用[M].北京:人民交通出版社, 2006: 71~80
    93. Strausz O.P. , Mojelsk Y.T.W. Lown E M. The Molecular Structure of Asphaltene: an Unfolding Study[J].Fuel,1992,71(21):1355~1363
    94. M. Marasteanu, D. Anderson. Time-Temperature Dependency of Asphalt Binders-An Improved Model, Asphalt Paving Technology, Journal of the Association of Asphalt Paving Technologists. 1996,65: 408~448
    95.李晓民.基于流变特性的沥青胶浆评价方法及性能的研究.哈尔滨工业大学博士学位论文, 2006:33~36
    96. Uzan, Asphalt Concrete Characterization for Pavement Performance Prediction, Asphalt Paving Technology. Journal of the Association of Asphalt Technologists, 1996, 65:573~607
    97. J. Stastna, L. Zanzotto, and J. Berti. How Good are Some Rheological Models of Dynamic Functions of Asphalt? Journal of the Association ofAsphalt Paving Technologists. 1997,66: 458~485
    98. D.W. Christensen Jr., D.A. Anderson. Interpretation of Dynamic Mechanical Test Data for Paving Grade Asphalt Cements. Asphalt Paving Technology, Journal of the Association of Asphalt Paving Technologists. 1992,61:67~116
    99. M.O. Marasteanu, and D.A. Anderson. Improved Model for Bitumen Rheological Characterization. Eurobitume Workshop on Performance Related Properties for Bituminous Binders, Luxembourg, 1999:133~134
    100. Menglan Zeng Hussain U. Bahia Huachun Zhai etl. Rheological Modeling of Modified Asphalt Binders and Mixtures. Journal of the Association of Asphalt Paving Technologists. 2001,70:403~435
    101. Ghuzlan,K.A., and S.H.Carpenter. Energy-Derived, Damage-Based Failure Criterion for Fatigue Testing. In Transp. Res. Rec. 1723, TRB, Washington, D.C., 2000: 141~149
    102. Anderson, D.A., Bahia, H.U., Dongre, Raj.Rheological properties of mineral filler-asphalt mastics and its importance to pavement performance. ASTM Special Technical Publication, 1992:131~153
    103. F.F. Lange. The Interaction of a Crack Front with a Second Phase Dispersion. Philosophical Magazine, 1970, 22:983~992
    104. A.G. Evans. The Strength of Brittle Materials Containing Second Phase Dispersions. Philosophical Magazine, 1972, 26:1327~1344
    105. L. H. Van Vlack. Materials Science for Engineers, Addison-Wesley Publishing Company, Inc, Reading, MA, 1970, 11:113~156
    106.张肖宁.实验粘弹原理,哈尔滨船舶工程学院出版社, 1990. 140~155
    107.贾娟.改性沥青高温性能评价及其应用的研究.华南理工大学博士学位论文, 2005: 31~66
    108.曾赟 ,郭淑华.零剪切粘度与沥青高温性能的关系.石油沥青.2003,17:21~25
    109.沈金安,李福普,陈景.高速公路沥青路面早期损坏分析与防治对策[M].北京:人民交通出版社.2004: 3~5
    110.卢辉.长陡坡路段沥青路面抗车辙技术研究.华南理工大学博士学位论文, 2007:1~6
    111.张肖宁.设计沥青混合料[J].哈尔滨建筑大学学报. 2002 (35), 1: 108~ 112
    112.张肖宁,王绍怀,吴旷怀,王端宜.沥青混合料组成设计的CAVF法[J].公路.2002,12:17~21
    113.美国沥青协会著,贾渝等编译.高性能沥青路面(SUPERPAVE)基础参考手册[M].人民交通出版社. 2005,5:18~29
    114. Lu Hui; Su Wei-guo and Hu ling-ling. Residual Bearing Capacity Evaluation of the Impact Compacted Cement Concrete Pavement on Field Test[J]. Journal of Zhengzhou University. 2007,3:118~135
    115.夏选朋,张若楠,付宏伟.高模量沥青混合料的特性和新发展[J].中外公路. 2005(25),2:123~127
    116. Silvino Dias Capit?o, Luís Picado-Santos. Assessing Permanent Deformation Resistance of High Modulus Asphalt Mixtures[J]. Journal of Transportation Engineering.2006,5:394~401
    117. Capit?o, S. Caracteriza??o Mecanica de Misturas Betuminosas de Alto Modulo De-deformabilidade Mechanical Characterization of High Modulus Asphalt Mixtures[J].Disserta??o submetidaàFCT da Univ. de Coimbra para a obten??o do grau de Doutor em Engenharia Civil, Coimbra in Portuguese
    118. Hyun Jong Lee, Jung Hun Lee, Hee Mun Park. Performance Evaluation of High Modulus Asphalt Mixtures for Long Life Asphalt Pavements[J]. Construction and Building Materials. 21 (2007): 1079~1087
    119.吕伟民.沥青稳定基层沥青混凝土路面抗剪性能的理论分析[J].公路.2006.4:220~224
    120.杨国良.基于落锤式弯沉仪评价路基路面结构层状况的研究.华南理工大学博士学位论文, 2007:21~24
    121.薛忠军.旧水泥路面加铺超薄沥青层综合技术的研究.哈尔滨工业大学博士学位论文, 2007: 6~13
    122. Jiwon Kimi and William G. Buttlar. Analysis of Reflective Crack Control System Involving Reinforcing Grid over Base-Isolating Interlay Mixture. Jorunal of Transportation Engineering, 2002(8): 375~384
    123. Dennis A. Morian, P.E. Yangqing Zhao, Ph.D. Janice Arellano. Analysis of Asphalt Pavement Rehabilitation Treatment Performance over Twenty Years. TRB& 84th Annual Meeting CD-ROM, 2005:1~23

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700